

Table des matières du tome CV, fascicule 3

	Pages
A. G. Das and B. K. Lahiri, On absolutely kth continuous functions	159-169
W. Holsztyński and R. Strube, Universal maps of Cartesian products	171-178
M. D. Rice and G. Reynolds, Weakly Borel-complete topological spaces	179-185
M. B. Nathanson, Classification problems in K-categories	
S. Perlman, Functions of generalized variation	199-211
S.E. Rodabaugh, Upper semicontinuous decompositions of convex metric spaces	213-227
J. Becker and L. Lipshitz, Remarks on the elementary theories of formal and con-	
vergent power series	229-239
A. K. Stehney and R. S. Millman, Riemannian manifolds with many Killing vector	
fields	241-247

Les FUNDAMENTA MATHEMATICAE publient, en langues des congrès internationaux, des travaux consacrés à la Théorie des Ensembles, Topologie, Fondements de Mathématiques, Fonctions Réelles, Théorie Descriptive des Ensembles, Algèbre Abstraite

Chaque volume paraît en 3 fascicules

Adresse de la Rédaction: FUNDAMENTA MATHEMATICAE, Śniadeckich 8, 00-950 Warszawa (Pologne)

Adresse de l'Échange:

INSTITUT MATHÉMATIQUE, ACADÉMIE POLONAISE DES SCIENCES Śniadeckich 8, 00-950 Warszawa (Pologne)

Tous les volumes sont à obtenir par l'intermédiaire de ARS POLONA, Krakowskie Przedmieście 7, 00-068 Warszawa (Pologne)

Correspondence concerning editorial work and manuscripts should be addressed to: FUNDAMENTA MATHEMATICAE, Sniadeckich 8, 00-950 Warszawa (Poland)

Correspondence concerning exchange should be addressed to: INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES, Exchange, Śniadeckich 8, 00-950 Warszawa (Poland)

The Fundamenta Mathematicae are available at your bookseller or at ARS POLONA, Krakowskie Przedmieście 7, 00-068 Warszawa (Poland)

© Copyright by Panstwowe Wydawnictwo Naukowe, Warszawa 1980

ISBN 83-01-01398-2

ISSN 0016-2736

DRUKARNIA UNIWERSYTETU JAGIELLONSKIEGO W KRAKOWIE

On absolutely kth continuous functions

b:

A. G. Das and B. K. Lahiri (Kalvani)

Abstract. In [3] and [4] Russell derives some properties of the functions of bounded kth variation (BV_k functions). Here we introduce the notion of AC_k functions and obtain some relations with those of BV_k functions involving kth Riemann *-derivative. We also refine the definitions of BV_k and AC_k functions to obtain the classes of BV_k⁺, BV_k⁻, AC_k⁺ and AC_k⁻ functions and then study various interrelations of these classes.

1. Preliminaries and definitions. A. M. Russell in [3] obtained the definition of functions of bounded kth variation (BV $_k$ functions). In the definition there were certain restrictions which he removed in [4], where he investigated in detail the properties of functions of bounded kth variation. Prior to [3], [4], he obtained in [2] the properties of functions of second variation. In this paper we introduce the notion of AC_k functions and investigate their properties. Also from BV_k functions we derive the notions of BV_k^+ and BV_k^- functions and obtain their relations. In the sequel, we shall need the following definitions and results from [4].

DEFINITION 1(a). Let f be a real-valued function defined on [a, b] and let $x_0, x_1, ..., x_k$ be k+1 distinct points, not necessarily in the linear order, belonging to [a, b]. Define the k-th divided difference of f as

$$Q_k(f; x_0, x_1, ..., x_k) = \sum_{i=0}^k [f(x_i) / \prod_{\substack{j=0 \ j \neq i}}^k (x_i - x_j)].$$

DEFINITION 2. Let $x, x_1, ..., x_k$ be k+1 distinct points in [a, b]. Suppose that $h_i = x_i - x$ when i = 1, 2, ..., k and that

$$0 < |h_1| < |h_2| < \dots < |h_k|$$
.

Then define the k-th Riemann *-derivative by

$$D^{k}f(x) = k! \lim_{h_{k} \to 0} \lim_{h_{k-1} \to 0} \lim_{h_{1} \to 0} Q_{k}(f; x, x_{1}, ..., x_{k}),$$

if the iterated limit exists. The right and the left Riemann *-derivative are defined in the obvious way.

1 - Fundamenta Mathematicae T. CV

This definition has certain connections with the kth Riemann derivative as discussed in [1].

We shall call a subdivision of [a, b] at $x_0, x_1, ..., x_n$ a π -subdivision of [a, b] when $a \le x_0 < x_1 < ... < x_n \le b$ and denote it by $\pi(x_0, x_1, ..., x_n)$.

DEFINITION 3. The total k-th variation of f in [a, b] is defined by

$$V_{k}[f; a, b] = \sup_{\pi} \sum_{i=0}^{n-k} (x_{i+k} - x_{i}) |Q_{k}(f; x_{i}, x_{i+1}, ..., x_{i+k})|.$$

If $V_k[f; a, b] < \infty$, we say that f is of bounded k-th variation on [a, b] and write $f \in BV_k[a, b]$. The summations over which the sup. is taken are called approximating sums for $V_k[f; a, b]$.

Lemma 1. $Q_k(f; x_0, x_1, ..., x_k) = 0$ for all choices of $x_0, x_1, ..., x_k$ iff f is a polynomial of degree k-1 at most.

LEMMA 3. $Q_k(f; x_0, x_1, ..., x_k)$ is independent of the order in which the points $x_0, x_1, ..., x_k$ appear.

LEMMA 4. If $x_0, x_1, ..., x_k$ are any k+1 distinct points of [a, b], then

$$(x_0-x_k)Q_k(f; x_0, x_1, ..., x_k) = Q_{k-1}(f; x_0, ..., x_{k-1}) - Q_{k-1}(f; x_1, ..., x_k).$$

THEOREM 3. The addition of extra points of subdivision to an existing subdivision does not decrease the approximating sums for $V_k[f; a, b]$.

THEOREM 6. If $f \in BV_k[a, c]$, $f \in BV_k[c, b]$ and f has a (k-1)-th Riemann *-derivative at c, where a < c < b, then $f \in BV_k[a, b]$ and

$$V_k[f; a, b] \leq V_k[f; a, c] + V_k[f; c, b]$$
.

2. Let $a \le x_{1,0} < x_{1,1} < \dots < x_{1,k-1} < x_{1,k} \le x_{2,0} < x_{2,1} < \dots < x_{2,k-1} < x_{2,k} \le \dots \le x_{n,0} < x_{n,1} < \dots < x_{n,k-1} < x_{n,k} \le b$ be any subdivision of [a,b]. We say that the intervals $(x_{i,0},x_{i,k})$, $i=1,2,\dots,n$ form an elementary system I, say, in [a,b]. The system is denoted by $I(x_{i,1},\dots,x_{i,k-1})$: $(x_{i,0},x_{i,k})$, $i=1,2,\dots,n$. The elementary system consisting of the intervals $(a,x_{1,0})$, $(x_{1,k},x_{2,0})$, ..., $(x_{n,k},b)$ is said to be the elementary system complementary to I and will be denoted by I_c .

DEFINITION 1. The real-valued function g(x) defined on [a, b] is said to be absolutely k-th continuous on [a, b] if for an arbitrary $\varepsilon > 0$ there exists a $\delta(\varepsilon) > 0$ such that for any elementary system $I(x_{i,1}, ..., x_{i,k-1})$: $(x_{i,0}, x_{i,k})$, i = 1, 2, ..., n, in [a, b] with $\sum_{i=1}^{n} (x_{i,k} - x_{i,0}) < \delta$ the relation

$$\sigma[I] = \sum_{i=1}^{n} (x_{i,k} - x_{i,0}) |Q_k(g; x_{i,0}, x_{i,1}, ..., x_{i,k})| < \varepsilon$$

is satisfied. In this case we write $g \in AC_k[a, b]$. The sum $\sum_{i=1}^n (x_{i,k} - x_{i,0})$ will be denoted by mI.

LEMMA 1. If $g \in AC_k[a, b]$, then g possesses the (k-1)-th Riemann *-derivative in (a, b).

Proof. Let a < c < b and $\varepsilon > 0$ be arbitrary. There exists a $\delta(\varepsilon) > 0$ such that the condition of the definition of $AC_k[a,b]$ functions is satisfied with ε replaced by $\varepsilon/(k-1)!(k-1)$. We choose points $x_{p-k+1} < x_{p-k+2} < ... < x_{p-1} < x_p = c < x_{p+1} < ... < x_{p+k-1}$ such that $(x_{p+k-1} - x_{p-k+1}) < \delta$.

Choose a positive integer i such that $p-k+1 \le i \le p-1$ and consider the elementary system consisting of a single interval

$$I(x_{i+1}, ..., x_{i+k-1}): (x_i, x_{i+k}).$$

Using Lemma 4 of [4], we get

$$\begin{aligned} |Q_{k-1}(g; x_{i+1}, ..., x_{i+k}) - Q_{k-1}(g; x_i, ..., x_{i+k-1})| \\ &= (x_{i+k} - x_i) |Q_k(g; x_i, x_{i+1}, ..., x_{i+k-1}, x_{i+k})| < \varepsilon/(k-1)!(k-1). \end{aligned}$$

Since i may assume k-1 values in $p-k+1 \le i \le p-1$, we see that the above inequality is true for any one of these values of i, viz. for i=p-k+1,...,p-1.

It may be noted, however, that these k-1 intervals taken together do not form an elementary system, because the intervals are overlapping.

Combining now the k-1 inequalities, we obtain

$$|(k-1)! Q_{k-1}(g; x_i, ..., x_{i+k-1}) - (k-1)! Q_{k-1}(g; x_j, ..., x_{j+k-1})| < \varepsilon$$

for i = p-k+1, ..., p-1, p and j = p-k+1, ..., p-1, p.

Hence g(x) possesses the (k-1)-th Riemann *-derivative at c.

Note. With suitable modifications it may be shown that $D_+^k g(a)$ and $D_-^k g(b)$ exist.

Theorem 1. If $g \in AC_k[a, b]$, then $g \in BV_k[a, b]$.

Proof. There exists a $\delta(1) = \delta > 0$ such that for any elementary system $I(x_{i,1}, \ldots, x_{i,k-1})$: $(x_{i,0}, x_{i,k})$, $i = 1, 2, \ldots, n$, in [a, b] with $\sum_{i=1}^{n} (x_{i,k} - x_{i,0}) < \delta$ the relation

(1)
$$\sum_{k=1}^{n} (x_{i,k} - x_{i,0}) |Q_k(g; x_{i,0}, ..., x_{i,k})| < 1$$

is satisfied.

The interval [a, b] is broken up into a finite number of sub-intervals $[c_0, c_1], [c_1, c_2], ..., [c_{N-1}, c_N]$ $(a = c_0 < c_1 ... < c_N = b)$ such that $(c_{s+1} - c_s) < \delta$ for each s = 0, 1, ..., N-1.

We keep s fixed temporarily and consider any $\pi(x_0, x_1, ..., x_n)$ subdivision of $[c_s, c_{s+1}]$.

The sets of intervals (x_i, x_{i+k}) , $i \in A_r = \{r, k+r, 2k+r, ... \le n\}$ and r = 0, 1, 2, ..., k-1 form k elementary systems

$$I_r(x_{i+1}, ..., x_{i+k-1}): (x_i, x_{i+k}), i \in A_r \text{ and } r = 0, 1, 2, ..., k-1.$$

So, by (1), we get

$$\sum_{i \in A_r} (x_{i+k} - x_i) |Q_k(g; x_i, x_{i+1}, ..., x_{i+k})| < 1$$

for r = 0, 1, 2, ..., k-1. Combining all the inequalities, we obtain

$$\sum_{i=0}^{n-k} (x_{i+k}-x_i) |Q_k(g; x_i, x_{i+1}, ..., x_{i+k})| < k.$$

Since this is true for any π -subdivision of $[c_s, c_{s+1}]$, it follows that $V_k[g; c_s, c_{s+1}] \le k$, so that $g \in BV_k[c_s, c_{s+1}]$ for s = 0, 1, ..., N-1. Hence, by Theorem 6 of [4] and Lemma 1, we infer that $g \in BV_k[a, b]$. This proves the theorem.

THEOREM 2. If the k-th Riemann *-derivative of a function $g(x) \in AC_k[a, b]$ is zero almost everywhere in [a, b], then the function g(x) is a polynomial of degree (k-1) at most.

To prove the theorem we require the following lemma.

LEMMA 2. Under the suppositions of the above theorem

$$V = V_k[g; a, b] = 0$$
.

Proof of the lemma. By Theorem 1, $g(x) \in BV_k[a, b]$. Let $E = \{x: x \in (a, b) \text{ and } D^k g(x) = 0\}$. Let $\varepsilon > 0$ be arbitrary. By Lemma 3 of [4], $Q_k(g; x_i, x_{i+1}, ..., x_{i+k})$ is independent of the order in which the points $x_i, x_{i+1}, ..., x_{i+k}$ appear. Consequently, if $x \in E$, there exists a $\delta > 0$ such that, for all choices of 2k points $\{x_i\}, -k \le i \le k, i \ne 0$, such that $x_{-k} < ... < x_{-1} < x < x_1 < ... < x_k$ with $(x_k - x_{-k}) < \delta$, the relation

(2)
$$|Q_k(x_i, x_{i+1}, ..., x_{i+k})| < \varepsilon/2(k+1)(b-a)$$

is satisfied for i=-k,...,0, where $x_0=x$, $Q_k(x_i,...,x_{i+k})=Q_k(g;x_i,...,x_{i+k})$. Now $g\in AC_k[a,b]$, and so, corresponding to $\varepsilon/2k$, there exists a $\delta'>0$ such that for every elementary system I in [a,b] with $mI<\delta'$ we have

(3)
$$\sigma |I| < \varepsilon/2k.$$

It is clear that the closed intervals like $[x_{-1}, x_1]$ associated with each $x \in E$ for which condition (2) is satisfied cover the set E in Vitali's sense. Hence we can select from them a finite number of pairwise disjoint closed intervals $d_i = [x_{i,-1}, x_{i,1}]$ with $x_{i-1,k} < x_{i,-k} < \dots < x_{i,-2} < x_{i,-1} < x_{i,0} < x_{i,1} < \dots < x_{i,k}; i=0,1,\dots,n,$ where $x_{i,0} = x_i$, $x_{0,-k} = a$, $x_{n,k} = b$ such that

(4)
$$m^* [E - \sum_{i=0}^n d_i] < \delta'.$$

Since $x_{i-1,k} < x_{i,-k}$ for i = 0, 1, ..., n, it is clear that the intervals $[x_{i,-k}, x_{i,k}]$, i = 0, 1, ..., n are disjoint.

We consider any $\pi(y_0, y_1, ..., y_m)$ subdivision of [a, b]. We discuss the following possibilities:

(i) If $y_p \in [x_{i,-k}, x_{i,k}]$ for some i, $0 \le p \le m$, then y_p may or may not coincide with any $x_{i,j}$, $-k \le j \le k$. Since the relation (2) is satisfied for all choices of $x_{i,j}$ in $[x_{i,-k}, x_{i,k}]$, we may take y_p coincident with a suitable $x_{i,j}$.

(ii) If $x_{i,k} < y_p < x_{i+1,-k}$, then we can easily introduce a new interval and a set of points satisfying (2) and (4) and y_p coinciding with a suitable new point.

Thus in any case we may suppose that y_p , $0 \le p \le m$, coincides with $x_{i,j}$ for some i and some j for $0 \le i \le n$, $-k \le j \le k$.

Let j be any positive integer such that $1 \le j \le k$. Consider the elementary system

$$I_j(x_{i-1,j+1},...,x_{i,j-k-2}):(x_{i-1,j},x_{i,j-k-1}), i=1,2,...,n$$

where $x_{i,-k-1} = x_{i-1,k}$ and $x_{i-1,k+1} = x_{i,-k}$.

As j ranges from 1 to k, we obtain k numbers of elementary systems

$$I_j(x_{i-1,j+1},...,x_{i,j-k-2}):(x_{i-1,j},x_{i,j-k-1}), i=1,2,...,n$$

where $x_{i,-k-1} = x_{i-1,k}$ and $x_{i-1,k+1} = x_{i,-k}$.

From (3), it follows that

$$\sum_{i=1}^{n} Q_{i,j} = \sum_{i=1}^{n} (x_{i,j-k-1} - x_{i-1,j}) |Q_{k}(x_{i-1,j}, ..., x_{i,j-k-1})| < \varepsilon/2k$$

for j = 1, 2, ..., k and so

(5)
$$\sum_{j=1}^{k} \sum_{i=1}^{m} Q_{i,j} < \varepsilon/2.$$

On the other hand, by using (2),

$$Q'_{i,j} = (x_{i,j+k} - x_{i,j})|Q_k(x_{i,j}, \dots, x_{i,j+k})| < \frac{\varepsilon(x_{i,j+k} - x_{i,j})}{2(k+1)(b-a)},$$

i = 0, 1, ..., n and j = -k, ..., 0.

This gives

$$\sum_{j=-k}^{0} Q'_{i,j} < \frac{\varepsilon(x_{i,k} - x_{i,-k})}{2(b-a)}, \quad i = 0, 1, ..., n.$$

Consequently

(6)
$$\sum_{i=0}^{n} \sum_{i=-k}^{0} Q'_{i,j} < \varepsilon/2.$$

Since the addition of extra points does not decrease the approximating sum for V {Theorem 3, [4]}, we have

$$\sum_{i=0}^{m-k} (y_{i+k} - y_i) |Q_k(y_i, y_{i+1}, ..., y_{i+k})| \leq \sum_{j=1}^k \sum_{i=1}^n Q_{i,j} + \sum_{i=0}^n \sum_{j=-k}^0 Q'_{i,j} < \varepsilon/2 + \varepsilon/2 = \varepsilon,$$

by (5) and (6).

Since π is any subdivision of [a, b] and $\varepsilon > 0$ is arbitrary, it follows that

(7)
$$V = V_k[g; a, b] = 0.$$

Proof of the theorem. We consider k fixed points $a_0 < a_1 < ... < a_{k-1}$ of (a, b). We show that, for all choices of k points $\{y_i\}$, i = 0, 1, ..., k-1, such that $a \le y_0 < y_1 < ... < y_{k-1} \le b$ where $a = y_0$ and $b = y_{k-1}$ do not hold simultaneously,

(8)
$$Q_{k-1}(y_0, y_1, ..., y_{k-1}) = a \text{ constant} = Q_{k-1}(a_0, a_1, ..., a_{k-1}).$$

For any collection of 2k points $\{x_i\}$, i = 0, 1, ..., 2k-1 with $a \le x_0 < x_1 < ... < x_{2k-1} \le b$,

$$\begin{aligned} |Q_{k-1}(x_0, x_1, ..., x_{k-1}) - Q_{k-1}(x_k, ..., x_{2k-1})| \\ &= |\{Q_{k-1}(x_0, ..., x_{k-1}) - Q_{k-1}(x_1, ..., x_k)\} + \{Q_{k-1}(x_1, ..., x_k) - Q_{k-1}(x_2, ..., x_{k+1})\} + ... + \{Q_{k-1}(x_{k-1}, ..., x_{2k-2}) - Q_{k-1}(x_k, ..., x_{2k-1})\}| \\ &\leq \sum_{i=0}^{k-1} |Q_{k-1}(x_i, ..., x_{i+k-1}) - Q_{k-1}(x_{i+1}, ..., x_{i+k})| \\ &= \sum_{i=0}^{k-1} (x_{i+k} - x_i) |Q_k(x_i, x_{i+1}, ..., x_{i+k})|, \text{ using Lemma 4 of [4]} \\ &\leq V_k[g; a, b] = V, \end{aligned}$$

by Definition 3 of [4].

Suppose that $y_{k-1} < b$ and choose y_{k+i} , i = 0, 1, ..., k-1 such that

$$\max(a_{k-1}, y_{k-1}) < y_k < ... < y_{2k-1} \le b$$
.

Applying (9) to the subdivision $\{x_i\}$, i=0,1,...,2k-1 where $x_i=a_i$ $(0 \le i \le k-1)$ and $x_i=y_i$ $(k \le i \le 2k-1)$, we obtain

$$|Q_{k-1}(a_0, a_1, ..., a_{k-1}) - Q_{k-1}(y_k, y_{k+1}, ..., y_{2k-1})| \leq V.$$

By using (9) again

$$|Q_{k-1}(a_0, a_1, ..., a_{k-1}) - Q_{k-1}(y_0, y_1, ..., y_{k-1})| \leq 2V$$
.

And so by Lemma 2

$$Q_{k-1}(a_0, a_1, ..., a_{k-1}) = Q_{k-1}(y_0, y_1, ..., y_{k-1}).$$

If $x_0, x_1, ..., x_k$ is any collection of k+1 distinct points of [a, b], then, using Lemma 4 of [4] and relation (8), we have $Q_k(x_0, x_1, ..., x_k) = 0$.

The theorem now follows from Lemma 1 of [4].

We consider an elementary system of [a, b]

$$I(x_{i,1},...,x_{i,k-1}):(x_{i,0},x_{i,k}), i=1,2,...,n$$

$$\sigma I = \sum_{i=1}^{n} (x_{i,k} - x_{i,0}) Q_k(g; x_{i,0}, x_{i,1}, ..., x_{i,k})$$

where $mI = \sum_{i=1}^{n} (x_{i,k} - x_{i,0}).$

DEFINITION 2. The function g(x) is said to be absolutely k-th continuous from above on [a, b] if for an arbitrary s > 0 there exists a $\delta > 0$ such that for any elementary system $I(x_{i,1}, ..., x_{i,k-1})$: $(x_{i,0}, x_{i,k})$, i = 1, 2, ..., n, in [a, b] with $mI < \delta$ the relation $\sigma I < \varepsilon$ is satisfied. It is said to be absolutely k-th continuous from below if the relation $\sigma I > -\varepsilon$ holds when $mI < \delta$. If g(x) is absolutely kth continuous from above (or from below) on [a, b], we write $g \in AC_k^+[a, b]$ (or $g \in AC_k^-[a, b]$).

DEFINITION 3. The least upper bound and the greatest lower bound of the aggregate $\{\sigma I\}$ of sums σI for all possible elementary systems I in [a,b] are called, respectively, the *positive* and the *negative* k-th variation of g(x) in [a,b] and are designated by $V_k^+[g;a,b]$ and $V_k^-[g;a,b]$.

Henceforth we shall assume that (k-1)-th divided differences of g in [a, b] are bounded in absolute value by K.

LEMMA 3. $V_k^+[g; a, b] \ge 0$ and $V_k^-[g; a, b] \le 0$.

The proof is omitted.

DEFINITION 4. If $V_k^+[g; a, b] < +\infty$, we say that $g \in BV_k^+[a, b]$ and if $V_k^-[g; a, b] > -\infty$, then $g \in BV_k^-[a, b]$.

LEMMA 4. Let $x_{1,0} < x_{1,1} < ... < x_{1,k-1} < x_{1,k} \leqslant x_{2,0} < x_{2,1} < ... < x_{2,k-1} < x_{2,k} \leqslant ...$ be a set of points in [a,b]. If $g \in BV_k^+[a,b]$ (or $BV_k^-[a,b]$), then the series

$$\sum_{i} (x_{i,k} - x_{i,0}) |Q_k(g; x_{i,0}, ..., x_{i,k})|$$

is convergent.

Proof. We prove the lemma in case $g \in BV_k^+[a, b]$. The other case is analogous. Let $\{(\xi_{i,0}, \xi_{l,k})\}$, i = 1, 2, ... be a subsequence of the sequence of all intervals $\{(x_{i,0}, x_{l,k})\}$, i = 1, 2, ..., with the intermediate points $x_{i,1}, ..., x_{l,k-1}$ renamed as $\xi_{l,1}, ..., \xi_{l,k-1}$, for each of which $[(\xi_{l,k} - \xi_{l,0}) Q_k(g; \xi_{l,0}, ..., \xi_{l,k})] \ge 0$. If n is a positive integer, then, since $(\xi_{l,0}, \xi_{l,k})$, i = 1, 2, ..., n form an elementary system in [a, b], we have

(10)
$$\sum_{k=1}^{n} (\xi_{i,k} - \xi_{i,0}) Q_{k}(g; \xi_{i,0}, ..., \xi_{i,k}) \leq V_{k}^{+} [g; a, b].$$

Since $V_k^+[g; a, b] < +\infty$ and n may be arbitrary, it follows that

$$\sum_{i} (\xi_{i,k} - \xi_{i,0}) Q_{k}(g; \xi_{i,0}, ..., \xi_{i,k})$$

is convergent.

Next, let $\{(\eta_{i,0}, \eta_{i,k})\}$, i = 1, 2, ... be a subsequence of $\{(x_{i,0}, x_{i,k}), i = 1, 2, ...$ with $x_{i,1}, ..., x_{i,k-1}$ renamed as $\eta_{i,1}, ..., \eta_{i,k-1}$ for each of which

$$[(\eta_{i,k}-\eta_{i,0})Q_k(g;\eta_{i,0},...,\eta_{i,k})]<0$$
.

For a fixed positive integer n we consider an elementary system

$$I(\eta_{i,1},...,\eta_{i,k-1}):(\eta_{i,0},\eta_{i,k}), i=1,2,...,n \text{ in } [a,b].$$

If I_c denotes the elementary system in [a, b] complementary to I, then I and I_c together form an elementary system in [a, b], which we denote by

$$J(\alpha_{i+1},...,\alpha_{i+k-1}):(\alpha_i,\alpha_{i+k}), i=0,k,2k,...,(m-1)k,mk$$

where $\alpha_0 = a$ and $\alpha_{(m+1)k} = b$. We consider k-1 elementary systems

$$J_r(\alpha_{i+1}, ..., \alpha_{i+k-1}): (\alpha_i, \alpha_{i+k}), \quad i \in A_r = \{r, k+r, 2k+r, ... \leq (m+1)k\}$$

for each r = 1, 2, ..., k-1, so that

$$\sigma I + \sigma I_c + \sigma J_1 + \ldots + \sigma J_{k-1} = Q_{k-1}(g; \alpha_{mk+1}, \ldots, \alpha_{(m+1)k}) - Q_{k-1}(g; \alpha_0, \alpha_1, \ldots, \alpha_{k-1})$$

Consequently, $\sigma I \ge -2K - kV_k^+[g; a, b]$ and so

(11)
$$\sum_{i=1}^{n} (\eta_{i,k} - \eta_{i,0}) Q_k(g; \eta_{i,0}, ..., \eta_{i,k}) \ge -2K - kV_k^+[g; a, b].$$

Since the left-hand expression is negative and n may be any positive integer, the series

$$\sum_{i} (\eta_{i,k} - \eta_{i,0}) Q_{k}(g; \eta_{i,0}, ..., \eta_{i,k})$$

is convergent.

Because

(12)
$$\sum_{i} (x_{i,k} - x_{i,0}) |Q_k(g; x_{i,0}, ..., x_{i,k})|$$

$$= \sum_{i} (\xi_{i,k} - \xi_{i,0}) Q_k(g; \xi_{i,0}, ..., \xi_{i,k}) - \sum_{i} (\eta_{i,k} - \eta_{i,0}) Q_k(g; \eta_{i,0}, ..., \eta_{i,k}) ,$$

the lemma follows.

COROLLARY. Under the hypotheses of Lemma 4, for any positive integer $n \ge 1$

$$\sum_{i=1}^{n} (x_{i,k} - x_{i,0}) |Q_k(g; x_{i,0}, ..., x_{i,k})| \le (k+1)V_k^+[g; a, b] + 2K.$$

Proof. It is seen that the right-hand quantities of (10) and (11) are independent of n. So, by using (10), (11) and (12), the corollary follows.

LEMMA 5. If $g \in BV_k^+[a, b]$, then $g \in BV_k^-[a, b]$ and conversely.

Proof. Suppose that $g \in BV_k^+[a, b]$. We consider an elementary system

$$I(x_{i,1},...,x_{i,k-1}):(x_{i,0},x_{i,k}), i=1,2,...,n \text{ in } [a,b].$$

By the corollary there exists an M>0, independent of the choice of elementary systems, such that

$$\sigma I = \sum_{i=1}^{n} (x_{i,k} - x_{i,0}) Q_k(g; x_{i,0}, ..., x_{i,k}) \ge -M,$$

and so $V_k^-[g; a, b] \ge -M$. Consequently, by Lemma 3, $g \in BV_k^-[a, b]$. The other case is similar.

LEMMA 6. If $g \in BV_k^+[a, c]$ and $BV_k^+[c, b]$, where a < c < b, then $g \in BV_k^+[a, b]$ and conversely. Further

$$V_k^+[g; a, b] \ge V_k^+[g; a, c] + V_k^+[g; c, b]$$
.

Proof. Suppose that $g \in BV_k^+[a, c]$ and $BV_k^+[c, b]$. Let

$$I(x_{i,1},...,x_{i,k-1}):(x_{i,0},x_{i,k}), i=1,2,...,n$$

be any elementary system in [a, b]. We consider the following cases:

- (a) If $x_{1,0} \ge c$ then $\sigma I \le V_k^+[g; c, b]$.
- (b) If $x_{n,k} \leq c$ then $\sigma I \leq V_k^+[g; a, c]$.
- (c) If $x_{m,k} \le c \le x_{m+1,0}$ (m < n), I can be presented as the sum of two elementary systems, I_1 in [a, c] and I_2 in [a, b], and so

$$\sigma I = \sigma I_1 + \sigma I_2 \leq V_k^+[g; a, c] + V_k^+[g; c, b].$$

(d) Let $x_{m,0} < c < x_{m,k}$, $1 \le m \le n$. Then the intervals $(x_{i,0}, x_{i,k})$, i = 1, 2, ..., m-1, form an elementary system I_1 in [a, c] and $(x_{i,0}, x_{i,k})$, i = m+1, ..., n form an elementary system I_2 in [c, b]. So

$$\sigma I = \sum_{i=1}^{m-1} (x_{i,k} - x_{i,0}) Q_k(g; x_{i,0}, \dots, x_{i,k}) +$$

$$+ \sum_{i=m+1}^{n} (x_{i,k} - x_{i,0}) Q_k(g; x_{i,0}, \dots, x_{i,k}) +$$

$$+ (x_{m,k} - x_{m,0}) Q_k(g; x_{m,0}, \dots, x_{m,k}) +$$

$$\leq V_k^+[g; a, c] + V_k^+[g; c, b] + Q_{k-1}(g; x_{m,1}, \dots, x_{m,k}) +$$

$$- Q_{k-1}(g; x_{m,0}, \dots, x_{m,k-1}), \text{ by Lemma 4 of [4]}$$

$$\leq V_k^+[g; a, c] + V_k^+[g; c, b] + 2K.$$

Since I is any elementary system in [a, b], considering all the cases, we obtain $g \in \mathrm{BV}_k^+[a, b]$.

The converse part is clear. By Definition 3 it easily follows that

$$V_k^+[q;a,c]+V_k^+[q;c,b] \leq V_k^+[q;a,b]$$
.

THEOREM 3. If $g \in BV_k^+[a, b]$ (or $BV_k^-[a, b]$), then $g \in BV_k[a, b]$ and

$$V_k[g; a, b] \leq k\{V_k^+[g; a, b] - V_k^-[g; a, b]\}.$$

Proof. Suppose that $g \in BV_k^+[a, b]$, then by Lemma 5, $g \in BV_k^-[a, b]$. We consider any $\pi(x_0, x_1, ..., x_n)$ subdivision of [a, b], n > k. Then

(13)
$$\sum_{i=0}^{n-k} (x_{i+k} - x_i) |Q_k(g; x_i, x_{i+1}, ..., x_{i+k})| = \sum_{i \in A_0} + \sum_{i \in A_1} + ... + \sum_{i \in A_{k-1}},$$

where A_r contains the suffixes $r, k+r, 2k+r, ... \le n$ for r = 0, 1, ..., k-1.

We now consider each A_r to be the union of two sets of suffixes A_r^+ and A_r^- such that $i \in A_r^+$ if $(x_{i+k} - x_i) Q_k(g; x_i, x_{i+1}, ..., x_{i+k}) \ge 0$ and $i \in A_r^-$ if

$$(x_{i+k}-x_i)Q_k(g;x_i,x_{i+1},...,x_{i+k})<0$$
.

Then, from (13) we get

$$(14) \quad \sum_{i=0}^{n-k} (x_{i+k} - x_i) |Q_k(g; x_i, x_{i+1}, ..., x_{i+k})| = \sum_{i \in A_0^+} + ... + \sum_{i \in A_{k-1}^+} - \sum_{i \in A_0^-} - ... - \sum_{i \in A_{k-1}^+}.$$

We thus obtain 2k elementary systems like

$$I_r^+(x_{i+1}, ..., x_{i+k-1}): (x_i, x_{i+k}), \quad i \in A_r^+,$$

 $I_r^-(x_{i+1}, ..., x_{i+k-1}): (x_i, x_{i+k}), \quad i \in A_r^-$

where r = 0, 1, ..., k-1.

Hence, from (14), we get

$$\sum_{i=0}^{n-k} (x_{i+k} - x_i) |Q_k(g; x_i, x_{i+1}, ..., x_{i+k})| = \sigma I_0^+ + ... + \sigma I_{k-1}^+ - \sigma I_0^- - ... - \sigma I_{k-1}^-$$

$$\leq k \{ V_k^+ [g; a, b] - V_k^- [g; a, b] \}.$$

Since $\pi(x_0, x_1, ..., x_n)$ is arbitrary, it follows that

$$V_k[g; a, b] \leq k \{V_k^+[g; a, b] - V_k^-[g; a, b]\}$$
.

This proves the theorem

THEOREM 4. If $g \in AC_k^+[a, b]$ (or $AC_k^-[a, b]$), then $g \in BV_k[a, b]$.

Proof. We prove the theorem in case $g \in AC_k^+[a, b]$. The other case is analogous.

There exists a $\delta(1) = \delta > 0$ such that, for every elementary system I in [a, b], we have

(15)
$$\sigma I < 1$$
 whenever $mI < \delta$.

We subdivide [a, b] into a finite number of subintervals $[c_0, c_1], [c_1, c_2], ..., [c_{N-1}, c_N]$ $(a = c_0 < c_1 < ... < c_N = b)$ such that $c_{r+1} - c_r < \delta$ for each r = 0, 1, ..., N-1.

For any elementary system $I_r(x_{i,1}^{(r)}, \dots, x_{i,k-1}^{(r)})$: $(x_{i,0}^{(r)}, x_{i,k}^{(r)})$ in $[c_r, c_{r+1}]$, we have, from (15) $\sigma I_r < 1$. Consequently $V_k^+[g; c_r, c_{r+1}] \le 1$. This implies, by Definition 4 and Lemma 3, that $g \in BV_k^+[c_r, c_{r+1}]$. By Lemma 6, it therefore follows that $g \in BV_k^+[a, b]$. Hence, by Theorem 3, $g \in BV_k[a, b]$. This proves the theorem.

References

- [1] P. S. Bullen, A. Criterion for n-convexity, Pacific J. Math. 36 (1971), pp. 81-98.
- [2] A. M. Russell, Functions of bounded second variation and Stieltjes type integrals, J. Lond. Math. Soc. 2 (2) (1970), pp. 193-208.
- 31 On functions of bounded k-th variation, ibid. 3 (2) (1971), pp. 742-746.
- [4] Functions of bounded k-th variation, Proc. Lond. Math. Soc. 26 (3) (1973), pp. 547-5634

UNIVERSITY OF KALYANI
DEPARTMENT OF MATHEMATICS
West Bengal, India

Accepté par la Rédaction le 7. 2. 1977