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Separable extensions of first countable spaces
by . !

Erick K. van Douwen (Ahens, Ohio) and Teodor C. Przymusinski * {(Warszawa)

Abstract. B. Fitzpatrick, J. W Ott and G. M. Reed raised vthé following questions:
QuesTioN 1, Can each Moore space with weight at most ¢ be embedded in a separable
Moore space?
QuesTION 2. Can each first countable space with weight"at most ¢ be embedded in a sep-
. arable first countable space?
We show that these questions are mdependent ot the ZFC axioms for set theory.
We also prove the following theorerd, which is well known for completely regular spaces.

THEOREM. Let % be an infinite cardinal. Any space with weight < 2* which is Hausdorff’ or regular
can be embedded in a space with density » of the same type.

1. Introduction. It is well known that a completely regular space can be embedded
in a separable completely reguldr space if and only if its weight is at most ¢. In 1969
J. W. Ott proved that every metrizable space of weight at most ¢ can be embedded
in a separable Moore space, [16] (see [18], Thm 5 Yor an easy proof) and raised the
following

QusstIoN 1. Can each Moore space with weight at most ¢ be embedded in
a separable Moore space?

When investigating this question, G. M. Reed, [20] asked

QuESTION 2. Can each first countable Hausdorff space . with weight at most ¢ be
embedded in a separable first countable Hausdorff space?

The purpose of this paper is to show that these questions cannot be answered
in ZFC. Tt is convenient to introduce the following statements, where is an infinite
cardinal.

D(x%) :k Let 4 be a family of subsets of any set X, with || <x. Then there is a func-
tion h: B—P(N)(2(N) is the power set of N) such that
1) #(B) is infinite for nonempty Be4,

* This paper was completed while the second author was visiting the University of I’lttsburgh
as a Mellon Postdoctoral Fellow. . B
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2).if 4, Be# are disjoint, h(4) ~ h(B) is finite, and
3)if AeP and if F <A is finite, and if A< U &, then
h(4)— U {h(B): Be &} is finite.

T():  If S'is a set of cardinality <x, and if &/ is a family of <x subsets of S,
then there is a separable metrizable topology 1 on S such that each member
of & is an F, with respect to u. )

One can show the negation of T(¢) ‘to be consistent with ZFC, see Section 2,
hence the following example shows that it is consistent with ZFC that the answer
to the above questions is in the negative.

1.1. EXAMPLE [T1T(4)]. There exists a zero-dimensional Moore space with
cardinality and weight % which cannot be embedded in a separable first countable
Hausdorff space.

The construction of this example depends on the followmg lemma which is
of 1ndepen§ient interest, see Appendix.

1.2. LEMMA. Let X be a first countable separable (or, more generally, Sequentzally
separable) Hausdorff space. Then there is a separable metrizable topology 1 on X such
that any two disjoint open subsets of X are contained,in disjoint sets which are F, with
respect fo p. - :

.On the other hand, it is known that D(a) 4) is true in ZFC, see Section 2, so CH,
the Continwum Hypothesis, implies. D(¢). Consequently the following theorem
shows that it is consistent with ZFC that the answer to the above questions is in the
positive.

1.3. THEOREM [D(x)]. Any space with weight <» which is first countable, or
quasi-developable, or developable and which also is Hausdorff, or regular, or completely
regular, or zerodimensional, or “locally ~compact, or compact, can be embedded in
a separable space of the same type..

Note that the theorem gives an absolute result for spaces with weight <co1
Special cases of the theorem were known already: G. M. Reed has shown that any
space with weight <, which is first countable or developable, and locally compact
or compact, can be embedded in a separable space of the same type ([20], Thm. 1.7,
1.8 and 2.1); he did not observe however that his method also works for completely
regular spaces, see also Remark 2.6.

We also include a proof of the following theorem which seems to be mnew.

1.4. THEOREM. Let x be an infinite cardinal. Any space with weight <2* which is
Hausdorﬁ” or regular can be embedded in a space with density » of the same type.

Earlier G. M. Reed had shown that MA + — CH implies that every Hausdorf
space of cardinality ; *can be embedded in a separable Hausdorff space ([20],
Thm. 1.10). Since a space of cardinality w, has weight <2, and 2°* = ¢ under
MA + 71CH, this is an immediate consequence of Theorem 1.4. -

Our conventions and definitions are fairly standard; for undefined notions we
refer to [10]. We review only the most important facts. Regular spaces, zero-
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dimensional spaces %.nd locally compact spaces are taken to be Hausdorﬂ A space
is quasi-developable (developable) if there is a countable family ¢ conmstmg of open
families (open covers) such that for each x€ X the family

{St(x 9): @e(ﬁ} @

is a neighborhood base for x in X (recall that St(x, %) = U {Ge@ xeG)).
A More space is a regular developable space. Nisthe set (or space) of positive integers.
A cardinal is an initial ordinal, an ordinal is the set of smaller ordinals, o is w,
and ¢ = 2°. ‘

2. D(x) and T(x). Bukovsky [5] proved that the statement .
(*) 2% =2 and thereis no uncountable separable metrizable Q-set

is consistent with ZFC. (A Q-set is a space every subset of which is an F,.)
The following fact has been brought to the authors’ attention by G. M. Reed.

2.1. THEOREM. (x) implies 1T(c).
Proof. #(w,), the power set of w,, has cardinality 2° if 2° = 2°%, so T(c)
would imply the existence of an uncountable separable metrizable Q set. M

'The statement T() will be mvestlgated nore thoroughly in [19], in particular
it will be shown that a result of Rothberger, [22] implies the following
2.2. THEOREM. 0,<2°<2%" = w,,, implies "IT(c)4

So T(c) is not true in various models of set theory.

We now turn our attention to D(x). We may assume that the family # in the
statement of D(x) is closed under finite intersections, under complementation and
that @ e B. Then D(w;) is an immediate censequence of [6], 4.12. Hence we
have the following

2.3. THEOREM. D(w,) is true in ZFC.

2.4. Remark. Example 1.1 and Theorem 1.3 show that D(3) implies T(>) for

every x%. Consequently T'(w,) is true in ZFC. We do not know if D(x) and T'(x) are
equivalent for all . See also Remark 2.8,

We now give topological equivalents of D(3).

2.5. THEOREM. The followmg conditions are equivalent for every infinite cardinal 3:

(@) D(x),

(b) for every compact Hausdorff space Y of weight <x there is a Hausdorff
compactification bN of N such that bN—N and Y are homeomorphic,

(c) every compact Hausdorff space Y of weight <x is a continuous zmﬂge of
BN —N, and

(d) every zero-dimensional compact space Y of wezght <xisa contznuous image
of BN—N.
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Proof. (a)-+(b). We prove this implication in detail in Section 4, here we only
outline the construction of bN. We may assume that ¥ A N = @, Let & be a base
for ¥ with |#|<x which is closed under finite unions. Let % be as in the statement
of D(x). We may assume that A(¥) = N. The family -

{Bu (h(B)—F): Be®, FSN finite} U {{n}} ne N}

is a base for a topology on bN = Nu Y, This topology is Hausdorff since
h(4) ~ h(B) is finite for disjoint 4, Be &, and bN is compact since' ¥ is compact,
and i(4)— U {h(B): Be #} is finite whenever 4 € B, # =& is finite and 4 < U#.

(b)->(c) if &N is as under (b), there is a continuous i BN-+bN such that f(n) = n
for ne N. Then f maps SN—N onto bN—N.

(9)—(d) Trivial. '

(d)—(a) Let 2 be a family of subsets of a set X, with |8 <%. We may assume
that & is closed under finite intersections and complementation. We also may assume
that # is point-separating, i.e. for any two distinct x,y € X there is a B e # which
contains only one of x and y. (Argument: if not, define an equivalence relation ~-on X
by

x~y M xeB <« yeB for every Be R

and do the obvious thing.) Hence # is a base for 4 zero-dimensional Hausdorff
topology on X. Since the members of # are clopen in X (when equipped with this
topology) there is, as is well known, a Hausdorff compactification ¥ of X~ with
weight < such that ’ :
(&) ClyBNCly(X~B) =@, forall Bed.
Let f: BN—N—Y be any continuous surjection. Recall that each clopen subset of
BN—N has the form A’ = (ClyyA)—N for some A SN, that
® A" "B =(4nBy,
6 : A" VB =(4uBy,
(8) if 4'<B’ then 4—B is finite.
Define a map - #—~P(N) by choosing for each Be# a h(BY=N such that
h(B) = f~[Cl,B].

One can easily check that 4 has all properties required. M

2.6. Remarks. I 1. Parovitenko proved that condition (¢) holds in ZFC
f01"x = oy [17]. His proof contains a small gap, but the result is known to be true.
This theorem also follows from our Theorems 2.3 and 2.5, .

K. D. Magill observed that if a Hausdorff space S is a continuous image of
BX—X for some locally compact space X, then S is homeomorphic to X — X for
some Hausdorff compactification b.X of X, [15]. (This explains conditions (c) and (d).)

S. P.. Franklin and M. Rajagopalan combined these results of Parovidenko and
Magill to obtain condition (b) -of Theorem 2.5 for » = wy [11].
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G. M. Reed used condition (b) of Theorem 2.5 for ¥ = w, to obtain the results
mentioned in the Introduction immediately following Theorem 1.3. That theorem
derives conclusions from D (). So our method is in some sense equivalent to Reed’s.

For our next result we need the following two combinatorial statements, where
is an infinite cardinal.

S (x): If % and 7" are families of subsets of some countable set X with || +| 7| <x,
and if §'n () & is infinite for every S'e & and finite # <7, then there
‘is an infinite J < K such that § n Jis infinite for each §'e &, and T—Jis finite
for each Te 7. " :

P(x):  As S(x) with & = {K}.

Tt is known that MA implies both P(¢) and S(c), see e.g. [23]; S(x) ciéarly implies

P(x), but the converse also is true, [7].

2.7. THEOREM. P(x) implies D(R) for A<ux. In particular, Martin’s Axiom implies
D(A), for A<ec. R )

We check ¢ondition (b) of Theorem 2.5. Let ¥ be a compact Hausdorff space
with weight A <x. Let I be the closed unit interval. We may assume that ¥ is a sub-
spaée of I*, we may even assume that ¥ is nowhere dense (simply make sure that
y(0) = 0 for all ye Y).

Since P(x) implies x < ¢, I* is separable. Since Y is nowhere dense, we therefore
can find a countable dense subset K of I* which misses Y. Let # be a base for J *
with [#| = A which is closed under finite unjons. It is easy to check that the families

& ={BnK: Be®, Bn Y # @}

and
T ={BnK: Be%, Y<B}

satisfy the hypothesis of S(x). Since P(x) implies S'(x), there is a J< K as in the con-
clusion of S(x). Let Z = YU J.

It remains to show that Z is compact and that J is a dense set of isolated points
of Z, for then Z is homeomorphic to a Hausdorff compactification of N. )

Each set of the form B n K, with Be % and B n Y # O, has infinite intersection
with J, hence J is dense in Z. Any member of # that includes Y contains all but
finitely many points of J. Since # is closed under finite unions and 'Y is campact,
a moments reflection shows that this implies that Z is compact and also that the
points of J are isolated in Z. W ‘

2.8. Remark. We do not krbw if P(x) implies D(x), we do not even know
if MA implies D (¢). On the other hand, it will be shown in [19] that MA implies T'(c),
of. Remark 2.4. :

3, No if 17(c). Recall that a subset S of a space X is sequentially dense iff each
point of X is the limit of some convergent sequence of points from S; also recall
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that a space X is sequentially separable if it has a countable sequentially dense subset.
BN is an easy example of a separable space that is not sequentially separable. The
following lemma is the key to the construction of Example 1.1. Other applications
will be given in Appendix.

5.1. LemMA. Let X be a sequentially separable Hausdorﬁ space. Then there is
a separable metrizable topology p on X such that any two disjoint open sets of X are
‘contained in disjoint sets which are F, with respect fo p.

Proof. Lét S be a countable sequentially dense subset of X, let D(S) be S with
" the discrete topology, and let P be the product D(S)®. P is a separable metrizable
space (which is homeomorphic to the irrationals). Points of P are sequences in S,
hence we can choose for each x € X a ¢(x) € P which converges to x. Liet M be c[X].
Then ¢: X—M is a bijection. Hence p = {¢"*[U]: U open in M}.is a separable
metrizable topology on X. We show that it has the property required.

For U open in X define m(U)=M by

m(U) = {p eM: InVk>n (p.e U)}
Clearly ¢[Ul=m(U), and if V also is open in X, then m(U) nm(V) = m(Un V),
hence m(U) nm(V) =B if UnV=0.

‘We complete the proof by showing that each m(U) is an F, in M. To this end
it suffices to prove that if A= X and n € @ are arbitrary, then

F= {xeM: Vkﬁn (x, € A)}

is closed in M. Indeed, let xe M—F. Then‘xk¢A for some k>n. But then
{ye M: y, = x;} is open in M and disjoint from F. W
We need one more, easy, lemma.

3.2. LEMMA. Let {t;: k€ w} be a family of separable metrizable topologies on
a set X. Then there is a separable metrizable topology © on X with \J 5. S7..

kew

Sketch of proofA Consider the diagonal {{x,x,..>: xe X} in [[<X, ). W
keo

: 3.3. EXAMPLE. [T1T(x)]. There is a zero-dimensional Moore space with cardi-
nality and weight x that cannot be embedded in a first couritable separable Hausdorff
space (in fact, not even in a sequentially separable Hausdorff space).

Construction. If %>c there is nothing to prove: the discrete space with %
points will do, so we assume x<e.

Let T be a set with cardinality » and let {T'# « € %} be a family of subsets of T'
such that for no separable metrizable topology © on T it is the case that every T, is
an F, with respect to 7.

Let of = {4,: aex} be an almost disjoint family of 111ﬁn1te subsets of @

(almost disjoint means that 4, N Ap is finite whenever # ). Tt is well known that
such families exist.
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Topologize ¥ = xXx2 U T'xw as follows .(we assume xx2 and T'xw are
disjoint). Points of T'x o are 1solatcd and’a basic neighborhood of, a point
(o, iy &% x2 has the form

. e, Do Ty x{ked,: k>n} ifi=0,
Ula, i,m) = {{(a,i}} O(T—T)x ke dy: k>n} ifi=1.

Since & is almost disjoint, Y is easily seen to be zero-dimensional. It is obvious
that Y is developable. . . ° > @

Suppose it were possible to embed Y in a sequentlally separable space X. Let
be as in Lemma 3.1, and for n €  let p, be the subspace topology on I'x {n}. For
each n e w the family ‘ .

7, = {UST: Ux{n}epu,}
is a separable metrizable topology on T. We will prove
(¥)  for each a & x there is a k such that T, is an F, with respect to 7,

which is impossiblé because of Lemma 3.2.

To prove (x) let « € % be arbitrary. Since X is Hausdorff the points <&, 0> and
(&, 1y have disjoint neighborhoods, ¥, and ¥V, in X. Find new such that
U, i,m)sV,; for i=0,1, and pick ked, with k>n. Then T,x{k} and
(T—T,) x {k} are contained in ¥, and ¥, 1espectively. But ¥, is contained in a set,
which is F, with respect to u, that misses ¥;. It follows that T, x {k} is an F, with
respect to i, In view of the way the 7’s are defined this proves (*). W

3.4. Comments. In [9] the same technique is used to construct small spaces
all compactifications of which contain a homeomorph of SN. The idea of splitting
the index set % has been inspired by examples of G. M. Reed, [21], and is quite
essential: If we do not split » we get (a space looking like) the subspace
Y, = xx{0} uTxw of Y. If o is constructed carefully, ¥y is submetrizable,
and it is known that every stbmetrizable first countable (developable) Hausdorff
space can be embedded in a separable first countable (developable) Hausdorff
space, [20],~Thm. 1.4. On the other hand, it is not difficult to show, using the same
methods as above, that ¥, cannot be embedded in a separable sequentially separable

~ regular space. This answers Reed’s question of whether every Moore space that can

be embedded in a separable developable Hausdorff space, can be embedded in
a separable Moore space, [20], 4.3, in the negative.

4. Yes if D(x%). T'et X be a space with weight <x. Let % be a base for X" with
|B] <x. We first construct a separable extension ¥ of X' and then show how various
properties of X and # determine which properties Y has.

4.1. Construction of Y. We may assume that X n N = @. Let h: B—+Z(N)
be as in the statement of D(%). If Be B, we write B* for By h(B), if /=B we
write &/* for

{B*—F: Be &, F<N finite} U {{x}: xe N}.

e
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Note

(a) B* N N is infinite for nonempty Be %,

(b) if Aed, F<B finite and 4= | &, then A*— () {B*: Be F} is a finite
: subset of N,

(c) if A, Bed are disjoint, then 4* ~ B* is a finite subset of N.

Clearly 2* is a base for some topology on ¥ = X U N. The subspace topology on X
coincides with the original topology, and N is dense in ¥ (because of (a)), so Y is
a separable extension of X. It is useful to observe the following facts

(d) if Be#* then ClyB* = B* U ClyB, (because of (c)),
() if /=% is a base for X, then of* is a base for Y, and
(f)  all points of N are isolated.

42. Y is Hausdorff if X is. This follows from (c) and (f).

4.3. Y is regular if X is. This follows from (d) and (f).

4.4, Y is zero-dimensional if X is (for suitable #). We have to assume that
{Be&: B closed} is a base for X, the result then follows from (d), () and (f).

4.5. Y is completely regular if X is (for suitable %). Let O = {q(n): n e w}
be the rationals between 0 and 1. We have to assume that if xe Be# for some
x € X, then there is a {B,{ s& 0} <% such that

for all se Q,
ClyB,<B,.

(€] x € B;cB
(@3] if s<z then

Let xe Ue#* for some xe X, Find Be# and finite FSN with U = B*—F.
Choose a {B,: se Q} satisfying (1) and (2). With an easy induction on # we can
find for each ne ® a Uy S Y of the form (Byg,y—

3) UsU,cU for all 5s,te Q with s<t.

Xt follows from (d) that

(4) if s<t then ClLU,cU,.

The proof of Urysohn’s Lemma now shows that there is a continuous j: Y—=R
with f(x) = 0, f[Y—U] = {1} (cf. [10], Theorem 1.5.10).
4.6. Y is locally compact if X is. This easily follows from (b), (d) and (f)

If Xe4 then we may assume that #(X) = N, for otherwise define &' and
N' by N’ = h(X), W(B) = N' n h(B). Therefore the following makes sense.

4.7. Y is compact if X is (provided X €% and A(X) = N). Similar to -4.6.
. 4.8. Y is first countable if X is. This. easily follows from (b).
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4.9. Yis quasi-developable if X is (for suitable #8). A space § is quas1~developab1e
if and only if the following is true

(¥)  There are open familics ¥7,, n € w, such that for each x € § and each neigh-
borhood U of x there is an n & @ such that there is exactly one V& ", with
xeV, and VU for this V.

This statement is implicit in the proof of Bennett and Lutzer’s ([3], Prop. 7). Find

such ¥",’s for X, We have to assume that |J ", <B. For ne w and ke N define
n

W= {(V*={1, .., k}: Ver,}u {{k}}.

For each x & ¥ and each neighborhood U of x in ¥ there are ne » and k e N such

that x e W for exactly one We %,;, and WgU, this follows from (b) and (f).

Hence Y is quasi-developable. .

4.10. Y is developable if X is (for suitable 4). This follows from 4.9 since a space
is developable iff it is quasi-developable and perfect (= open sets are F,’s), [2], and -
clearly Y is perfect if X is, because X'is closed in ¥'and N is countable, (Alternatively,
since a space is developable iff it is quasi-developable and perfect, it follows from the
result mentioned, in 4.7 that a space S is developable iff

(%) = There are open covers ¥",, n € w, such that for each x e .S and each neigh-

borhood U of x there is an n € w such that there is exactly one Ve ¥7, with
xeV, and VU for this V.

Now proceed as under 4.7, but déﬁne W by
Wy ={V*={1, ..., k}: We¥ ,}u
u{{x}: xeN-U {¥r*-{1,
4.11. Remark. In4.4, 4.5, 4.8 and 4.9 we required & to include certain families

(this mlght be avoidable, but that is of no interest), so we can make sure that any
combination of properties considered is transferred from X to Y.

- 412. Remark. A more efficient but less natural way of achlevmg 4.5 is to
compactify X first and then apply 4.7. We leave the details to the reader.

4.13. Remark. Note that given any space X we can construct ¥ as in 4.1 pro-

vided there is for some base # of X a map h: B~ (N) as in the statement of .D ().

Positive results concerning separable extensions- of first’ countablé spaces which
do not require additional set theoretical axioms can be found in [18].

ok}l Vel

. 5. Proof of Theorem 1.4. Let X be a space with weight <2" let B be a base
for X with |8] < 2% Let D be a set, disjoint from X, with |D| = x. It is well
known that there is a family # of subsets of D with |#] = 2* such that

(«) for any two disjoint finite subsets & and & of .f the s&t n F—-Ugis m_ﬁmte
(actually: has cardinality w) )
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([10], Exercise 3.6.F). For B € & choose Dy € .# in such a way that D, # Dgif A # B.
For A, Be# define D(B, 4) by .

D, if BcA,
C(B,A)=+D-D, if BsX-A4,
D otherwise.

For Be# let
S5 ={N {DB,4): AeF}: F a finite subcollection of B .

It follows from (o) that

()] . VBe#VIe sy . (I is infinite)

and it is easy to see that

) VA,B,Bed (BSB—D(B,A)SD(B,A).

Clearly (y) implies that

#* = (Bu(I-F): IeFp, Be R, F D finite} U {{x}: xe D}

is a base for some topology on ¥ = X u D. The subspace topology on X coincides
with the original topology of X, and D is dense in ¥ because of (B). The definition
of the D(B, A)’s shows

) V4, BeR (AnB=;a-yD(J;,A)nD(A,A)=;a).'

Since the points of .D are isolated, it follows that ¥ is Hausdorff if X is. It follows
from (8) that

(8) VBe®VYIe s,V finite FeD(I=D(B, B)—»CIY(B U (I—F))
= (ClyB) v (I—F)) .
One easily deduces that Y is regular if X is. W
5.1, Remark. Theorem 1.4 is well known for completely regular spaces, for

every completely regular space X with weight <2 can be embedded in I,
where I is the closed unit interval, and J* hasa dense subspace with cardinality x.

6. Open questions. The following questions are open in ZFC.

6.1. Can every first countable compact Hausdorfl space be embedded in a separ-
able first countable space which is Hausdorff? is regular? is compact Hausdorff?
Recall that first countable compact Hausdorff spaces have cardinality <c¢, hence
have weight <c, {11, so they can be embedded in a separable compact Hausdorff
space.

6.2. Can a Moore space with weight <c be embedded in a separable, first
countable (developable?) Hausdorff (regular ?) space piovided it is locally compact,
or has a point-countable base, or is metacompact? /
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6.3. Can. a first countable Hausdorff or regular sbace X With weight <c¢ be

embedded in a separable first countable Hausdorff (regular ? — only if X is of course) .

space provided X is locally compact, or has a point-countable | base or has a o-point-
finite base, or is metacompact?

7. Appendix. In lhxs section we show how Lemma 3.1 can be used to prove
part of the following theorems.

Recall the following definitions. A, Q- set (A-set) is a space every (countable)
subset of which is a Gy. A space is pseudonormal if any two disjoint closed sets, one

of which is countable, have disjoint neighborhoods, If. % is a cardinal, a space is

%-compact if it does not contain a closed. discrete subset with » points.
7.1. TuEOREM. The féllowing conditions on a cardinal % are equivalent:
(a) there is a separable normal Moore space which is not x-compact, .
(b) there is~a sequentzally separable normal space which is not x- compact, and
(c) there is a separable metrizable Q-set of cardmalzty .
Proof. (a)-+(b) is trivial, ‘ o
(b)—(c). Let X be a sequentially separable normal space which contains a closed

' discrete subset M with cardinality ». Let u be as in Lemma 3.1. Let S< M be arbitrary.

Since X is normal, there are disjoint open sets U, and U, in X with ScU, and
M—S< U;. There is a subset F of X with U, < Fc X— U, which is an F, with respect
to p. Clearly M n F = 8. Cbnséquently u induces a separable metrizable topology
on M which makes M a Q-set.

()= (a). This is due to Bing (t4] Ex E). I

7.2. THEOREM. The following cond{tzons on a cardinal % are equivalent:
(a) there'is a separable pseudonormal Moore space which is not x-compact,
(b) there is a sequentially separable pseudonormal space whick is not x-compact,
and o ’ )
(c) there is a separable metrizable A-set of cardinality x.
Proof. (a)—(b) is trivial. ) ‘ >
(b)—(c) the same argument as above.

(c)—(a) F. D. Tall observed that the proof of (c)—(a) of Theorem 7.1 also
proves this implication, [25]. M

7.3. Remarks. The implication (a)—(c) in Theorem 7.1 is due to
R. W, Heath, [13]. Our Lemma 3.1 (= 1.2) and 1ts use in 7.1 (and 7.2) generalize
and simplify his method.

We do not know if the implication (a)—(c) of Theorem 7.2 has been exp11c1t1y
stated before. It is a classical result that uncountable separable A-sets exist, [14].
However, we do not know if a separable metrizable A-set of cardinality ¢ exists
in ZFC, although such spaces can easily be constructed, using Theorem 7.2, under
set theoretic assumptions much weaker than MA, [8].

.
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Added in proof. Professor K. Kunen showed that the existence of a separable metrizable
A-set of cardinality ¢ is independent of ZFC (cf. [19]).
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