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On absolutely kth continuous functions
by
A. G. Das and B. K. Lahiri (Kalyani)
Abstract. In [3] and [4] Russell derives some properties of the functions of bounded kth variation

(BVi functions). Here we introduce the notion of AC functions and obtain some relations with those
of BV functions involving kth Riemann *-derivative. We also refine the definitions of BVx and ACy

functions to obtain the classes of BV}: , BVE, AC;T and ACy functions and then study various
interrelations of these classes. :

1. Preliminaries and definitions. A. M. Russell in [3] obtained the definition

- of functions of bounded kth variation (BV, functions). In the definition there were

certain restrictions which he removed in [4], where he investigated in detail the
properties of functions of bounded kth variation. Prior to [3], [4], he obtained in [2]
the properties of tunctions of second variation. In this paper we introduce the notion
of AC, functions and investigate their properties. Also from BV, functions we derive
the notions of BV and BV; functions and obtain their relations. In the sequel,
we shall need the following definitions and results from [4].

DEerFINITION 1(2). Let f be a real-valued function defined on [a, b] and let
Xg, X1, ..., X be k41 distinct points, not necessarily in the linear order, belonging
to [a, b]. Define the k-th divided difference of f as

ok K
Qu(Ss Xgs Xys ey Xg) = i%[f(xt)/ Uo(xt“xj)] .
Jai
’ DeeNirioN 2. Let x, %y, ..., X, be k+1 distinct points in [a, b]. Suppose
that &; = x;—~x when { = 1,2,..,k and that

vy

0<lhy|<lhal <<yl -
Then define the k-rh Riemann *-derivative by

D (x) = k! lim lli“m v dim O (s %, Xyy e ,xk\,

=0 Tie-3=0  hy~0
if the iterated limit exists. The right and the left Riemann *-derivative are defined

in the obvious way.
1 ~ Fundamenta Mathematicae T. CV
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This definition has certain connections with the kth Riemann derivative as
discussed in [1]. )
We shall call a subdivision of [a, b] at x,, Xy, ..., x, a n-subdivision of [a, B]
when a<xo<x;<..<x,<b and denote it by n(x,, X1y ooy Xp)e
DerINITION 3. The total k-th variation of f in [a, b] is defined by
n=K
Vilfs a,b] = S‘;Pi;)(xwk"xt)le(f; Xis X gs oees Xpaie)] «

If Vilf; a, bl<o, we say that fis of bounded k-th variation on [a, b] and write
S€BV,[a, b]. The summations over which the sup. is taken are called approximating
sums for V[ f; a, b].

LemMA 1. Qu(f; X0, %y, ooy %) = O Jor all choices of Xoy Xy, s Xy Uff [ is
@ polynomial of degree k—1 at most. .

LeMMA 3. Qu(f; Xq, Xy, .., X;) IS independent of the order in which the pdz’nts
Xy X155 Xy appear.

LemMA 4. If xq, x4, ..., X, are any k+1 di.s’tinét points of [a, b), then

(xq—xk)Qk(ﬁ Xos Xq5eeey xlf) = Qe—1(f5 X0, ..., Xm1) = Qo s (fs X5 vy 3p) .

THEOREM 3. The addition of extra points of subdivision to an existing subdivision

does not decrease the approximating sums for Vi [f; a, b].

'I:HEOREM 6. If feBV,[a, cl, feBYV, le,b] and f has a (k—1)-th Riemann
*-derivative at ¢, where a<c<b, then feBV,[a,b] and

Vilfs a, BIS VLS a, cl+ Wi Lf; ¢, b].

- 2. Let a<x1_0<x1‘1<...<x1,,¢_1<x1,k<x2,0<x2,,<...<x2_k_1<x2,k<...<
KX,0< %y, < e <Xy, k- <X, <bbe any subdivision of [, 5]. We say thattheintervals
gx;_o, Xy 1=1,2, ..., n form an elementary system I, say, in [a, b]. The system is
c;zotid byfI(xi, 1o ¥ m1)? (K0, ¥0), £ =1,2, ..., n. The elementary system
sisting of the intervals (a, x, ), (%15 %2,0)5 +ov, (3%, 1., ) is 52id to be the elementary
system complementary to I and will be denoted by 1.
, lDEFINmON L The. real-valued function g(x) defined on [2,B] is said to be
fhs:futely k-th continuous on [a, b} if for an arbitrary e>0 there exists a 4(e)>0 such
at for ;
X any elementary system TC, gy s X g y): (05 %00, = 1,2, ..., m,in [a, b]

with izl (x;,a~%1,0) <5 the relation

n
all| = igi(xi.k_xl,o)lgk(g; X0 X150 X )| <t

- 0 . . !
1s satisfied. In this case we write g € AC,[a, b]. The sum Z' (%1 %;,0) willbe denoted '
by ml. =

icm
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Lemma 1. If g € AC,[a, b), then g possesses the (k—1)-th Riemann *-derivative
in (a, b). _ ]

Proof. Let a<c<b and £>0 be arbitrary. There exists'a §(¢)>0 such that the
condition of the definition of AC,[a, b] functions is satisfied with ¢ replaced by
g(k—1)I(k—1). We choose POINLS Xy ji1 <Xpogyz <on <Xpoy <X, = C<Xpig <ome
(X gy SUuch that (x,ip-;—Xpp41)<0. ’

Choose a positive integer 7 such that p—k41<i<p—1 and consider the ele-
mentary system consisting of a single interval

(X415 s Xppr-1)% (0, Xi4p) [
Using Lemma 4 of [4], we get

1Qk-1085 Xpa15 s Xiap)— Qu—a(g5 X1, --~77Ct+)c—1)| ‘ ‘ v :
= (X141 —X) [ QKg5 X1s Xig1s cvos Xigp—15 xi+k)|<€/(k“1)!(k" 1.
Since i may assume k-1 values in p—k+1<i<p—1, we see that the above
inequality is true for any one of these values of i, viz. for i = p—k-+1,...,p—1.
It may be noted, however, that these k— 1 intervals taken together do not form

an elementary system, because the intervals are overlapping.
Combining now the k—1 inequalities, we obtain

I(kfl)! Q=105 Xiy eoos Xpapm )= (=D Qpe (g5 X5 ves Xy 1) <8

for i =p—k+1,..,p~1,p and j=p—k+1,..,p—1,p. ‘

Hence g(x) possesses the (k—1)-th Riemann *-derivative at ¢. )
Note. With suitable modifications it may be shown that D% g(4) and D% g(b)
exist. : ’

THeOREM 1. If g € AC,[a, b, then g € BV, [a, b]. .

Proof. There exists a 6(1) = 8>0 such that for any elementary system

. n
Ty 100y X pmn)t (pos %000, 1= 1,2, 00,7 in [a, b] with 3 (x; ,—%,0)<¢ the
, ,05 %i, Feer
relation

M ii(xl,k“‘xl,o)le(QQ Xi,05 woen X0 <1

is satisfied.
< The interval [a,b] is broken up into a finite number of sub‘intervals
[cos €115 [€1s €3], es [en—1s eyl (@ = co<Cy...<cy = b) such that (¢, 4—c)<d for
each § = 0,1, .., N~1. ’
We keep s fixed temporarily and consider any m(Xq, Xy, ..., X,) subdivision
of [eg, €5yl
The sets of intervals (x;, Xi4i), €4, = {r,k+r,2k+r, .. sn} and

r=0,1,2,..,k—1 form &k elementary systems
L(Xings ooes Xppm1): (K Xp4)»  f€dpand r=0,1,2,..,k=1.
1"
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So, by (1), we get

Y, Crea—x)OUGs iy Xy gy Xy <1
iedp .

for r =0,1,2,..,k—1. Combining all the inequalities, we obtain

n—k
i;)(xwk“‘xz)le(g; Xy Xpgys s Xpp)| <k

Since this is true for any - subdivision of [c,, Ces1], it follows that Vilg; ¢y ¢uq]
<k, so that g e BV, [cy, ¢ppy] for s = 0,1, ..., N—1. Hence, by Theorem 6 of [4]
and Lemma 1, we infer that g e BV,[a, b]. This proves the theorem.

THEOREM 2. If' the k-th Riemann *-derivative of o Junction g(x)e AC,[a, b]
is zero almost everywhere in [a, b), then the function g () is a polynomial of degree (J—1)
at most. -

To prove the theorem we require the following lemma.

LeMMA 2. Under the suppositions of the above theorem

V="Vig; a,b] =0.

Proof of the lemma. By Theorem 1, g (x) € BV, [a, b]. Let E = {x:xe(a,b)
and D*g(x) = 0}. Lete>0 be arbitrary. By Lemma 3 of [4], Q\(g; Xis Xty vy Xpp)
is independent of the ordet in which the pOInts X;, Xy 1, ..., X;44 appear. Consequently,
if x € E, there exists a 6 >0 such that, for all choices of 2k points {x;},—k<i<k, i#0,
such that x_;<..<x_,<x<x;<..<x, with (xx—x_,) <3, the relation

2 [Q(xss X441, o X <ef2(k+ 1) (b—d)

is satisfied for i = —£, ..., 0, where Xo = X, QulXys ey Xp1p) = Qulg; %14 ., X4
Now g € AC,[a, b], and 80, corresponding to s/Zk, there existsa 8’ >0 such that
for every elementary system I in [a, b] with mI<§' we have

&) olll<ef2k .

It is clear that the closed intervals like [x 1, x4] associated with each x € E for
which condition (2) is satisfied cover the set £ in Vitali’s sense. Hence we can select
from them a finite number of pairwise disjoint closed intervals dy= [x, _y, %, 1] with
X1, kX e <Xy <Xy g <X 0 <X, 1 < <Xy 3 i=0, 1,... o, where x; o= x;,
Xo,~k = 4, X, ; = b such that

(C)] m*[E— 2 d]<é .
i=0

Since ¥i-1,6<%; g fori=0,1,..,n, it is clear that the intervals %5, w1 X 4),
i=0,1,..,n are disjoint.

We consider any %(y,, y,, ..., ¥.) subdivision of [a, b]. We discuss the following
possibilities:

On absolutely k-th i Junctions 163

® If ypelx;, -, x4 for some i, 0<p<m, then ¥, may or may not coincide
with any x, ;, —k<j<k. Since the relation (2) is satisfied for all choices of X; 7 in
[xi, ks X;,k], We may take y, coincident with a suitable x, ;.

’ (i) If x; x<¥p<X,4q,-1» then we can easily introduce a new interval and a set

of points satisfying (2) and (4) and ¥, coinciding with a suitable new point.

Thus in any case we may suppose that y,,, 0< p<m, coincides with x; ; for some i
and some j for 0<i<n, ~k<j<gk.

Let j be any positive integer such that 1<j<%. Consider the elementary system

L%yt j41s oes Xiger-2)t Kima, s Xpgex-g)y I=1,2,.5n

where x; gy = Xj—qp a0d Xy g4y = Xy, e
As j ranges from 1 to k, we obtain k numbers of elementary systems

L% 1, 15 s Xg jmpm)t (Kieq s Xij-k-1)s i=1,2,...m

where X; g1 = Xi—q,; and Xy g4y = Xi, ~k+
From (3), it follows that

n n
Z Q= Z (xt,j-k—-l"‘xi—i,j)IQk(xi—l,j’ ey xi,j—k-—1)|<3/2k
=1 =1

forj=1,2,..,k and so
k wn
®) Y Y 0iy<sf2.

j=1i=1

On the other hand, by using (2),

’ 8(xi,j k=%, 7)
Qi,j = (xi,j+k_xi,j)|Qk(xi,j:~--: xi,j+k)l< m ’

i=0,1,..,nand j= —k,...,0.

This gives
0
o el =Xy ) .
—_——  i=0,1,..,n.
E R YO, ’
=k

Consequently
©® > ¥ 0h<il2.

Since the addition of extra points does not decrease the approximating sum
for ¥ {Theorem 3, [4]}, we have

m—-k ) k n n Xi] ,
Y Pran—I) QYo Via1s ---,yl+k)l<’Zl ilei,j+iz;)jZ__th.J<"/2+3/2 =8,.
i=0 = = = =

by (5) and (6).
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~ Since = is any subdivision of [q, b] and ¢>0 is arbitrary, it follows that
M : V="lg; a,b] =0.

Proof ofthe theorem. We consider k fixed points gy <ay <...<d., of (a,'b).
We show that, for all choices of k points {y;}, i=0,1,..,k—1, such that
A< Yo <Y Koo <Y1 S$b where a = y, and b = y,_4 do not hold simultaneously,
Qi-1(G05 Ay ey Gy) «

2k—1 with a<xy <X; <o <Xy

® Qk-1(¥o5 Y15 ooy Ye—1) = & constant =
For any collection of 2k points {x;},=0,1, ...,
<b,
©)  1Qu=1(¥05 X1 wves Xpm1) = Q1 (Vs 5 X 1)
= {Qr=1(X05 s Xum1)= Qiem1(¥15 wees X} { Qe 1 (615 -"~-: xX)—
= Qr-1(x25 ooes xk+1)}+_~-- +{0k-1 (x.""’ s vers Xogmz) — Qk—;l(xka

k-—
Z [Qr— (X5 ooes xi+k-1)—Q]c—1(xi+1’ s Xpn)]

’ ka—l)}I

=i§(xi+k_xi)lgl;(xh Xitgs ve
<WVlg; a,bl =V

by Definition 3 of [4].. :
Suppose that y,_; <b and choose y;.;, i = 0,1, ...,

,}c,;,,)l., using Lemma 4 of [4] °

k—1 such that

- max(a,. 1:J’k D<I< e <Yy $b .

Applymg (9) to the subd1v1s1on {x,}, i= 0 1,
O<i<k-1) and x; = y; (k<i<2k-1), we obtain

., 2k—1 where x; = q;
|Q1f—1(ao» a1y s @pm 1)~ Qim1t(Vis Vit 15 +vos V=) SV
By using (9) again ‘ L
1Qu-1(do, a1, vovs Gm )= Qi (Vo5 Pis w5 Ve n)| S2V .
And so by Lemma 2

Qr-1(@05 15 eony Gpy) = ~Qk—~1(y05 P15 eens YVimt) '

I X, 21, ., X, is-any collection of k+1 distinet. points of [a, b], then, usmg
Lemma 4 of [4] and relation (8), we have Ou(X0, X15 ey X)) = 0,

The theorem now follows from Lemma 1 of [4].
‘We consider an elementary syS’gem of [a, b]

Xy 15 iy X p-q)? (xl,()’xi,k)’ i=1,2,..,n

icm
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and write

X1,00 Qg5 X105 Xiyys ores Xik)

n
ol = 3 (x;,,—
=1

o

n
where ml = 3 (X; 1~y o).
I=1

DermiTioN 2. The function g(x) is said to be absolutely k-th continucus from
above on [a, b] if for an arbitrary >0 there exists a §>0 such that for any elementary
system J(x;, 1y vy X, x—1): (Fpos X158 = 1,2, ..., n,in [a, b] with mI < § the relation
ol<e is satisfied. It is said to be absolutely k-th continuous from below if the relation
aI>—¢ holds when mI<d. If g(x) is absolutely kth continuous from above (or
from below) on [a, b], we write g € AC; [a, b] (or g € ACy [a, b]).

DeriNITION 3. The least upper bound and the greatest lower bound of the
aggregate {¢I} of sums oJ for all possible elementary systems I in [a, b] are called,
respectively, the positive and the negative k-th variation of g(x) in [a, b] and are
designated by Vi [g; a, b] and Vi [g; a, b).’

Henceforth we shall assume that (k—1)-th divided differences of g in [a, b] are
bounded in absolute value by X.

LemMMA 3. Vi lg; a, b]=0 and Vi [g; a, bl<0,

The proof is omitted.

DerINITION 4. If V' [g; a,bl<+00, we say that geBV,:r {¢, b] and if
Vilg; a,b]>—o0, then g € BVy [a, b].

LEMMA 4. Let X1,0<X1, 1 <o KXy gy KHy g S X,0 <X2,1 <ooe <X g g <21 S
be a set of points in [a,bl. If g EBV,, [a, b] (or BV [a, b]), then the series

Z (i k—x5,) Qg5 X105 o005 X1l
i

is convergent.
Proof. We prove the lemma in case g € BV} [a, b]. The other case is analogous.
Let {(&;,0, &1} § = 1,2, ... be a subsequence of the sequence of all intervals
{Gx,0, ¥,0} = 1,2, .., with the intermedjate points x,,3, ..., Xz~ renamed as
Ei 1y vees &t my » for each of which [(€,,—&1,0) Qg5 1,05 -5 &)1 0. I misapositive
integer, then, since (&4, &4)s i = 1,2, ..., 1 form an elementary system in [a, 2],
we have

10) 3 Eu 000 o0 BISTE 5 @21,

Since ¥;' [g; a, b]<+oco and n may be arbitrary, it follows that
;(f:,k“f:,o) (g5 1,05 -5 €00

is convergent.
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NCXt’ ICt {(’Ii.o» ni,k)}’ i= 1: 29 .o

With X; 1, .y X;~y renamed as 77y, ..., ;-3 for each of which
(15,6~ 115,0) Qg5 1,05 +ov5 M,R)1 <0

For a fixed positive integer n wey consider an elementary system

Iy, 15 s i=1) (05 M)y E=1,2,.

It I, denotes the elementary system in [e, b] complementary to I, then I ‘and I
together form an elementary system in [a, b], which we denote by

T 1 oo =0,k 2k, ., (m—1)kmk

where o, =

,nin [a, b]

s O 1) (2, Xy »

a and g4 1)k = b. We consider k—1 elementary systems

Ty s Cpgpo )i, %0) s i€, = {7, k+r, 2k +r, . <(m+ 1)k}

for each r=1,2,..,k-1, so that

ol+ol+0Ji+ .t 0y = Qias(g; Gnpry s oov

s “<m+1)k)'—Qk~1(g; Olgy Oy vary Olgey)

Consequently, oI> —2K—kV;' [g; a, b] and so
n
@an iz (Mi,e~11,0) Oilg; M1,05 +ees N1, k) 22 ““ZK"kVt:‘ lg; @, b].

Since the left-hand expression is negative and n may be any positive integer, the
senes

: iZ(’h,k'*Tlt,o) Qg5 Mi05 -5 Miyk)

is convergent.
Because

12) zl:(xi,k'—xi,o)]Qk(g; Xi,05 eo0s Xg, )|
L= zi‘,(ft.k_éi,o) Qug; f@o: ey rfi,k)—Zi] (VI:,@“

the lemma follows,

15,00 Qg5 M0 +os Mik) »

COROLLARY. Under the hypotheses of Lemma 4, for any positive integer nx1 :
n
; Fik—=%,0) [ Qg5 X105 -or, xt,k)l<(k+1)Vk+ [9; a, b}42K.

Proof. Tt is seen that the right-hand quantxtles of (10) and (11) are independent
of n. So, by ‘using (10), (11) and (12), the corollary follows.

Lemva 5. If g e BV, [a, b], then g € BV [a, b] and conversely.

Proof. Suppose ‘that g € BV [a, b). We consider an elementary system

I(xy 4, e X)X 0 X)), i=1,2,...,1 in [a, 8] .

icm

be a subsequence of {(x; o, X,4), I = 1,2, ...
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By the corollary there exists an M >0 mdependent of the choice of elementary
systems, such that _

n
ol =i; (xt,k“xx,o) Og; X105 es X3 )= — M,

and so Vi lg; a, bl=~M. Consequently, by Lemma 3, g € BV [, b]. The other
case is similar.
" Lemma 6. If g € BV} [a, ¢] and ka fe, b, where a<c<b, then geBV; [a,b]

and conversely. Further
Vi lgs a, 512 Vil (g5 a, 1+ Vi [g; e, B] -
Proof. Suppose that g e BV [a, ¢] and BV, [c, b]. Let

I0cs, 15 w0ns X k=) 05 X10) > 1= 1,251

be any elementary system. in [z, b]. We consider the followmg cases:

(@) If xy,02c then oISV [g; ¢, Bl.

() If x,,x<c then ol< Vilg; a,cl.

(©) If xp, s SC< X4y, 0 (Mm<n), I can be presented as the sum of two elementary
systems, I, in [a, c] and I, in [c, b], and so A

ol = ol +ol, <V [g; a, ]+ Vi [g; ¢, b].

(d) Let x, o<e<Xp, 1<m<n. Then the intervals (x; o, X;4) i =1,2,...,
m—1, form an elementary system I in [a, c] and (x; o, X5 ), i = m+1,...,n form
an elementary system I, in [¢, b]. So

m=3

B gl = Z(x,k Xy, O)Qk(gsxioy-wxi W+

Z (M K xl,o)Qk(Q: X105 -

i=m
+ (X, 1= Xim, 0) QulG 5 Xom, 05 <23 X, i)
<V lgs a, e+ Vi 195 €5 D1+ Qu-1(g5 X, 15 05 Xm, )
= Qe 1(G5 Xy 05 -0 ?Cm,k—1)> by Lemma 4 of [4]
<Vt lgs a, 1+ Vi [g; ¢, 42K ‘
Since I'is any elementary system in [a, b], considering all the cases, we obt‘aiu}

g € BV [a, b]. _
.The converse part is clear. By Definition 3 it easily follows that

Vi lgs o, A+ Vi D95 ¢, BI< Vi [g5 2, B

(¥} xi,k)+ R

THEOREM 3. If g € BV [a, b] (or BV,, [a, b)), then g € BV,la, b] and
Vilgs a, BISK{Vi lg; @, B1— V5 [g; a, b1} .
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Proof. Suppose that g € BV, [a, b], then by Lemma 5, g € BV, [a, b]. We
«consider any #(x,, Xy, ..., X,) subdivision of [a, b], n>k. Then

n—k
(13) Z Fiax—X)OG 5 X1y Xigeps weer Xogd] = Z + Z tot Z ’
i=0 iedo iedy ledg-y
where A4, contains the suffixes r, k+r, 2k+r,...<n for r =0,1,..., k-1,
We now consider each 4, to be the union of two sets of suffixes 4,7 and 4
such that i€ A} if (¥ x=%) Qg; X1» Xia1s r X14020 and {e 4] if
(e x) Q5 Xis Xty vy X4} <0

‘Then, from (13) we get

n-k
(14) _=Zo(xi+k“xi)lgk(g;xt:xH-J:--'3 Xl = X et Y~ DI S

ieAd ledl., ladg e Ay y
‘We thus obtain 2k elementary systems like
) A C AP ) H L X4, €A,
I pags ey Xpap- )2 (605 Xpa) . € AL
where r = 0,1,..., k—1.
Hence, from (14), we get
n—k
_Zo(xm—xole(y; Xy Xy 1s ooy Xppp)| = Ufg+---+G'Ik+_1*—0'15-—...-—o‘Ik"_,_
i<

. <k{Vi'lg; a,b]-V; lg; a, b]} .
Since m(xy, Xy, ..., X,) is arbitrary, it follows that ' ’
Vilg; @, b1<k{Vi Ig; a, b1~V [g; a, b]} .
‘This proves the theorem.
TaeoreM 4. If g € AC{ [a, b] (or ACK [a, b)), then g € BV, [a, b].
Proof. We prove the theorem in case g € ACy' [4, b]. The other case is anal-
ogous. o .
There exists a 5(1) = >0 such that, tor every elementary system I in [a, b],

we have

{15) k oI<l whenever mI<$.

‘We subdivide [, b] into a finite number of subintervals [cos €1 [€45 €25 vy [Ey =15 €x]
(a = cy<ey<...<cy = b) such that Cp1—C <9 for each r = 0,1, .., N—1.

For any elementary system ,(x{7, ..., x{}—): (), %) in [e,, o411, We have,

from (15) ol,<1. Consequently ¥} [g; ¢, ¢4 1]<1. This 'irnplies, By Definition 4

and Leirmma‘ 3, that g e BV [¢,, ¢,4]. By Lemma 6, it therefore follows that

. 9€BV; [a,b]. Hence, by Theorem 3, g € BV,[a, b). This proves the theorem.
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