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1. Introduetion. Liet I, be a linite field with g elements and of charac-
tevistic p. A sequence (w,),; % =0,1, ..., of clements of 7, is said fo be
equidisiributed (ov wniformly distribwted, abbreviated w.d.) in T, if

Ae, N

Hm  ——=
Nty 1\"

1
=— for all cel,
4

where 4(c, §N) = 4 (¢, N, (a,)) denotes the number of n, 0 <n < N -1,
for which «, == ¢ (seo [3] and [4], p. 331, Hxercize 3.5). For a periodic
sequence {2,), this definition is obviously equivalent to the requirement
that each clement of F, oceurs equally often in the full period of (w,).

We are interosted in characterizing those w.d. sequences in F, satis-
fying a linear recurrence relation. For linear recurrences of order 2 and 3,
this has been. carried out in [7]. In the present paper, we give the details
for the case of fourth-order lincar recurremces. The discussion becomes
increagingly complex and technical for higher-order linear recurring se-
quences, although in principle the methods developed so far should be
quite adequatbe,

A gequence (1,), n= 0,1, ..., of cloments of F,is called a X-th order
Linear veeurring sequence if it satisfios & lincar veewxrenco relation of the
forn '

(L) Mg == G Uy ees g B2, for n=0,1, ...,

where the coclficients ag, ¢y, ..., 4y, are fixed clements of F, and k> 1.
Wo can agsume, withont logs of generality, that (1) is the linear recurrence
relation of lowest ovder satisfied by fhe sequence (u,). In this case, the
polynomial m (@) = o —ay_ " — ... —a 0 —a, € T [2] associated with
(1) is called the minimal polynomial of (u,). For the zero sequence, Which
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sat1sf1es any linear recurrence Telation, one sets m(x) = 1. It wag shown

in [7] that for the purpose of investigating the equidistribution of linear
recurring sequences, it suffices to consider minimal polynomials m(x)
satisfying m{0) == 0 and having at least one multiple root.

2. Auxiliary results. In Temma 1 below, we colleet some standard
facts about linear recurring sequences in finite fields (see [8], [9])- For
o field P!, we denote by F* the multiplicative group of nonzero elements
of F.

IEvmA 1. Ladm(w)= (& —a)? ... (8—a,) be the canonical faciors-
zation of m(xz) in a suitable finite extension B of Fy, so that ay, ..., a; are
distinet elements of B*. Then any linear recurring seqwnoe () 7 I‘ with
minimal polynomial m(m) is periodic with period ep* 3 where ¢ 48 the least
common multiple of the orders of ayy ..., «, tn B* and p* is the smallest inte-
gral power of p with p'=r= ma,x(arl, oy 7). Furthermore, if v < p, then
the terms of (w,) are given explicifly by

(2) Uy = ZQ;,(%)a}‘ for m=0,1,...,

i=1
where Q;(x) € ETw] has degree af most r;—1.

Since F, is of characteristic p, we can write g = p’ with an integer
f= 1. The subsequent necessary condition for the equidistribution of (u,)
wag established in [7 ]

LEMMA 2. If ¢ = p” and the linear recurring sequence (u,) i u.d. in Fy,
then necessarily f < 1, where t 48 ag in Lemma 1.

We shail also use the following criteria for eqmdmtrlbutmn which
were shown in [7].

Lenora 3. A sequence (m,) in By with pewﬁod T 48 ud in B, if and only
=1

if > 2(x,) == 0 for all nonirivial additive choractors y of F.
nre=0

Levma 4. Let (x,) be o sequence im ¥, with period dgq, where 4 s an
integer with 1 < @ < p —1. Then (2,) 1s w.d. in Fy if and only if

da—3 ; |0 for
@l =

Rl - L’Z fO'r'

1€ji<g~2,
g o=q-—1.

3. Fourth-order recurrences, We considler now linear recurring se-
guences with a minimal polynomial m (x) of degree 4. As we have already
observed in Seetion 1, we may assume that m(0) s 0 and that m(x) has
atleast one multiple root. We bave to distinguish four eages depending on
the form of the canonical factorization of m(w). The eorrespondmg cri-
teria for equidistribution are enunciated in Theorems 1, 2, 3, and 4.
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TurorEM 1. Lét (u,) be a linear recurring sequende im ¥, with minimal

polynomial m() = (v —a)*(@—f)(®—y), where a ey, ,B, yeFy, and
a, B,y are distinct. Tiww ( a) 88 u.d. in B, @f and only if ¢ 58 prime.

Proof. This is'a 5pecml case of [7], Theorem 1.

TearormM 2. Lit (u,) be a linear recurring sequence in F, with minimal
polynomial m(w) = (@ — a)*(c — B, where a, f e Hyz ond o $ b Tken (%)
is u.d. in ¥y if wm? onby mf q s prime and the glement :

(3) [aaﬁ%u“—(a“}@aﬁ)ﬂh - (2a-t f)a, — ua] X
" e (20 B2) g —

is not @ power of af L v

(a--28)u,+us] €F 5

Proof. In, the numtmn of Temma 1, we have r =2, and so ? = 1.
By Lemma 2, {(w,) e only be n.d. in F, 1f q = p. Then (un) has penod ém,
whete ¢ is a8 in Lgm]nﬂi 1 fund by (2) W(‘ obmm

4) Uy, = (o*u—l-q'n) —I—((‘z—i-ca%)ﬁ" for mll w0y

Where 09, €y Gy, O3 EIf Wc have 6, 5= 0 and ey = 0 for otherwme ( )
would satisfy o linear recurrence rela,tmn of lower order. For # > 0 and
Jz=0 we get

(8) Uppse = {6+ R "I‘ 0173) ot -+ (ca + g -+ 03,76) B o=y, +33(01 an+ o f").

Tt i a congequence of L’tile definition of ¢ that p does not d1v1de ﬂ It follows
then from (3) that ¢, a6, f" e F, for all' 2> 0. ‘

Now suppoge that; o, a” 4 035" ;é_ 0 for all » = 0. Then for each fixed »,
0 < n < ¢—1, the finite sequence (,,,.), j = 0,1, ..., p—1, runs exactly
once through ¥, becduge of ¢(e,a®+cyf*) # 0 and (5). Therefore, among
the first ep terms of (#,)-each element of F,, appears e times, and since ép
is the period of (u,); the gequence is w.d. in F

On the 013]101 hand, suppose that e,a" -|- 0,87 = 0 for some ne > 0.
Then — g0yt == (af” )”"’ and if ¢’ denotes the order of af™’ mF 5, then e
divides e and there are efe’ values of 2, 0 < n < 6 —1, with (ef™ )= —eso7 "
Tor these values of m, the Berms t,, g, j=0,1,,..,p-1, am all eqnal
to u, by (3). Since p does not divide e/é, not all clements of ¥, appear
equally often amohg thego w, . For the other values of n with 0 % < e~—1,
the finite sequenco (ulh)y § =0,1,...,p~1, rans eXactly once through
¥,. Altogether, anfongy the first ep terms ‘of (u, ) ‘no‘t all elements of F
appear equally ofteny" wHd vo (,) is not w.d in' . ‘

Hence, (u,) is widdn B, if snd only if —oye" is not a p‘ower of aﬁ N
By using (4) foxr n =0, 1, 2 '3, we obtain a gystem of Nnear equations for

"oy €1 Uz, Ogy Whmh‘a.}lt)'Ws us to ex‘press these elentents'in terms'of wy, %y,
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W, Uy A8 2 presult of this calculation,

gyt = [0 Bty — {0+ 20y + (Bt )y — 1] X

[ —afifug+{2af BNuy — (28 st e,

and 80 —egert is nob & power of ¢! it and only if the elernent in (3) is
not a power of af .

Remarlk 1. The method in the proof of Theorem 2 can also be applied
to & linear recurring sequence (w,) with @ minimal polynominl m{x) of the
 form m(@) = (0 —a){® — M@ —y) ... (T—,), WheTe ¢, B, pry ooy BEC
distinet nonzero elements of a snitable finite extension B ot ¥,. Then

Uy = (Co-+ 0,0) 8™+ (Cs-+0am) B+ dayf + e +dpyy Hor all w20,

with coefficients in B, and the above argument shows that {2,) is H.d.
in F, i and only if ¢ is prime and —e;¢;" is not a power of af™l.
THEOREM 3. Lét (u,) be a linear recurring sequence in By, with mini-
mal polynomial m(a) = (z—a)*(®—b), where a, b & F’; and & 5= b, If p 2 3,
then (1) 18 w.d. in Fy if and only if ¢ = p, 6 45 70t & square in Iy, and

] .
S {e=o
k]
i=8
=i (mode)
for alt § with 1<j<p—1 and j= &3 {mod ey/e,), where e, is the order
of ba~' in Ty, eg = Lo.m. (6y, &;) with e; being the order of b in Iy, By 15 an
indeger with (ba~") = —b7, and ¢ = v ™" with
(6) » =8a*[(30%h —3ad*+ b%) uy — 30w, -+ 3au, —ug] [at iy —
. — (a4 2ab) Uy + (26 4 D)ty Uy ] —
—[(—batb+ 3a2D%) -+ (56 + Bah —dab*)u, +
A-{ — Bt ab by - (3o —b) w1t
and _
(1) w = Sa2[a?buy — (0% -+ Tab)u, + (2a+)uy — 13 ]
3 { Py e B, e B, 10y
If p =2, then (w,) is w.d. in Iy if and only if ¢ = L and either
iy a=1, b¢F,y, and (u,)is obtained from one of the lwo sequonocs
0,0,0,1,14b,1,0,5,0,1-b,1,14b,...and0,1,0,5,b,0,1,0,1,1+b,
145, 1+b, ... of period 12 by mulliplying by an elemont of I and shifting; or
{ii) &¢ Fy b =1, and (u,) s oblained from one of the fwo sequences O,
0,0,1,1+a,1+a,1+a,1,a,0,4,1,...and 0,1,0,a,14a,1,14+a0,
a,1,8,1+a,...of period 12 by multiplying by an dlement of I, and shifting; or
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- (ifi) & & Py, b == Lo, and (u,) is oblained from one of the two sequences
0,0,0,1,1,5, w,_b, Lydya,a,...0nd0,1,0,1,a,b,5,0,a,a,b,1,...0f
period 12 by multiplying by an elemeont of By and shifting.

Proof. In the nuta.tif‘m of Lemma 1, we have v = 3. Thus, if p = 8,
then ¢ == 1, and 8o ¢ = p 18 & neeessary condition for the equidistribution
of {w,) in I, because of Lemma 2. Furthermore, (%,) has period ep, where e
is as in Lenona 1, and by (2) we obtain
(8) Uy, == (Og -y - Gum®) a0y for all w20,

whore ¢q, ¢y 6y, 6 € F,,. Wo have 0, 5% 0 and ¢ % 0, for otherwise (u,)
would satisfy a linear recurrence relation of Iower order. We note that (u,)
is wd. in B, if and only if {v,) = (4ey%,) is n.d. in 7,. Now
Oy = A0y U, == ((202% A= 0)E - A, 0y —-(:ﬁ) a*-4de.0,0™  for all m = 0.
Forn > 0and j = 0w get
Unpfe = ((2(52""3‘ |- 20438+ ¢y)% 4 4oy 04 — Of) a™ -+ deye b

= (20,6] + 20,1 - 01)* a" -+ w,
with
w, == (46,0, —0)) a" - 4,0, 0™,

Now let » be a nontrivial additive character of F,. Then,

ep—1 e=1 p—1 e—1 . n—1 i
(9) 2 £(v,) = 2] 2 % (Vngge) = _2 X('w-n)z %((232‘35“{“202“ + 01)’“’@").
Nl Pl Jwml el Fom

If ¢ is & square in F,, then each inner sum in the last expression is equal

a1
to the Gaussian sum G{y) = 3 %(j?), and go
Jt

ep—1 &--1
D) (o) =6 () ) xlw,).
b 2T grxa

It is well known that G(y) # 0 ([1], Oh. 2). Also, (w,,) cannot be w.d. in F,
sinco it has a period ¢ < p. Therefore, by Lemma 3, there exists a non-

g==1 ep—1
trival 4 with 3 g(w,) 5% 0. For this x we have then 3 x(e,) # 0, and so,
: Tl Nl

by Lomma 3, (%,) is not w.d. in F,. Therefore, (v,) can only be w.d. in ¥, if a
iy o nongquare in ¥,. Then the oxder of @ in T, is even, and 8o 6 is even.
Now consider the last exprossion in (9). For even «, the inner sum is equal

: gt
to G(x); for odd m, the inner sum is 3’ x(aj*) = —G(x). Thus,
. Fad

ep—1 (2/2)—1 (alz_)‘—1
Z z{v,) == G(Z)( 2 2 (W) — _24 Z(wzn-p-l))-
C o fml H=0 fimaf) .
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Since @(y) # 0, it follows.from Lemma 3 that (#,) is w.d. in &, if and
only if

(ef2)—1 (&f2)—1
(10) gl = D) (i)
=0 n={

for all nontrivial additive characters y of #,. Now sot
@, =y, = L4 ol Y, = Wy, = (al) @™ - (Do) U

for m = 0, where { = 4,6, —¢; and o = d¢y¢p. Beeause of [7], Lemmas 1
and 2, and 0<<Ale, 6/2, (), Ale, 0/2, (1)) <ef2<p lov all ¢k,
{10} is equivalent to

{efz)—1 {ef2)—1
(1) Soal=3 u for 1gj<p-l.
n=0 n=0
Now for each j, 1<j<p—1, we have
(e/2)—1 (e/2)—1 -1 §
2 = Z (L@ GhmY 2 E (Jl) £ i gin gati=ipm
n=0 n=0 =0 f=0
i, (e/2)-1 LI
— (:i) flgtt (azibw—m’)'n = (e/2) 2 (.1) Cioj-—'i,
== n=0 Fae ()

where the dash indicates that only those ¢ with &*p™* =1 are con-
sidered. By replacing { by «f and o by be, we get
(ef2)—1

. [/
i
o =5

2 A\
=0 1=

g
! (J) SR gl
Therefore, (11) is equivalent to.the requirement that
L
2 (i) (1—a"v (o™ =0 for 1<<ji<<p—1L.
T ‘

From the restriction on 4, mamely o*p¥~% =1, it follows that afd'*
= +1, and so (11)is equivalent to the condition

Ly
(12) -Z.:* (i) (Co™lY =0 for 1<i<p-—1,
where the asterisk indicates that only those ¢ with ¥ = —(ba™!)* are
considered.

We determine now for which j there can exist an ¢ with 3 = —(ba™")".
First let the order ¢, of ba™ in I} e even. Then -1 is a power of ba™,
and so b should be in the cyclic subgroup H, of F} generated by ba~%

icm
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Lot I, he the eyelie subgroup of F;j gencrated by b, Then eard(Hy) = e,
eard (H,) == ¢y, and since .If‘;“, s eyclic, card{H, nH,)= g.c.d. (e, ¢;).
Thorefore the condition on § becomes j=0 (.mod ¢ fg.ed. (eg, 62)), or
Now let e, be odd.
Then ¢, 5 ¢ven since the order of a in ), is even. Let Hy be the subgroup
of F:; generated by —1 and ba™'. Then card (Hy) = 2e,, and so
cavd (Hyndly) == goead. {6y, 26,) = Bg.cl. (6, 6,). Thus necessarily we have
gm0 (mml eaf2g.ed. (04, 65)), But. we also have b ¢ II,, for otherwise
—1 e H,, contradicting the odduoss of ¢,. By the ease considered carlier,
b I, i equivalent to § oA 0 (mod. ey fe. L (g, ez)), and 80 § = ggf20.e.d.
(€5, 62) (Mod 6y [g.e.b(ey, 85)), or == e5/20; = /2 (modesfe,).

1§ is fixed, then the corresponding values of 4 with (ba™t) = —b
run through the arithmetic progression 4 «= by{mode,). The element Lo~
appearing in (12) ean be caleulated in terms of the initial values of the
sequence (w,). By using (8) for # = 0,1, 2,3, one obtains a system of
linear equations for e, ¢,, ¢, ¢;. Upon solving this system and recalling
that & == 46,0y —0f and o = dey6y, one gets Lo™! = ow™ = ¢ where »
and w are given by (6) and (7), respectively. This completes the discussion
of the cose p 23,

Now let p == 2. Then ¢ = 2, and so ¢ can only be 2 or 4 according to
Lemma 2. But ¢ == 2 is imponsible since a and b are distinet elements of F,
and o ¢ = & In each of the cases (i), (i), and (iii), (#,) has period 12, and
theve are 144 sequenecs with minimal polynomial s (2). Using the fact
that the equidistribution of (u,) is invariant under shifts and under term-
wise multiplieation by an element of Fj, one shows by inspeetion that
the list of equidistributed sequences in the theorem is complete.

For g{w) € F,[»] there existy a unique polynomial §(w) e F,[2] of

" degree at most p —1 with g(2) = () (mod (»” —)). We define the reduced

degree of g () to be the degree of §lz).

TemorEM 4. Let (u,) be a linear recurring sequence in F, with minimal
polynomial m () = (x —a), where a € Fy. For p > 5, lot f() = @°+daa® +
4 dym - dy with

dy 5 =Gt 1wy (@7 2y — Sty - 302y —10y) "5,
dy = (Llatug — 1802w, -+ 0aty — 20) (0P 10 — 3"y + 30U, U ANLE
Ay == { —Gad g+ 1562wy — 1201, + 3utg) (0P 24y ~— 302 Uy + Sathy ~ 1g) "t

Then (u,) i8 w.d, in I, if and only if q == p, the polynomial f(x) has coactly
one root in F,, and the reduced degree of (F(x)) is at most p—2 for each J
with 1 < j < (p—1) /e, where ¢ is the order of a in Fy. If p =2, then ()
is wd. i B, if and only if ¢ = 4, a ¢ Fy, and ewactly one of ty, iy, W%y, Ug
is 0. If p == 3, then (u,) s w.d. in F, if and only if we have one of the following

0ases :
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1) ¢ = 3;
(i) - g= 9, a= 1, and no two of wy (2 — 1,0 ™Y, 1, (vy ——uu)"’, Uy (g — 1)

tiffer by an element of Fy;
(ili) g= 9, a # 1, and ewactly o6 of aP g (g — a®uy)™
Wity (g — a3 1y) " 45 im T,

Lot , B\
s @Ry (ttg — eg® gy} L,

Proof. In the notation of Lemma 1, we have » == 4, Thny, if p 25,

then § = 1, and so Lemma 2 Implies that (#,) can he w.d. in A7, only for
= p. Then (%, has pexiod ep and Dy {2) we obtain
(L3) U, = (Cpt+en-+cyndenDa®  Lor all 0

where @y, ¢y, 61, ¢ € I, We have 6, 5% 0, for otherwise (w,) woulkl Revbinly
a lincar vecurrence relation of lower oxder, For L5 f = p—1 wo gob

ap—1 e~1 n~1 e—1 m—1
2 ul, = Z E’MHM __2 V (ot €1 (7 4 me} b 0y (4 -1 me)* -1 ¢y (5 4 10 ) el
The=d =t n==D q=0 n=u
e-1 ;p 1
=E (a’)’ (co»{-«cln-}-amﬂ—}—can“)
Za=l n==0
Now

¢—1

2, () zl

Fmal)

¢ if ¢ divides j,
0  otherwise.

On aceount of Lemma 4, we obtain that (u,) is n.d. in I, if and only if

n=1 .
Y for 17 —1)

E(03%3-}.(527@24*61%_{_0“)!’4 == ) (_’P . Me,

A=t b1 dor e (p—1)e,

or equivalently,

=1 L
0 for 1<i<(p—1)fe
2‘(%'}—}-6.16 A2t 065 0 A 00y ) = ‘ ‘Nj 2 —L)fe,
e -1 for  § == (p-—1)]e.
By using (13) with # == 0,1, 2,3, one can ea'xpt'uss' Oy 61y Ony g I1 't‘m'nH
of %y, %y, g, %, and thiy ealeulation leads o epey! wa dy fov hoe 0,0, 8,
Therefore, {(u,) is w.d. in it and only if
S . 0 for 1<i<(p—~1)je
(14) Dt =1 FSI< =iy
fryuer ~1  for § == {p--1)/e.

For j == (p—1}fe, coudition (14) is equivalont 1o saying that f(@) has
exactly one root in F,. For 1< j< (p—1)fe, Il Fi(w) e Wy[w] be the
umquepolynomml of dogrm at most p — 1 with (f (@))7 == §;(mw )(mm.l(uﬂ‘-—a,)).
~1 l"-T
Then (f('ra)]” = g;(n) for all w2 0, and o V (f(m))¥ == ng (m). 'The
H"U

Tast sun is equal to 0 if and only il the cocﬂ:lcu,m, of @~ In g (..u) iy 0 (com-

icm
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pare with [51, p. 191, Letnma 8.24, and [T}, eq. (2)), Lo, if and only if
tho vodneced degroo ni (j(.b))”f is ab most p 2, This completes the dig-
cussion of the cage ;0

Iip oo 2, thend = el 50 ¢ ean only e 2 or 4 accarding to emima 2
I g =+ 2, then fm,(fr') m--1Y, and one shows by ingpeetion that none
of the 8§ soquences with bhlh mwinimal polynomial iy wed. in Iy, If q =4
anndl (i) o (i -— 1Y, then (w,) has peviod 4, and so (#,,) i8 .. In B, exactly
i gy 20y, Uy, Uy ave distinet. Bub thow g --u, - g - thy = 0, and (%,
sabistios the linoar recureenco relabion w,,, ==, +4,,., 44, of order 3,
a ('on'i;m letion. 1 ¢ == 4 and o ¢F,, then (n,) satisfios Uy == @, TOT
L g ms O andl Ting ]wmml 12. Thus it is casily seen that (w,) is uw.d. in 7,
it sand ondy it exactly one of ag, 1y, s, U, 8 0.

Ip = 3, thent w2, and ro g can only be 3 or 9 according to Lemma 2.
It g w3 <1.1ul @ == Ly VRO 4ty g = Uy gl Uy — %, Tor all o2 0 and ()

hag period 1.1‘111*1.110.1.num‘., (? = Mg —y 7 0, for otherwize (u,) would
wotisfy o, == u, Lov all » = 0, The terins in the full period are

(15)

Sinee {0, 0--d, b wd} Hy for all b elly, the sequence (w,) is always
wd, in Fy, G0 g o= 3 ll.nd sy GBON Wy y = ety g, — 1, Tor all
iz 0oawml () ]l.LH 1)0.!.'1(){1 .I,H. Furthermore, d = g+, % 0, for other-
wise (w,) would sadisty 2, == i, for all @2 0, The terns in the foll
period ey, Uy, Uy, - oob @y =ty e dy =ty b, Wyl d, Uy Uy
tyy Wy —ty Wy dy uy—d, —wg—d, —tt+d, —Uy—d. By
considering every sixth Lur.m, i s seen as above that (u,) is alwa,yﬂ .
in M,

Now let ¢ = 9 and a == 1, Then the tering in the full period are again
given by (15), and (o} is u.d. in Iy if and only if the terms in (15) run
exaclly through all elements of ¥y, This is cquivalent to the condition
that no two of g, uy, u, ditfor by d, -~ 4, or 0, and so equivalent to the
condition fu the theorem, For ¢ 5% 1, consider the madrix

gy yy thyy o -F by by b, thg -y 1o —d, 90, —~d, 2w, —d-

- ’Nr ng - 'M']. I

0 1 @0
O 0 10
0 0 01
gt ot 0 g

agrociobed with the minimal polynewial m (@) == (@ ~a)* (compare with [6],

Beetion 2). Then

a 0040
a0
Ouad)
000«

A_9 L)
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and- so
(16) Uppy = att,  Tor all n2=0

secording to [6], eq. (3). Furthermore, d = wy —a®u, £ 0, for otherwise (w,)
would satisfy w, ., = a®w, for all 4= 0. The sequence (u,) is wd. in F,
precisely if (w,d™1) is w.d. in F,. The fivst nine terms of (u,d™") ave canily
alenlated to be

n e e . ) 1 ;
wd7l wud™Y,  afugd' 41, alatugdTl 1),

a{auyd™t 1), ad(afu,d 1), a'(afu,d"t—1),

Because of (16) we get all terms in the full perind by muliiplying these
nine terms by all powers a’, 0 < j<<e—1. The terms thus genernted
may be described as follows: take afu,d™!, aSu,d™'-+1, a*n,d ' -1,
et dt,  Pud i 41, et d Tt =1, audl,  eu.d' -1, au,dT—1L
and 1multiply them by all powers of, 0<j<e—1. Then it is clear
that exactly one of adu,d ™", a*u,d™}, au,d™" must belong to #y, for other-
wise 0 would occur cither not at alt or too frequently. Conversely, suppose
exactly one of these three elements is in #;. Since a ¢ £ and a £ 1, we
have

U@,

”15 ((m.ffa (1“1 il .I)-

o 0gjge—1 = {+a': 0K (e/2) -1},

Therefore, the terms in the full period of (w, 471 can be produced by taking
the 18 clements b, b 41, with b = abued™", abu,d”', and au,d™’,
and multiplying them by the powers af, 0 <j < (¢/2) — 1. Now it b ¢ I,
then 40, £5 £1 ran exactly twice through Fy, and it b ¢ 07,, then
48, £b £1 Tun exactly onee through F,\NTF,. Therefore, by the given
hypothesis, the above 18 elements run exactly twico through J,. After
multiplying by all &, 0 <j < (6/2) —1, the resulting terms in the foll
period of {w,d™*) will run exactly ¢ times through Fy, and so {a,d™)
is nd. In Fy. :

Remark 2. I p=1(mod 3) and « is o eube in F,, then (w,) ix not
.d. in F,. To see this, we notie that @ = 1, and so e divides (p ~1)/3.
Then we can ehoose j = (p—1)/3¢ in Theorew 4 o gob (f()7 -« (@74
+dym? - dyw -+ dg)P"4, which has leading terma @7, Thuw, the con-
dition in the theovem is not satistied.

Remark 3. If p = 5 and f(#) s the cube of a linear polynomial, then ()
15 w.d. in F, if and only if either (1) p == 2 (mod 8} o (ii) 2 =L (mod 3) and e
isnota cubein F,. For if f(z) = (& —5)® with b = Lyand o= 2 (mod 3), and
if (w,) were not u.d. in 7, then according o (14) there would cxist j y L

1 n—1
< (p—1)/e, with ¥ (n -0y = ¥ a9 3£ 0, But this is ouly possible it p—1

=l . =i

divides 3¢j. Since p —1 = 1 (mod 3), it wounld follow that p—1 divides ¢f, a

icm
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contradiction, If p =1 (mod 3) and {u,) is notw.d. in F,, then we have again
j:)—l ! (3 - . +

2w’ o 0 for some j with 1« j < (p —1)/e. It follows that p—1 divides
Aol

3¢, and go 3¢j can only be p—1 or 2(p~—1). In either cage, ¢ divides
god, (p—1,2(p--1)/3) = (p—1)/3, hence a ¥ = 1, and so a iz & cube
in #,. An application of Remark 2 completes the proof.

Tremarle 4, T p 2= 5 and o = 1, then («,) is w.d. in ¥, if and only
I f(a) = b dywd - dyw- dy I8 0 permutation polynomial over F,, (compare
with [87, Ch. 1, Heet. 8). Accovding o o vogult of Dickson [2], the eubic
polynomial f(x) is o permutation polynomial over B, it and only if
p=2{mod 3) wnd flae) In of the form f{a) = (o — b4 ¢ with b, ¢ el,.
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