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ACTA ARITHMETICA
XXXVIT (1880)

On the distribution function of certain sequences (mod 1)*
by

A, M. OsTROWSEI (Basel)

To the memory of P. Turdn

§ 1. Introduction.

1. This paper arose from the consideration of the expression

(1.1)
with

Ro(n)i=R{g12p(1~p)n +-pu)+R{HVep(l—p)n —pn)

b<p<<l, #>0, =n-oo,

where K(z) denotes gemerally the fractional part of #, Iying in <0, 1)
The expression (1.1} occurs in the Probability Caleulus. Namely, a3 has
been shown by Uspensky [7] and Ostrowski [3], the sum

S)ra-—pr (r—pmi<nvinpa—p)

e}

ean be expressed in the form

2 : 1—Z
= fe—ﬁdw+g—v‘m%ﬂ__ o(i) (n — o)
¥r Yomp (1 —p)n %

where R, I8 given by (1.1).

As a matter of fact o similar formula was firet given by Laplace.
However, the term £, (%) was missing in Laplace’s deduction. The formula
a8 it had been written down by Laplace was repeatedly used until the
first quarier of this eentury. It wus therefore of importance, that B, (%)
does not tend with n— oo to 0 but is everyuwhere dense in the interval
between 0 and 2. This was annonced in [3] and proved in [4].

2, Bince, however, very often the seguences in such connection are,
not only everywhere dense, but also wniformly disiribuied that is have
a constant densiby in every point in the eorresponding interval, it appears

* Sponsored in part by the Swiss National Science Foundation. Bponsored in
part under the Grant DA-BRO-75-G-085 of the European Rescarch Office, U.S.A.,
to the Institate of Mathematies, University of Basel
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to be worth while investigating whether the sequence E, (%) (# - oo} ig
uniformly distributed in the inberval {0,2).

T4 turns oub that this is not the case and we succeeded even to obtain
explicit expression for the distribution function of the B, (n) (n — o)
for irrational velues of p. This discussion presented peswliar difficulties
which are overcome using a theorem about distribution of the expressions
R(vi) (v = co), saying that for any inferval of the length E(nyl) for
natural » the modulus of the “error term” is < n, ([5]; see also [2]).

QOur result is contained in a corresponding result about the more
general sequences,

(1.2) R(aVy +vd) +R{aVr —»)

with a fixed posifive a. Further, the sequence vy (v ~ oo} can be replaced
in this connection with s more general sequence

(v = o0)

(1.3 a, = RB(s,) (v )
where '
(1'4) 8, —8&_1 \i 0? ‘p(sﬂ_sﬂ—'l) - (1’ - oo)‘

3. For sequences a, of this type it follows immediately from a result
by L. Pejér, that they are uniformly distributed in (0, 1) ([1]; see also
[6).

But, in order o carry through our discussion we have to resiriet
the seguence s, furfher imposing on it & condition which will be formmlated
in (2.10) in Section 7. In any case we show that the sequence

EBlav®) (w20, 0<a<l, a>>9)

ean be used as a, in our resulis.
We will therefore consider generally the sequence
(1.B) 7= R{a, +vA)+ B(a,—vi)

and prove that, for any irrational J, the density of this sequence in the
interval 0 < # <1 has the value # and in the interval 1< o < 2 the
value 2—m.

(v = o0)

4. As to the corresponding expressions in the case of a rational fraction
A, we show that then the 7, are uniformly distributed il and onty if 24
is an integer.

‘We prove that the distribution function always exists for rational 1
too, and derive explicifly the wvalue of this function in & neighborhood
of 1, where it is rather simple. The expression of the digtribution funection
in the whole interval {0,2) can he also derived, but the expression obtained
is very complicated and we omit it, as it appears to present little interest.

The gequence (1.5) is of course rather a special one. However, our
discussion offers one of the very few examples of nonuniform distribution
where the distribution function could be obtained explicitly.
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§ 2. Discussion of the a,.

5. Consider a segquence of positive d, monotonieally faliing to 8 and
sueh that
2.1 4,19,

Bince, from o » on, d, > 1/, it follows thab

vd, - 20 (¥ ~= o0).

%

(2.2} Spr= ) d, + 20 (%> oco0).
Pzl
Putting .
(2.3) a:=Rk(s), d =s—8._,,

it follows obviously from (2.2) that the numbers o, infinitely often run
monotonically through the nterval (0, 1), Consider the values of » for
which

(2.3a) a,_1-+d, = 1.

Denote these values of » ordered monotonically by #,, taking n, = 1:

(2.3h) 1 =mn <, <My<< ...

Then, for each = we have the nequality

(2.4) D<Kty <y 1 <..o< @

-1 <1 (2 =1,2,...).

We denote the sequence of indices in (2.4) by P, and call it the x-th run.
As, from a x> % on, 4, <1 and at each run [s,] is increased by 1, we
sea that for the wth ran

(2.42) s, = xtc+ta,
for a constant e. Put further

(8] = x-}¢

(v € Py # 22 1),

e
[t
Leld

3) Thpy = Thy =1 W, F; =D, n,= N, +1.

T,

%
x
[
o

6. For a fixed #, 0 < » <1, denote by N, {z) the number of the g,
from the »th ruon, which are < =,

(2.6} Nyxy:=N (o, <#,veP,).
{Obvicusly N, (1) = N,.) Then

a"‘x'*'* () -1 <@ \<‘ anx'}'Nx(m}
and therefore

T+ N y—1 4+,
d, < m—a, < E d,.
o=, f1 de=Ry, 1
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From (2.1) and (2.3) it follows now
(N (2)—1)d, , <&—a, <N(0)d

Tt 1 st

and by (2.58)
{(2.7) Dx(m_an,‘)“{-Nu(m)<Du-}-l(m"'anx)'i'l-

Taking & = 1, we obtain

(2.8) Dy(l—a, ) Fl> N, 2 D,(1—a,).
Dividing (2.8) by D,,, it follows
Here, the left side expression tends to 1 while by (2.1) &, +1dn,,+1 tends
to co. It follows i—% ~> 0 and therefore
(2.9) N, jn, = G.
7. We make now the supplementary hypothesis about (2.1):
(2.10) Dyn/D, 1.
Then, dividing all three terms of (2.8) by D, it follows
(2.11) N JD,—=1, XN,—co.
Divide now all three terms of (2.7} by N,:
=) T T o) B 4 5
Tging (2.10) and (2.11) it follows for » — <o
(2.12) Nol2) o
. e

8. Denote, for a natural 2, by A(a,®) the number of all a, with
r<# and a, < a:

(9.13) Ain,z) 1= Nla, <, »<n).

To any « corresponds a %k such that s, <n < n,,, and here & — oo
with # — co. Thence we have
k=1
Alnym) = ¥ N,(0)-+ 6N, = A(n, @)+ 6N,

®=]

where 8, as well as 6 with different indices, denotes from now on & number
of modulus <1, not necessarily the same for different ¢ in a formula.
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Sjmilarly,
w1
no= MFA4ON, =n+1+0N,.
H=1

By Cauchy’s convergence theorem it foliows from (2.12):

k-1
> Nu(#)
(2.14) x=l

k-1

DI
==1

A (ﬂ'x! ’I")
= — T
o, —1

We have now

Afn,2)  Alw, 2)+ 0N,
s

Dividing on the right the numerator and denumerator by =, we see that

A, 5 o
k{1

(2.15)

(n - oa).
This follows algo, a3 has been said in Seetion 3, from avesalt by 1. Féjer.

§3. An example.

8. Consider, for e > 0, b > ¢ and an ¢ with 0 < a < 1, the sequence
{3.1) g, = (av-+0)° (v =1,2,...).
Here the d, are defined by

d, = (a¥+B)°—(av—a-+b)".

They are > 0 and monotonically decreasing.

Writing
d, b \° bh—a\®
= 1 —] — {1+
{av)” ay av

and developing we obtain a/r+-G(»™%) and

@ 1
2 —:0(——), 4,10, »d, - co.

3 v‘1~a

(3.2) 4, =

v

The conditions (2.1) sre satisfied.

10. From (2.4a) it follows now for x -» co: s, ~ o, am,+b~ ',

n, ~—— xl",

(3.3)
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From (3.3) we obtain
1o
e ~ M}_ x(l*a)fa.

ad [#2]

(3.4) D, = Ildn,, ~
We see that our supplementary condition (2.10) is also zatisfied and
1
5 P LY
(3.5) w o %
Taking in particular a:= 4, b:= 0 we obtain

s 2
(3.6) 8, =Vav, n, ~2x%, N,,ND,,N% (s — oo).

§ 4. Introdnection of A'(z), A"(x), B'(x), B"{z).
11. If we uge the notation
(4.1) R(vd) =: 4,
the expression (1.5) of 7, can be written as
(4.2) 7, := R{a,4 A} +R(a,—1,).
Our aim iz to'obta.in an expression for the number of 7, < 22 if v < n:
{4.3) Tlo,n):=N(@p:r, < Zz,v<<n) (0<aogl).

Observe that E{e,+4,) has one of the values a,4 1, or o4, —1
whichliesin € 0, 1) that is e, +4, fl, <l—gand a4+, 111, > 1wa,.
Similarly B(a,—1,) is a,—4, if 4, <0, and ¢,—1,+1 if 4, > a,.

7, can therefore have one of the three values 2q,, Za,-+1, 2¢,—1
and we have obviously four cases:

(A) <1, <1l—a, 7, = 20,1,
B) 1—o,<i<a, 7, =2a—1,
(A") 4 >,y A 21—q, 7, =20,
(B A <a, <l-—a, 7, =2q,,

12. We will firgt digcuss the distribution numbers corresponding
to a fived run P, assaming that our » runs vhrough the whole set P,. We
call then the corresponding distribution numbers for e, < @ in the corre-
sponding cases A, ..., B, defining them -as (1)

(4.4) Afw):=N(:a<mreP,a<i<l—g),
{4.B} A:(w)::N(v:a,,<w,veP,,, Azl—a, 4, >a),

() Observe that B.(sz) = 0 for = < §, while A (x) = 4L(}) is constant for
ftwe<l
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(4.6) EBn) =N <z,vel, l—a,< i <o),
(£ Bl{)i=Npp:a,<z,veP,L<e, i <l—q).
Denote by 7,(2) the number of » from P, for wiich , < 22,
(4.8} Tiz)i= Ny v,<2z,7eP,).
Then I say that
{4.9) T, (0) = A{r—1)+Bulz+ 1 +47(2)+B"(2).

Indeed, in the cases (A') and (B) ¥ 7, = 2a, = 1 < 22 1k follows that
a, < 3 F %, while in the ecases (A”) and (B"), 2¢, < 22 and therefors
a, < 2.

On the other hand, denoting by N, (#) the number of all o, < o from
the xth rn, as in (2.6),

(4.10) N o):=N(v: q,<z,veP,),

we obtain easily, according as #<{ %} or ¢ > §:

(£11) N (o) = Ay(@) + 4, () + Bz} (s<4),
(£12) No) = AL(D+Bo)+ 4, @)+ B, (%) (o> %)

Our next aim is now to obtain smitable expressions for A,(z) and
B (), keeping » fixed.

§5. Use of the infervals J,.

13. We assume from now an until § 8 that A is irrafional. Assume a
natural number 8 and congider tha points of {0, 1):

{3.1) Rlody =1, (0=0,1,2,...,8).
If we order these points monoctoniesily,
(5.2) Po=0<p <. . <P, <1,
they decompose the interval <0, 1) into 51 infervals
(6.3) Jyim= {DeryP,)  (6=1,..,8), Jop =<{0s 1),
Then the length of J, is
(5'4) [Ja{ = Aa =pc"'Pa‘—l (1%0’5;_3), As-'r].::lwo.s‘
Put
(8.5) Max A, ==:1,
Denote now by NI? the number of the a, from the xth run, which
lie in J,:
(5.6) NO:i=N{r: g,ed,veP,).
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Then, for two consecutive of these @, from J, the difference a,,;—aq,
lies between d,, and d,, . Bince the number of subintervalg of J, obtained
by introducing the correspondmg a, lies between N{'+1 and N9 —1
we obtain the inequality

(6.7  (1+N¥MNd, > A,z @014, . (c=1,...,5+1).
Using (2.5) it follows '
(5.8) D A4,~1 < NILD, 4,41 (¢ =1,...,8+1).

By (2.10¢) we ean wrile
DD, =1—¢, &=0, g0

There exists therefore for each = = 1:

(5.9 M, = Maxe, 0 (2— o).
V-1

We agsume x so large that

(5.9a) 7, < 1]20.

We can then write the expresgion on the right of (5.8) as D, 4,(1—e,)41
and obtain finally for N the formula:

(3.10) N9 =D A, (1+0n)+0.

14, We will now have to uge the following lemma ([5]):

TevwMA 1. Consider subinterval, J, of the interval (0, 1), closed from
the left, whose length is R (n,2) for an integer ny Z 0. Denote for a natural
integer n by N (J,n) the number of 3, = R(v1) with v < n, lying in J.

Then (%)
(5.41) N(J, n) = BE{n,
From this lemma it follows:

Tuvmma 2. Under the assumptions of Lemmal assume N a natural
number and denote by N (J ,n, N) the number of the A, lying in J with n < v
<n+N. Then, applying (5.11) to the interval (modulo 1) J-+mni:

(5.12) NI, n, Ny~ TN = Ong, |0 < 1.

15. If we apply (5.12) to the interval {p.,1—pJ), p. = B(d'A) < },
the length of this inferval is

1-2p. = R(

2s, and we obtain for the number of corresponding

An+0ny, 0] < 1.

—24'1),

our 7, = 20" will be <

cages for o, from J,:
(3.13) N(: p,<A<l-p, a,6d,) =N(1—2p)+20s (. <}.

(¥} J can be an interval modulo 1, consisting of two parts adjoining 1 ad 0.
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QUorrespondingly, if p, = E{e"2) > 1, the Iength of the inferval

{1—p.,p.) is
2p,~1 = R(26"2),

our |n,) = 2¢’ is again < 2z and we obtain for the namber of correspond-
ing cases with a, from J,:

(8.14) N(r:1—p, <A <Py o,6d,) = N (2p,—1)-+268  (p.> ).
§ 6. Expressions for A, (z) and B ().

16. We now define the numbers corresponding to 4, and B, if we
replace the conditien a, < & by the condition a, ed,:

61y HA, =N{p:a<l<l—a, g,ed,, vebl,)
62y B, =N l—a<Ai<a,aqed, reP)

P < §),
(pa-l > %)'

The number 4, is obviousiy increased if we replace a, in the eondition
for the v, intervals by p,_;, and decreased, i# g, is replaced by p,. We
obtain for the » from p,
Frip,<hh<l—p, aed)sd, <V mp,1<i <l—p,,a,ed,).
Applying now (5.13) with v = ¢ and =z == v—1, we obtain

NO(1—2p,)~28< 4, < N (1—2p,_,)+28
or using (5.10)
(D, 4,(1—n3—1101
or
(6.3) D 4,(1—2p;)—

—2p,)—28 < 4, < [P 4,(L45,) +11(L —2p,-1) +28

~.<‘ .Za Q -D,‘Ag(l '"“sza—l) +
+1]3Dx‘d6+1+28‘

we have

D, 4,—1 —28

But, as 12z is monotonically decreasing,

Pg
1—2p)d.< [ (1—2z)dx < (1—2p,1)4,,
Pg-1
Pyg
(1~2p)4,= [ (1—2z)dz+2643,
Pa—1
Fg
(1—2p,)d, = | (1—2s)ds+2645.

gl

Introducing this into {6.3) we finally obtain, as 4,<1 by (5.5)

Do
(6.4) 4, =D, [ (1—-20)do+0(2+n)4,D,+8(s+1).

Pg—3



icm

17. In the case of B, we proceed in exaetly the same way, the only
difference beeing that 1 —2p,, 1 —2p ., are to be replaced with 2Py ~1,
2p,—1. In this way we obtain immediately

Dnda(zpu—d "_1)'—"7an‘4¢_6(8 +1) = Ec‘<- ﬂxﬁa(2po—1)“|‘
+9. D, 4,46 (s--1),

Hxactly as above we see that both 4,(2p,.,—1) and A,(2p,~1)
can be written as

Od A, M. Ostrowski

Py
[ (2w —1)dn-2042,
Pe—1
and obtain finally
Be
(6.5) B, =D, f (2 —1)dw+ 0(21 +9,) 4,D,+ (s -+1).

By

18. It is now easy to obtain the asymptotic relations for A, (o) and
B ().

Asgume 2 < } and
(66) Pt*€.$<23:+1: o < %<ﬁu+1'

Then p,<p,<} and for all intervals J, (¢ =1,...,1), We ecan use
the formula (6.4), while the number of indices » between »; and & corve-
sponding to the case 4’ is, by ({5.6), < N¥+). We obtain therefore
i
(@) = DA, + 0N,
g=1 ’

or nsing (6.4)
n
A (@} =D, [ (1—20)dw-6(2L+n,) Dypy+ 6(s+1)2.
[{]

Dividing both sides by ¥, we obtain further, as 9, < 1,

A,(@) _ D, ~ (s +1)*

= N[f (1=20)d-+0(20-4n) | 4 =

For » «> oo and a constant ¢ it follows:

1 By
A:(®) “'f (l—zw)dw)-:{f%l (w< ).

[t}

—zlgﬁﬁ(

*

On the other hand
X
f (I~2a)de < o—p, <1,
Py .

On the disirébulion function of cerfain sequences {(mod I) 2553

and we finally cbiain

(6.7) —214@(4’;@ _f (1—2m}dw)<22 (2 §).

'

19, To discuss B, (x), assume @ > } and again (6.6). Then obviously
Pii1 2 Pugay t=u and the intervals J, from {4, z), for which (6.5}
holds, correspond to ¢ with %--2 < 0 < f, while the parts of B, which
correspond to a part of J, and te a part of J,,;, must be estimated by
N gnd NE+D, Then we have by (6.5) and (5.10)

i
Biz) = E B, + g (N0 4 iy
g=U~+2
Pl
= D,,[ [ (2z—1)dz+ 9(21+m)] + (s 1)+ 6(31D,+2)
P27
where the integral mmust be deleted if it i3 < 0.
Further,
Bra1 ut1
| [ @o-1)doin | f (2m—1)(1m| <1

= 2

and we can therefore rewrite our formula as

(6.8) B (z) = D,,( [ @o-1)ao+ 3(52:4-17,,)) +26((s-F1)242)  (=> ).
12
Observe that this formula algo holds ¥ » = 1.
Dividing (6.8) on both side by N,, we obtain

Be) _ Duy f .y 12
A *Nu( {(2m—1}dm-;—6(61—i—7;“})+2& E—

iz
With » — oo it follows now for a fixzed s

— (BRl(x

(6.9) —6z<ﬁm( (T )

- f (2;:;-1)&9:)&65

* 1/2

and now (6.7) and (6.8) become with § — o0, I = 0:

(6.10) 8 L [a—ra = a0t @<,
Ay, I3
Bya) [
(6.11) - | Be-dr =(z—1%) (z>1}).
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In particular, with @ =} and # =1 we have

, 1/2
A(2) —>f (1—2a)dy = %,

(6.12) T
L1 B.(1—0
(6.13) B;\T( - (Nn ) 1.

§ 7. Density valnes for irrational A.
26. Rewriting (4.11) and (4.12) as
(7.1) A @)+ B (@) = N, 0)— AL (@<},

(7.2) A"(2)+B" (@) = N, (@)~ B(w)— A (F<o<l)

and wsing (2.12), (6.10)-(6.12) we obtain

(7.3) ii"(—m)l\ir":wl .—>m—!(1—2m)dm ~2t (2<}),
(7.4) ﬁ%‘"n—BE»m— f(2w—1)dw—i;=2m——m5——§

2

(F<ow<l).
Resuming now the formula (4.9) we see that it hecomes for o< %
(7.5) T,(#) = B (w+1)+ 4] () + B, («).
Dividing this by ¥, and using (6.11) and (7.3) it follows

(7.6) T (@) N, + 2% (%00, 2<}).

Az to the ease » > 4, (4.9) becomes in this case by (6.10), {6.13)
and (7.4)

(7.7 Tulw) = A, (2—3+B(1)+ 4@+ B (®) (2> 1),
and dividing this by N, we obtain with » — oo

(7.8) Tfw}|N, =~ 1-2(1—g)2 (%— c0,5> 3,
If we introduce now

(7.9) Alm) 1= {;32122 (1 —a/2)2 ﬁf i ?; 2)
we cal write the formulas (7.7) and (7.8) as

(7.10) T2} [N, > A(2m) (x> 00, 0 <& <1).

On the distribution function of eertain saguences (mod 1) o7

21. Reburning now to the definitions {£.3) and (4.8) of T(z, n) and
T.,{#}, we can write, taking » = #y and using (2.5):
E—1

K1
Diwyng) = M Tf2), w,= 5 N1,
=1

H=E
Bug then it follows from (7.19), by Canchy’s convergence theorem, thab

(7.11) T(w, w)fn, > A(22) (& — oo).
TFor a general natural », we can write, with & convenient k,
oy, < < ?3;5+1 == ??,‘kj'—_Nk.

Then obviously T(x, n) = T{a, )+ 0N, n o= n, -+ 8.,

T (=) T2y ny) frg -+ 0N,
R T F AT
It follows now, using (2.9),
1y,
(7.12) LM 420 (k- oo).

¥

In virtue of the definition (4.3) of T(w,n) we have now proved
that the distribution funciion of the <, in the interval (0, 2) i3 given by
Az} in (7.9).

Differentiating, we obtaiun for the corresponding density the value a
in (6,1 and 2—2 in (1, 3).

We remind the reader that this result hag been obtained assuming A
to be drrational,

§8. An auxiliary problem.

22. Our problem, in the case of a rational 2, can be reduced fo the
following special problem which we solve in this § 8.
Assume e, a8 in § 2. Assume 2 fixed 0y < 1, and put

7, 1= E(a,+7)+ R{a, ).

What value has the distribution funciion of the 7, in €0, 2)?
Put, assuming first » > 0,

7' 1== Min(r, 1 —7),
Since E(a,—r) = B(a, 4+ —r), we can write
(8.3) %, = Ko, ")+ R{a,+7").

If we assume that the positive » satisfies

(8.1)

(8.2} o= Max(r,1—7),

(8.4) 7, < 2w, v<n,

7 — Acta Arithmetica HERVIL
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we have to congider threc cases, according as e, lies in the intervals
(A &) or (B a.<# or (0 a,=¢". Accordingly we define
?)

(8.3) A i=Npia, <@,v<n, <a <",
(8.6} B’(m):=N(v:ay<m,v<%, av<4"):
(8.7) Cz)i=N@ra, <z, v<In, =)

Obviously, it v =% =", 4" (w) = 0.

23. As to A’ (z) we have, since the distribution of e, is uniform,
for o, the interval +' < e, << Min(w, »’') and thervefore for A'(x)/n the
following limits with n -+ co : 0 H Lo’y p—+" it ' < <", and ¢/ —¢'
if &>,

Totroducing the general notation

. {D it D20,
(D = 10 if D<o
we immediately verify that

(8.8) Al fn = {e—v)y, —(@—r"),.

In the easo of B'(%), ¢, runs through the interval <0, Min(x, ")
and it follows

(8.9) B (@) Jn — Min(z, r').

Finally in the case of O'(#), o, rouns through the interval <,,,~‘, @)
if > 7" and then ¢'{x)/n — »—r", while for & < r"', ¢'(z} vanishes; we
can write

(8.10) O'(m)n — (o —r"), .

We note in particular that with n — oo:

{8.11) Blz—{n -»Mnz-%,¢) (=1,
(812)  Twtdmn—»(@+i—1"), = (@—54+), (@<,
(8.13) O (Lyn — .

24, We can now eagily find the asyuptotic value of

(8.14) Tm,n):=N(v: v<n, 7,<20).

The digtribution function of the %, is given by
Hm T (2 /2, u)fn.
=00

Observe that it #, < 2 then in the case {A'), a, lies in &/, »''),

a,+r' <1, a-+v"z1l, % =2a, a <
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in the case {B):

a, <ty  a,Fr' <2<, q+r'<l, %, =2%,+l, a <az—};
finally in the case (O):
a,z=r, a+rzl, ot e2"z1, I =21, a, < &+ 3.

Therefore obviously
{8.15) Tz, n) = A'(B)+B' (o—H-C'(x+3).

However, B'(x—{) vanishes if & < §, while ("(2+ 1) has to be replaced
with ¢'(1) if # 2 {. Therefore we can write in particular:

(8.16) Tw,n) = @) +0 @+ (@<,
(8.17) T*(w,n) = A&y + B (a—1+0(1) (221).
Thence, using (8.8}, {8.12), (8.11) and (8.13) we obtain finally

(8.18) T a, n)jn — (@—" ), (@— 127 (<Y,
(8.19) T*(w, n)jn —~az—{e—r"), +Min@,z—~% (@=§.

The formulas (8.18) and (8.19) remain true for 7 =" =0, ¢ =1,
as then ¢, = 2RK{a,), and the a, are uniformly distributed.
The corresponding distribution functions are now:

. it -1
(8.20) lim 7* (_f)-”_, n)," - (5'1 ———1") + (xo - +'r‘") (w<1),
o0 = ] + ] +
. Z & & o . fx—1
(8.21) i{]:iT*(—g,n)/n =< M(E—T )_++M,1n ( 3 ,T)

(1< @<2).
§ 9. Distribution of the 7, for ratiomal 1.

25, Obviously, for A = 0, as the g, are uniformly distributed in <0, 1),
the values of =, = 2R(e,) are wniformly distributed in <0, 2).

In the case 2 = £ we have, for even v, 7, = 2.8(q,)uniformly distrib-
uted-in {0, 2), while, for odd values of »,

Ty = R{av-l»%)“I—R((va%) = Q’R(a'ﬂhi—%)

are again wnifermly distributed in {0, 2). We have therefore for the com-
plefic gequence of the z, again uniform distribution in {0, 2).

We see that the 7, are upiformly distributed in {0, 2) if 31 is aninteger.

‘We are now going to show that for any rational A for which 22 is not
an integer the distribution of the =, in {0, 2} is not uniform.

H we write, using (4.3},

(9.1) Plewjz, ny:== Nz, <m,r<n) <<l
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then the distribution function of the v,

{(9.2) gl{m) = UmT ()2, n)/n,

H=roo
ghould in the cage of uniform distribution, exist and have the value /2.
It is therefore, in order to prove our assertion, sufficient to show that,
in a certain neighborhood of @ == 1, g{w) exists but has a value different
from /2, save for @ = 1.

-

2¢. Assume now

{9.3) Ae=gfs, O<g<s, (g8 =1,
for an integer s> 2 and an integer ¢ satisfying (2.3). Choose an a,
among one of the integers 0,1,2,...,8—1 and consider the values of
y in the arithmetical progression
(9.4) y=usta  (u=1,2,..).
For such wvaliues of », we have
(9.5) ag =b, (mods), 1, =25,fs
where b, is one of the numbers 0,1,...,8—1, and r, agswmes exactly

one each of the values ofs, ¢ =0,1,...,s—1. Then our 7, becomes

R(ayoratTa) +E(tppa—a)
or, putting 8 1 = @ 50
7, = o 1= R(BY +,) + B(ED —ra)

In this way the whole sequence of the a, is decomposed into ¢ partial
sequences which correspond to the values of » ronning through s arith-
metical progressions with. the difference s. The sequences of » correspond-
ing to these progressions satisfy the conditions of § 8 and have therefore
distribution funections in {0, 2).

Tt follows that the complete sequence of a, hag @ distribution function
in <0,2), equal to the arithmetical mean of the distribution funcbions
belonging to our partial sequences.

27. T we define
T:a(m:m) i=N(uip<m, ﬁf‘f)< ®),

we obtain, applying (8.20) and (8.21), (we have then to replace a, with
B, r with v, and n with m):

(0.6) 2 (@[2, m)fm — T\ (@) (m > o),
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putting
* -1
{8.7) I(2):= (-— -—*r’) -+ ( —i—ﬂf’) (< 1),
2 + 2 4
o @ L {o—1
(8.8) I(w)i=— —{——7"} 4+Min s 1 <e<).
2 2 -
For v < n it follows from (9.4) thab
®n G 1)
Pl ———r~— (1> 00).
g 8 8

Replacing in (9.6) m with n/s—a/s we obtain now

&€ n—a&

(9.9) sTfa(2 T ) fn—=T, (¥ (r<1)

28. If we consider all positive » < # for which », < @, these values
are distributed among the srithmelical progressions (9.4) corresponding
to all admissible values of a. We obtain therefore

§—1
& Hi W=
Pl n) = g Pl
(2’”‘) ZT(% )

(9.10)

and by (9.9}

2 1 8—1
T (?, n) - ?foa(w)'

a=0

The r, runs herve through the set of fractions
(9.11) {ofs (¢ =0,1,...,8=1)}.
‘We have finally for g(x) in (9.2}

1
s@) == > L)

where r rung through (9.11).

(9.12)

29. In order to evaluate further the right hand expression in (9.12)
observe that for any function of 7, defined on the set (9.11), the following
formula holds in which 7 ig defined by (8.2):

Sy =f0)+2 D ) +E)

0<r<l2

(9.13)
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where 4§ is defined by

odd,

(9.14) even.

0 s
ém{l 8

Indeed, for all ¢ from the open interval (0, s/2) we have by (8.2), #" = r,
while, if /2 < ¢ <1, ¥ =1 —r runs again through the set of the values
of r between 0 and 4.

Applying (9.13) we obtain in the sums (9.7) and (9.8)

w K ; . @ ] i3
(9.15) Z(?_T)+ =5 +2 Z (?_?)+ (< 1),

0 - Bf2
(9.16) (w—l »Hf’) = (iwl"m +82 (21
’ 2 2 . Z P 2/, o (z < 1),
¥ <o<els
&
(9.17) (—~—1”) = _1(— 4—9'—1)
Ss-r),= Sz ),
v g r—1
=2 Z (~2—+»S—-1)++5 5 (1<a<?).

< o<8/2

30. We are going now to compute the values of {9.15)-(9.17) in the
nterval

(9.18) 1-1/s<Cae <141/,

We can write ® = 140/s, —~1 < 0=1. On the other hand, putting
§-—1-—6
{9.19) I o= —

t 18 the greatest integer < 8/2, and the upper limit of o in the right hand
sum in {9.15) is obviously ¢.
For our # and o we have

The right hand sum in (9.15) becomes therefore

)t

2 8 4 28

lged
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We obtain in (9.15)

rs A m_(s—é)ﬂ-—l
D A

(9.20)

31. As to the right hand sum in (9.18), it becomes

55
= § 2l
d i “ineea 1—m>1 6>0
and 1g, 8 p ) = s o9 H
g 1—a §—1—4 {1 g
s 2 | 4 s 2g

lsso<Ct

§—1—9§6 §—2 d—1
& - .

4 8 8s
It follows thervefore from (9.16)

, A1—=\  s—1 ot d—1 §-—-2
2= LT ds P
" .
Using (9.12) and (9.7) we obtain
140

(9.21) sg(®w) = (s——

) o—1t (1-1/s<<e<<1).
22, As to the last sum in (9.17) we have obviously, replacing = by
1-+0/s,
m o G 1 6 §—1

_— ] = — < < 0.
2 s s 2 "2z T 28 O

We see that our sum vanishes and we obtain from (8.17)

fi z—1
2 o — .
(9.92) 2(2 y )+ b=

r

Forther, applying (9.13), we obtain

L fs—1 g--1 e
(9.23) ZMm(—E—,r)=6 2 Zl\hn( ; ,?).

1ot

But here we have {#—1)/2 = §/2s < 1/2s < 1/s < o/s. Thence, replacing
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in (9.23) each smmmand by (@—1)/2 it follows

@1 — -
(9.24) me(mz ,q-*)z (5+21) —“153- = 321 (m—~1).

33. Uging now (9.8) and summing over r we obtain from (9.22) and
(9.24) the same cxpression as in (9.21). It follows finally

(9.25)

sG{w) = {s* L+o

3 )m-—t (L—1j/s<m<1+1fs).

Since obviouwsly
sg(w) —sei2 = t{x—1),

we see that g(x) in (1—1/s, 1-41/s)> is always different from «/2 save
for # = 1. The assertion of Section 25 is proved.
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On two definitions of the integral of a p-adic funetion
by
Korr Manrer (Canherra)

In memory of Paul Turdn

In his basie paper on functions of o p-adic variable Diendonné [1],
introdunced a special kind of integral (primitive) of a continmous funetion.
A completely different definition of such an integral was more recently
given by M. van der Put (see A. 0. M. van Rooij and W. H. Sehikhof [2]).
The aim of this note is to show that these two definitions lead to the same
regult. This is rather surprising becanse there is a large set of non-constant
p-adie funections of derivative 0.

Sinee it simplifies the diseussion, we sball study the two kinds of
integrals for the class of functions f: J — @, where p is any positive rational
prime, §, is the field of p-adic numbers, and J = {0,1,2,...} 38 the
set of all non-negative rational integers. The set J is not closed, and its
p-adie clogure is the set I = {w € Q,; (], < 1} of all p-adic integers which
ig compact.

1. Let f: J =@, be an arbitrary function on J. The two integrals
of f are defined by the following constructions.
Write x eJ In the canonic form as

m = By a P et ...

where ©y, %, &y, ... ave digits 0,1, ..., p—1. At most finitely many of
these digits are distinct from 0; 8o, if & 0, leb m, 5= 0 be the non-vanishing
digit of largest suffix s. Firstly put

g(0) =0, g¢lx) =a,p* for a0
Secondly write

B = gy ap b ... P (=1,2,3,...)
80 that

") = 4™ for  m> s,



