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This forces p < 318. The only prime p < 318 satistying p = 1+bj is p = 17,
which again yields a contradiction. m
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Linear forms on abelian varieties over local fields
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&

DaNwr BrERTRAND (Palaisean) and YuvaL Fuceker (Cambridge)

(. Introduction. Let 4 be a simple abelian variety of dimension d, defined
over a number field F. Denote by End 4 the ring of endomorphisms of A.
Assume that A odmits sufficiently many complex multiplications in the sense
that the algebra End A o9 Q s isomorphic to a totally imaginary quadratic
extension K of a totally real field Ky, with [K,: Q] = d. For any field C,
denote by A the set of C-rational points on the variety A, We shall study
here lincar forms in algebraic points of the (hormalized) exponential map
on Ag, when the field ¢ s non-archimedean.

- Lower bounds for lincar forms in algebraic points of cxponential maps
are fundamental in the theory of diophantine approximations. Such studies
were initiated by Baker, who obtained lower bounds for linear forms in
{ordinary} logarithms by means of a new extrapolation technique (see, c.g
[1D). Masser [8] later showed that similar techniques can be applied so as
to yield lower bounds in the case of an elliptic curve with complex multipli-
cation. This corresponds 1o the case of an abelian variety A as above, with
dimension o = 1. Masser’s work was generalized by Masser [9] and Lang [7]
to deal with arbitrary dimension J. A variant of the method, leading to
sharper bounds, was then given by Coales and Lang [5], using a theorem
of Ribet [117 on the degree of the division fields attached to rational poinis
of A, and these bounds were subsequently improved by Masser [10].

Our ohject here is to establish v p-adic analogue of the main Masser
Coates-Lang theorem on linear forms in algebraic points on abelian varieties
of complex multiplication type. ko the clliptic case, such p-adic linear forms
were stwdiod by Bertrand [3]. An essential ingredient in the study of the
higher dimensional case is a many viriables p-adic version of the “Schwarz
femma” principle, which has recently been established by Robba [12].
However, Robba’s result applies only for sufliciently well-distributed extra-
polation sets. [n order (o check this hypothesis in our sftuation, we have been
led to require (see § 6) that the rational prime p splits completely in the
tatally real field Ky, and all primes of K, which He above p have the same
splitting tvpe in K. We assume this [rom now on. Il is likely that our
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results hold in fact without any restriction on p and it would be of interest
to remove this condition. Note, however, that in the elliptic case, that is,
when the dimension d is equal to 1, we have K, = Q, whence the splitting
assumption on p is always satisfied, and our results imply those of [3].

i. Statements of the theorem and transcendence results. Signify by p
a prime ideal of F which divides p. Denote by F, the completion of F
at p, and by | |, (or, when there is no risk of confusion, by [ 1) the
valuation on F,, normalized by |pl, = p~', as well as the corresponding
sup norm on F!. We assume, as we may without loss of generality, that ¥
contains the field K together with all its conjugates, We define the product
of two elements « = () and § = (f;) in F! by af = (x;$). The normalized
p-adic exponential map f (whose definition we recall in §2) maps a sub-
group #, of F) into Ap,. By an algebraic point of f we mean an element
of #, whose image under Flies in Ay, where Q denotes the algebraic closure
of Q in F,. The analytic representation of End A® Q endows the set of
algebraic points of f with a structure of End 4-module.

Let now uy,..., 4, be algebraic points of f, linearly independent over
End A, and denote by 1 the vector of Fj whose coordinates are all equal to 1.
Taking a finite extension of F if necessary we may assume that each com-
ponent of f'(u) (I <j < n) belongs to F. Suppose further that the size (see
below) of the points f(u)) are bounded by some U > 3. Put

= 5d(d(n+1)+2), 2 = @2d=1x, %3 =d@n+1x.

Our main result, which we prove in § 3-§ 8 {under the hypotheses on the
abelian variety 4 and the prime p specified in § 0) is the following

THEOREM, There exists a positive constant C, effectively computable in
terms of A, F and n only, such that for any vectors Bo, By, ... By in F4, not
all 0, with sizes bounded by some B > 3, we have

iBot+Brity+ ... +Buwsl, > exp { —C (log B)*1 p*2(log U)“3}

Here the size, size («), of an algebraic number &, is the maximum of
lol| and den o, where |a| denotes the maximum of the archimedean absolute
values of the conjugates of &, and den o denotes the lcast natural number
for which (xdeno) is an algebraic integer. By the size of a vector with
algebraic coordinates we mean the maximum of the sizes of its coordinates,

The theorem implies, in particular, that the above points 1, wy, ..., 1,
are linearly independent over FY, and in fact over ¥, as can easily be seen
by extending the number field F if necessary. More especially, for any j
(1 €j < d), aset of jth components of algebraic points linearly independent
over End 4, together with 1 is in fact linearly independent over . Thus,
we obtain:

CoroLLARY 1. Every coordinate of a non-zero algebralc point of [ is
transcendental
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[For general abelian varicties, it is known only (as in the complex case)
that at least one of the coordinates of such a point is transcendental
(see [2], Prop. 2).]

It will be noted thal, unlike in the works mentioned above over the
complex domain, we have computed the explicit dependence of our estimate
on U {and p). This enables os {sec §2) 10 give an intrinsic geometric
formulation of the theorem, and lurther applications concerning the greatest
prime divisor of the denominator of a peint on a CM-type curve; see also
Bertrand [3] and Masser [9].

It ean be checked that the arguments wsed in the course of the
demonstration- of the (beorem apply also in the complex case, and they
furnish an improvement on the result of Coates and Lang 5], who assumed
that fiy = 0 and at least one of f,....f, has no zero components. The
latter condition wus also assumed by Masser [10], though in this paper
he obtained a stronger dependence on B, The corresponding sharpening in
the p-ncdic ense has recently been established by Flicker [6], who showed
that, in the above estimate, the constant x, can then be chosen arbitrarily
close (o 1, independently of « and n.

2. Geomelric corollaries. For the reader’s convenience, we first recall
some basic facty concerning the p-adic abelian functions, referring Lo [4]
for o more complete exposition. The p-adic exponentigl map on A, s
A local tlilT«_Qmmphism defined on a subgroup 7, of the tangent sppace
at the origin ¢ of A, . which we identify with Fj. We choose a coordinate
system =y, ..., 2z on 1"” such that the analytic representation of End 4 ® Q
acts on F! in the lollowing way (sec [13]. 11):

yzo= Wz, 9pW2) (p in K = End A ® Q),
where y = " are certain extensions to K of the different embeddings of
Kyin F,. : .
let X a set of affine coordinates on an open subset
_ 0. By definition, the normalized
p-adic abelion Funetions £, ..., /i, are the components of the p-adic exponential
map in (he coordinate systems described above. We put [= (f1.....fa)-
The normalization of I implies that the ring F{J)] is mapped into itself
by the partial derivations d/2z; (1< j < d). It follows from this property
{sec [4], Prop. 3) that, after performing a suitable homothety on the coor-
dinates, the derivatives of all orders of the f's at 0 are p-adic integers.
% such that fi....,f» are integral over F[f,.... /], we

Choosing 4 set ¥
further have that the map = (fi.,..../;) is an isometry on .#,, where

i (Xyy e X)) be

e

v i |a —Lfp Ly
o == e B, |z < p e bL

In order 1o state the geometric corollaries announced in § 1, we now

A - Acta Arichnetien XXXVIIL |
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introduce two functions on the set of F-rational points P ol Ay: the p-adic
distance between ¢ and P:

d (e, P) = max lx; (P

1 d

and the (absolute) height of P:
= [[ max (1

where the product is taken over all places v of F, 8, denotes the local
degree of F at v, and & the degree of F over Q.

The height function has a canonical extension to the group A, which
will also be denoted by h In order to simplily some computations in ihe
course of the proof of the theorem, we further choose a system of alline
coordinates ¥ such that the function h satisfies the Néron-Tate theorem
in the following form:

LEMMA 1.
a positive definite guadratic form and o bounded fimetion,

Proof. See, c,g [71. § 7; the absence of linear terms in log A(P) is due
to the choice of X. The uniformity of the bounded function on the set 4, has
been proved by Lang,

In the proof of the theorem we shall also use the following related
multiplication formula.

LemMa 2. For any y in End A with |y} £ h there are polynomials
&y, and Vi with degrees < W%, and with cocfficients in F whose sizes are
ar most exp (co h?), such that

filyz) = o (TP () (I <isd)
f

These polynomials can be chosen so that Vo (f) #0 (1 i<
= Uiy oany Uy

Here and in the sequel the constants ¢, ¢y, ...
implied by <, depend on 4, F and n alone.

Proof. See [7], Lemma 7.2, and the “safe” multiplication formula
(Lemma 1) of [10]. Note that this implies that the degree ol the exiension
of F which is generated by a g-division point is < 4%

Using the Mordell-Weil theorem, we can now give an intkinsic formus
fation of the theorem:

CoroLLArY 2. There exists a positive constant C', effectively computable
in terms of a basis of the Mordell- We:l group Ap, such thai for any poim
P ;é e on A, we have;

dy{e, P) > exp (—C" p*+ (log log H (P)f'1),
xg'i'zétl'xa.

» 1-\"1 (P)i", e X ([))‘")riufn

d'y for

, a5 well as the constants

where ny =

The fiunction P log h(P) on Ay is equdl 10 the sum of
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Proof. The procedure developed in [3] can easily be generalized to the
hu:,hu dimensional case, noticing thal, in view of the Taylor expansions
of the p-adic abelian Tunctions, the sel & » Is mapped by f onto a subgr oup
of Ay, whose index g, is bounded by ¢ p™ Hence, if Py,..., P, represent
a sel of generators of the group 4, modulo torsion, and P belongs to Ay,
the point g, P can be prlusul as a lincar combination of the points
t, Prees gty Py which all lie in J{# ). Using the isometry property of the
map (fi.....fn) and the quadmlluty 01 the height, we can then pull back
the tower bound of the theorem on the abelian variety to conclude: (for
a more detailed discussion, see [4], § 2.2).

The next corollary to the theorem concerns CM-type curves (see [9],
§ 5% In order (o make the discussion shorter, we shall consider only plane
curves [ We assume that there exists a non-constant rational map ¢: I - A,
where 4 is a simple abelian variety of CM-lype, and also that I', ¢ and 4
are defined over F, Consider an alline model I'y = {i(x, y) = 0} of I, For
any F-rational point R on [’y we denote by #H(R) the height of x(R), and
by PR} the greatest prime factor of the denominator of x(R). Then the
following corollary holds. _

- CororLary 3. There oxist (ineffective) positive constants € = C*(I) and
W= W(xgde such that for any F-rational point R of Iy, which is integral
outside the set I of primes for which the theorem holds, we have

P(R) = C" {log H(R)Y.

Proof. According to [4], §2.3, there exists a set {y:;pell} of real
numbers depending only on I' and g, and equal to 1 for all ‘but a.finite
number of primes p, such that, for any point R on I'; we have

max (1, |x (R}, ) < 7, Max (l, M1“11'1a)( ( p( i @IRN™ ))
y ¢, denote the images under @ of the points at infinity on T,

applied to the
implies

where ¢, ...
and —v, the order of x al o~ '(¢). Thus, Corollary 1,
abelian variety 4, together with the archimedean result of [5],
(sce 9], § 5 and [4], § 3.3

HHR) s CF exp (€4 (log log k(@ (R T p*4))
_ »
where the sum is over all primes p not exceeding P(R) which are divisible

by some p in [T Since I" is a curve, the height functions attached to the
maps x and @ on I’ arc multiplicatively equivalent. Therefore:

H(R) < exp (C7 (log log H (R)1 (P(R)f4*1)

and the corollary . follows.
As an illustration of the abdve results we consider the hyperelliptic
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"curve ay?+bx'+¢ = 0, where a, b and ¢ are rational integers, and [ is an
odd prime number. Such a curve is a CM-lype curve, since its jacobian
is a simple abelian variety of CM-type, in fact with a CM-field K = Q{()),
where {, denotes some non-trivial fth root of unity. The theorem applies
to prime numbers p of the form:

{y p=pl+1,

(i) p = pul—1,
where g runs through the rational integers. Indeed we recall that the fiell
K is galois over Q, the primes p of the form (i) are those which splil
completely in K, and the primes p of the form (i) are those that splil
completely in its tolally real subfield K, = Q({+{"). Finally, using the
map described in [9], p. 564, we can further deduce that if x,y, and =
arc positive integers satisfying Fermat's cquation x'+y' = =\ and if z is
composed of primes p of the Torm (i) or (ii} only, then

Plz) » " {log 2.

3. Proof of the theorem. We shall now proceed to prove the theorem.
For any natural number n and real numbers B, U = 3, we put

h = (log B) (p*'~ ' (log U)p*1,
and

Sl e
Q = h?tl' I.-f == h i lm,

where as above »; = 5d{(d{n+1}+2). Let uy.....u, be algebraic points of

7= (fi,...fu). linearly independent over End A, with size (fi{u))< U
(1 <i<d 1< < n) Assume that i, By, .... S, are vectors in F4 not all 0,
whose sizes are bounded by B. Il P belongs to Ay, we denote by x(P)
the set of its fitst d coordinates. By the cholee of xy,...,x,; described in
§ 1, x(P) form a set of d independent variables, '

Lemma 3. There is a positive constant By, cffectively computable in ferms
of A, F and n, such that if

|ﬁg"|“ﬁx ltg .0 +ﬁ" ”Jfl < CXp (*'"'“.Q)

Jor some B 2 By, then there exists a non-zero polynomial P with integer
cocfficients in F, and with degree at most L in each of its dn variubles
xigll€id, 1 <) <n) such that

(1) ' PLx(yPi/q), .o x(pP/q)] = O
hete q is a prime larger than L', y is an element of End A with (v, ¢) = |
and Py/q denotes the image of g on A (under ),

We shall prove Lemma 3 in §4-§ 8,
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Lemmva 4. Let Py, ..., Py be points of Ap, linearly independent over
End A. For every prime g, q > ¢, (log U, the galois group

Gal I:F(Aqe P1/q1 s PN/Q)/F(AQ):]

is isomorphic to the group of translations by Ay, where A, denotes the group
of g-torsion points of A.

Note that the multiplication by y in End A with (v, q) = 1, gives an
automorphism of A,; hence the result of Lemma 5 remains valid on
substituting Pi/g by yPi/y (1 € 15 ») (see [2], Remark 6).

Prool. This is established in [11] for all “sufliciently large” primes g,
The dependence of ¢ on log U can be calculated similarly to [3], Prop. 4.
The Néron-Tate theorem holds for abelian varieties as well, and the change
from the elliptic to the abelian case is that now we approximate simultaneously
2nd real numbers by rationals, whose denominators are bounded by g.

Lemma 5. Let P be an element of Flx; ;3 1 €i<d; 1 <)< n], such
that (1) holds for a prime ¢ > LY* Then P = 0.

Proof. Since [ is an isomorphism of End A-modules on .7,, and
Uy, ..., Uy are linearly independent over End 4, the same is true of the points
Py, ..., P, In view of the relation ¢ > LY* > ¢, (log UY™, (1) and Lemma 4
then imply that, for any g-torsion point @ we have

Pl x(pPfg)+0),...) = 0.

The complex abellan functions fo = (f ¢, ....fic) giving an apalytic isomor-
phism between a complex torus and Ay, we infer that the points
{(xi (P Py + Q)1 ica 15 jens @ € A,} come within a (complex) distance < 1/g
of each point of some ball of radius c; centered at 0 in " (see [5]).
By Masser’s theorem ([83, p. 127}, it now follows that the polynomial P
vanishes identically. (It would be of interest to deduce this lemma from
a p-adic version of Masser’s theorem.)

Finally we note that Lemma 5 contradicts the assumption of Lemma 3,
and this concludes the proof of the theorem.

4. The auxiliary function. In the sequel we shall construct an auxiliary
funetion which will turn out (under certain modifications) to be the polypomial
whose existence is asserted in Lemma 3. '

Let By = By(4, F,n) be a positive constant such that for all B = By
the estimates below are valid. Assume B, ..., B, are vectors in F%, not all 0,
and let f be an element of F, such that the size of each B, fy,..., B, is
bounded by some B, B = By; without loss of generality we may further
assume that B, fy, ..., B, are integral. For any vector z = (zy,..., z;) we define
the function ¢, (1 < r < d) by e,(z) = 2 (projection on the rth coordinate).
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Since not all fy,..., B, are 0, we may assume that B, is not zero, hence
there is some r (I < r < d) for which e.(8,) # 0. We assume that

(2) |er(ﬁ1 g+ .. +ﬁnun)'—ﬁ|p < exP(—Q);

our aim is to deduce from this assumption the existence of a polynomial
satisfying the conditions of Lemma 3 .

Let {zy=(zp lgsi<d;1sj< n)} be a set of n independent d-vec-
tors. We consider an’auxiliary functionnol’ the form:
» Zn) = Z ‘a(lﬁl (;Llj))er(ﬁl 21+ e "i"ﬂnzn)i“ H.ﬁ(zj)zua

AouThg) ]

where the sum is taken over all integral (dn+1)-tuples (1o, (4;), with
0<dg<L and 0<ly<L(1gigd, 1L<jsn). The coeflicients
alAo, (AU)) are integers, shortly to be determined, ‘

For any dn-tuple (m) = (my), of length |m| =Y my, we write D
= [](8/6z;y"i. We then have:

ij -

q)(;.‘.'l,...

L=-1 .
D('“)‘;p(zla weey Z,,,) = E Z D("'M#)(er(ﬁl z1+ o +ﬁ"z"))‘:‘0 D(F‘) Y’Ag(zla iy zn):
Ag=0 (u} .
where the second summation is taken over all dn-tuples (y) which are
(componentwise) < (m), and where we have set: ‘
FipEr: s zn) = Y alde, G [T Az
{aggr )
We finally introduce a new variable z, in F,, independent of {z;}.
We put:
L-1 :
DCM)(p(zl: weey Zyy ZD) = . ZO g (D(M".u-) erl}ﬂ)zo D(.U) 'PAQ(ZI! site zn)’
Ap= i
where (D"“"“’ ¢t0),, denotes the value of D™ ¥e,(f;z;+ .. +f,2,)0 on
the set defined by: ¢, (8,2, + ... +Byz,) = Zo.

LiMMA 6. There exist integers a(dq, (Ay)) in F, not all 0, with
size (a(do, (A1) < exp (cs Lh? log U,
such that for any v in End A with ||y| < h, and any dn-tuple (m) with
Im| < k = h%, we have ' _
DY B {yuy, ..o, Yt fy¥) = 0.

Proof, The conditions of the lemma give a system of <€ h* g
linear equations in LX*" > h5**3 unknowus a (4, (4)). The coellicients are
elements of F whose size can be bounded as follows. By virtue of Lemma 2,
each of the numbers f(yu;), with y as in the lemma, has a size bounded by

= pt LI

exp (¢sh* log U). Since the ring of p-adic abelian functions is mapped into _
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itsell by partial differentiations, Lemma 5.1 of [7] implies that each function
(/02 f1) (z)) is a polynomial with degree <« k+1L in L@, S (2,
whose coefficients have sizes bounded by k!ck**. Hence the coefficients in
the system above have sizes bounded by

L1 2BY- exp (¢, h* (log U)(k+L) < exp (cg kh? log U).

The lemma now follows from Siegel’s lemma, noting that the Dirichlet
exponent is <€ h™', and that kh < Lh%

5. The extrapolation assertion. The main step in the proof of Lemma 3
is to establish the following lemma, by means of Baker's extrapolation
techniques. Let § > 0 be a number such that § < 1/(5dn(n+1)), and put
G =06"'(n+1)d.

Levma 7. For any integer g (0 € g < G), Jor any y in End A
with v < h, = hk*?, and any dn-tuple (m) with |m| < k, = k/2, we have

DD (yuy, ..., yuq; By™) = 0.

Proof. We prove the lemma by induction on g. For g = 0 the assertion
is just a property of @ by construction. Assuming the assertion holds
up to g, we shall prove it for g+1 in the given range.

If the assertion is false for g-+1, let (m) be a dn-tuple with minimal

- length jm'| < k,. 4, for which there exists ' in End 4 with ||y'{ < h,4,, and

&= DYy uy, o, ¥ty By 2 0.

We shall derive a contradiction from the assumption £ % 0 by comparing
a lower and an upper bound for the p-adic valuation of &

Lemma 8. Under the induction hypothesis
I§] = exp(—cghZiy Llog U),
Proof. The proof of Lemma 13 of [10] can easily be modified to
compute the dependence on U, and to yield
size (§) < exp (¢q0 h3+ 1 L log U).

The lemma follows at once from the product formula on the field F.
We shall now start the estimation of |¢| from above.

LEMMA 9. The assumption (2) implies that
DB (s oy ity By) =D D (yuy, ..., i) < exp (— ),

Jor any v and (m) specified in Lemma 7. _
Proof. Since the derivatives of all orders of the abelian functions at 0
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are p-adic integers, Cauchy’s inequalities imply that the above difference is
bounded by

iﬁ'y(")._.er(ﬁl }lui + e +ﬂn’yuﬂ}|'

Hence, Lemma 9 follows from (2) and the integrality of y.
Let us introduce the function

f(z) = D(m‘)'p(zuli e ZM,,),

zs) i the set of 4 independeni variables.
yry, and any v in End A

where 2 = (21, ...,
Lemma 10, For any d-tuple (t) with [if <
with §v| < hy,, we have

DD ) < exp(~8).

Proof We note that for any () = (¢} as in the lemma, the function

D f(z) is equal to

% Bis, D@ (zuy, ..., 74,),
S,

where the sum is taken over all dn-tuples (s) = (s) of non-negative integers
sy with ¥ s;; = t;, and b(s,u) are polynomials in ¢(«) with binomial
J

1. But since
kgar -+t £ &
the induction hypothesis (on g) implies that
DY B (puy, .., ytigs ) = 0

for all y in the required range. The lemma now follows from Lemma 9.

coefficients. Hence |b (s, u)j €

m 43 €

6. The p-adic Schwarz lemma. Let C be a finite extension of @, which
is contained in F,. Assume that its residue class degree is f and its
ramification index is e, so that the cardinality of the residue field of C
is g=pf, and its valuation group |C*| is generated by A = pi/e, Let
€15y Cy be such fields with equal parameters ¢ and f. The valuation
[l on Cyx ... xCy is defined to be the resmctaon of the valuation on F{,’.
Assume I is a set of v elements in

B(0,9) = {z in Cyx
where ¢ is a positive number, We put

0 = min {jy; —ya|, 91 # v, in I}

and define the natural number ¢ by ¢/f = i°~ !,
Let R be a positive number, and f{z) =

AN ><C’«'Jslzl < Q}

doy 2% be a function
()
W

icm
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of d variables, analytic on B(0, R), ie. such that the expression

|flo(R) = sup (la,| R*)
()

R, we have: [fly(@) < |flo(R). The next lemma, which
improves this inequality, plays a fundamental role in the extrapolation
procedure. It has recently been established by Robba, after previous work
of Serre.

Lemma 1L If f is analytic on B(O,R) and I' is a set as above in
B0, 0), such that

O0<og<R and @< p -1,

then for any natural number T we have

/1o (@) < max [(o/R)"[flo (R). (/0 ~* mmax P9 £ @1,

yml‘"

where
N = yT/getd—1),

Proof. See [12], Theorem 22 and Lemma L1.4. Note that, by the
definition of ¢, we have

g° = pflﬁf(w—l) —_ pf (—z_)—ef’

- w(d 1)
N=oT (—0—)
Q N

where ¢ = p/@~" depends only on C and d, and « denotes the degree &f
of C over Q,. It should be emphasised that, although the proofs are very
different in nature, the complex analogue of Lemma 11 provides a similar
formula, with @ = [C:R] = 2 (see [T]! _

Denote by K (1 < i < d) the d conjugaies of the field K under the |
embeddings specified in § 1, by K the completion of K in F,, and put
C; = K The hypothesis that p spl:ts completely in the maximal totally
real subfield K, of K, and all primes above p have the same splitting
type, implies that all C; have equal parameters ¢ and f with either ¢f = 1
or ¢f = 2. From now on, we shall view End 4. as a subring of Fi by
means of the map: y =+ (pX),..., 7). We shall apply Lemma 11 to the
function f defined prior to Lemma 10, and to the set I' of ¥s in End 4
such that [[y| < h,. The cardinality v-of I' is thus » A2, and we take

= 1, since End 4 consists of K-integers.

hence:
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LemmA 12. With the notations of Lemma 11, if T = k, then
| k> N p 2k,

Proof. By the formulz for N given above, it suffices to estimate 8¢/,
Let y; and y, be twe elements of I, such that 0 = |y;—y, and put
Yo = y1—72- For any element y of K, we write

d
H{y) = ‘]—[ .
=]

In view of the CM strocture of the field K, the norm of y satisfies:

Nigly) = 4 (0¥ ()

where the bar denotes complex conjugation (see [13], § H).
We first note that, without any assumption on the decomposition of p
in K, we have:

hy? < 0 < pht.
.Indeed:
' 074 = Jmax P07 < AN (o)l ™F < [Ny (yo)l ™ < h3
(the second inequality follows from the integrality of y,, hence of A (7,),
while the third one is an obvious consequence of the product formula
applied to the rational integer Nk, (70)). On the other hand, if p* denotes
the largest power of p smaller than h,, p* belongs to I, hence 8 <€ ph; "

These inequalities can be refined under the hypothesis on p described
above. We distinguish between two cases.

{i) Assume ef = 1. Then, cach field K" is embedded in Q,. I p’
denotes the largest power of p smaller than hj, there are < k¥ < v con-
gruence classes in (Z,/p° Z,), hence 0 < ph; 2

(i} Assume ef = 2. In this case, we claim that, for any element y in K
Iyl = I7. This is trivial if y belongs to K,. Otherwise, y* generates K9
over K (i=1,...,d). Since K is quadratic over the completion @, of
K{ in F (by the assumption on p), 77 is the conjugate of y™ over Q,,
and the desired equality always holds, Hence,

- N e H
O = o, b8 = max I,
and

072 <A (o) ™ I o)l < INkig (vl ™ < ki,
so_that 8> hyt.

- 7. Proof of Lemma 7. Since, for j = 1, ...',_n, the point u; belongs to the
locally compact field F, and its p-adic valuation is < p~ ¥~ there exists
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a constant c,; depending only on the ramification index of p at p, such
that |uj < R™!p~H*"1, where R = p'/€117. Therefore, the function f(z)
= D™ @ (zu,, ..., zu,} is analytic on B(0, R), and the p-adic behaviour of the
Taylor expansions of the abelian functions at 0 implies that |f|,(R) = 1.
Hence Lemma 11, and the computations of Lemma 12, imply that

/lo(1) < max [exp (~cyz p* =2 B K), H13%5 ¥ (exp (— )]
whence, by the definition of £ and since G 2 g,
(3) [flo{1) < exp (~cizp' ™ ¥ 0 k).

By Lemma 9, the same upper bound holds for |£]. Comparing this estimate
with the lower bound provided by Lemma 8, we deduce:

P M h2k < Lhd log U,
thus
Rl o plim =58 & p20=1 150 [,

For B, sufficiently large, this contradicts the definition of h, and Lemma 7
is established.

Remark. It can be proved that, after performing a slight modification,
the set I' of extrapolation points considered in Lemma 11 is well-dis-
tributed in the sense of [12]. Moteover, the point 7 specified in § 5 belongs
to the locally compact space C;x...x C,. Consequently, inequality (2.3.2)
of [12] can be used to bound |/(y), and this yields a sharper estimate
for G. The application of this remark to the.lower bound of the theorem
Is discussed in [6]). '

8. Proof of Lemma 3. Let g be the smallest prime > L'?; thus g # p,
and g < 2LV,

Lemma 13. For any v in End 4 with ||y| < clgL"”, and any (m) with
Im| < L, we have

D™ B ((5/q) ..., (/) 13 BY/g) = 0.

Proof. Let (m) be a dn-tuple with minimal length for which there exists
a y as in the lemma, such that jm| < L and -

n = D" ®{v/g)u,, ..., (7/g) u; Br/g) # 0.
Lemma 2 implies that
h(fi((v/a) w)) < exp (4 log U)

From Lemma 3 we deduce that the division field gemerated by f((y/@)u)
over F has degree < g?! over Q. Thus the sizes of the points f{(3/q)u))
are bounded by exp(c,s¢*'logU). Applying Lemma 51 of [7] to

(Ig<i<d, 1<jsn).
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DM@z, ..., z,) (as explained in the prool of Lemma 6), together with
the bound |m| < L we deduce:

size () < exp (c14 (¢* +4%) Llog U).
But the non-zero number # is algebraic with degree < ¢**, hence

Il = exp (—eqy LA 0 Jog U),

The methods of § 7 (sec cstimate (3)), applied to f(z) = D™ @ (zuy, ..., zu,)
and with g.= G, together with Lemma 9, imply that

Il < exp (=4 p' "X BEK).
Since Gd = d(n+1), these last two estimates would imply
h < p*1log U.
This contradiction proves the lemma. . .
LevmMAa 14, Lemma 3 holds if B 5 0.
Proof. By virtue of Lemma 6 there is some dn-tuple (4} such that
P(A;}, (z5) is non-zero, where

o1

Y a(lg, (Ay)) 250

i} =2 {}

PM”)(ZQ) =

It is easy to see that the.cardinality of the set of 9's in End 4 with
7] € ey L*% and (y,q) = 1 exceeds L' 2 L. Consequently, there exists an
element y in this set such that: ' '

P @ (By“/q) # 0.
By virtue of Lemma 13, Lemma 3 now holds with the polynomial

Pxplgigd,lgjsnm= Z P“tﬁ &) [1 (xu),w’
L vy b

the prime ¢ > L' and the element y chosen above.

LEMMA' 15, Lemma 3 holds if B = 0,

Proof. Let A0 be the minimal value of A, for which there exists
a‘dmtuple (A such that (A3, (A)) # 0. Lel (m) = (my) be the dn-tuple
with m,, = i3 and my; = 0 otherwise. Then |

‘ o
L1 a3 PR

Dim P2y, 2 ;‘Z ) = ——— e s A8 n Ao (Ag o
' .n ’ 102;18 E‘o (Ao— (A8~ w)! ¢ (B,) 5 .

Hence x (0/@2,"}“ qlﬂ- ¢} (21 PR zn).

D(M)qj(z.l: svey Zygn 0) = lg!e,(ﬁ,,)"g ‘p;{g (Zl, . Zn).
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By assumption ¢,(f,) # 0; thus we put

Pixplgigdlsjsn= ) a(Ag, (o) [T Ger)*s,
iy 3]

and by virtue of Lemma 13, Lemma 4 now holds with the polynomial P,
y = 1, and the prime g > L'

Finally, we note that Lemma 14 and Lemma 15 imply Lemma 3, and
the proof of the theorem is complete.
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