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Weakly Borel-complete topological spaces
by

Michael D. Rice (Fairfax, Va) and George Reynolds (Schenectady, N. Y.)

Abstract. A Tychonoff space is weakly Borel-complete if each ultrafilter of Borel sets with the
countable intersection property converges to some point in the space. This concept has been intro-
duced by Z. Frolik in [4] under the name Baire-Borel-complete, with a different definition. The
present paper studies such spaces, contrasting their properties with the Borel-complete and closed
complete spaces discussed in [9] and the familiar realcompact spaces, and adds some new results on
Borel-complete spaces. The primary difference in approach between [9] and the present work is the
measure-theoretic language adopted here. For example, weak Borel-completeness is equivalent to
each non-trivial 0-1 valued countably additive Forel measure having a non-empty support set
(necessarily consisting of one point). Finally, we note that the present work has considerable overlap
with the recent work of R. J. Gardner [6]; the details of this overlap are found at the end of section
two.

Section 1. A space is Borel-complete (resp. closed complete) if each ultrafilter
of Borel sets (resp. closed sets) with the countable intersection property is fixed
at some point of the space; alternately Borel-completeness is equivalent to each
o-additive 0-1 Borel measure being a point mass measure. Therefore each Borel-
complete space is weakly Borel-complete. For other background informalion the
reader is referred to [9]. In particular, the Baire (resp. Borel) sets are the smallest
o-field which contains the zero sets of continuous real-valued mappings (resp. the
closed sets).

TuroreM 1.1. The following statements are equivalent.

(i) X is closed complete.

(i1) Each non-trivial regular o -additive 0-1 Borel measure is a point mass measure.

(ili) For each closed ulirafilter & on X with (\F = & there exists a o-disjoint
open refinement of {X —F: Fe%} and X has no closed discrete subspace of measurable:
Dpower.

To prove the above theorem, we will need the following lemma that was dis-
covered during the writing of [9] (see 6.9-6.12 of [8]).

LeMMA. Let €< P(X) and let F be a € -yltrafilter closed under countable inter-
sections, Define

UF) = {S<X: S misses or contains some member of F .
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Then the following statements hold:
() =(F) is a o-field containing 6.

(i) #* = {d<=X; A contains some member of F} is a L(F)-ultrafilter closed
under countable intersections and F* € = F.

(i) If $<B<Z(F) and B is closed under finite intersections, then F* N B
is a B-ultrafilter with the countable intersection property.

To prove Theorem 1.1, we first note that if x is a regular o-additive 0-1 Borel
measure, then & = {F: F is closed and p(F) = 1} is a closed ultrafilter with the
countable intersection property; hence (i)—(ii) in 1.1. To show (1i)—(D), let F be
a ‘closed ultrafilter with the countable intersection property. Using the preceding
lemma with % = closed sets. and # = Borel(X), we see that #* n # is a Borel
ultrafilter with the countable intersection property and one easily checks that the
0-1 Borel measure y associated with#* N # is regular, so from (ii) u is concentrated
at some point p and # is therefore fixed at p. The implication ({)—(iii) is immediate,
so'we need only show (iii)—(ii) to complete the proof. The a1gument used is a standard
one. Let s be a non-trivial 0-1 regular o-additive Borel measure and set # = {F: Fis
closed and u(F) = 1}.F is free if u is not concentrated at any point and under this
assumption there exists a ¢-disjoint open cover | %; which refines {X—F: F e #}.
For each i, define B; = U{Ue %;}; then u(UB) =1, so u(B)) = 1 for some j.
Define ‘A: 2(%p—{0,1} by A(&) = u(U{SeP); then A is an Ulam measure
on %;, so choosing one point from each member of %; gives a closed discrete subset
of measurable power, which is a contradiction. Hence p is concentrated at some point
and condition (ii) is established.

TueorEM 1.2. The following statements are equivalent.

(i) X is weakly- Borel-complete.'

(i) X is closed complete and each 0-1 o-additive Borel measure is 4-additive.

(iif) Each 0-1 o-additive Borel measure is }-additive.

(iv) Each 0-1 o-additive Borel measure is additive.

A Borel measure p is 4-additive if the empty intersection of a family of zero
sets {Z} indexed over a directed set implies that u(Z,)—0; the measure is additive
if the above condition is satisfied for arbitrary closed sets Z,.

The proof that (i)—(iv) is left to the reader. To establish that (iii)—{ii), let & be
a closed ultrafilter with the countable intersection property with & = {F,: s € D}
the family of zero sets which belong to & and make D into a directed set by defining
s<t when F,cF,. If F, = @, (iii) implies that for some ¢, u(F) =0 for s>,
where pis the Borel measure associated with & used in the proof of (ii)—(@) of 1.1.
But fror.n the definition of p it follows that F, ¢, which is a contradiction, Hence
there exists a point p in (\F,. One easily shows that p belongs to &, so & is fixed
and X is closed complete.

) To .sl.ww (i)—(), let p be a 0-1 o-additive Borel measure. By assumption g
is 4-additive, so by ([12], comments following 2.5), Hlpairecry has an extension to a reg-

icm

Weakly Borel-complete topological spaces 181

ular 0-1 o-additive Borel measure v. Since X is closed complete, it follows from 1.1
that v is concentrated at some point p. If p € U, U open, choose a cozero set C such
that pe CcU;then v(C) = 1 = pu(C), so u(U) = 1, which shows that p1is supported
at p and therefore that X is weakly Borel-complete.

We comment that portions of the preceding results are analogues of results
which are known for realcompact spaces. For example, the analogue of 1,1(iii)
is: X is realcompact if and only if for each free ultrafilter of zero sets #, there exists
a o-discrete cozero refinement of {X—F: Fe#}, and the analogue of 1.2(iii) is
([12], 3.2): X is realcompact if and only if each 0-1 additive Baire measure is
A-additive,

TaEOREM 1.3. X is Borel-complete if and only if X and X —(p) (for each p in X)
are weakly Borel-complete.

-Since Borel-completeness is a hereditary property ([9]), the condition is clearly
necessary. To show the sufficiency of the condition, let p be a 0-1 ¢-additive Borel
measure. Since X is weakly Borel-complete, 1 has a support point p. Assume that
u(p) = 0. Since § = X—(p) is weakly Borel-complete, o = pls has a support
point x in S. Choose disjoint open sets U and ¥ containing p and x respectively;
then

w(V—(0) = u(¥) =1,

which is a contradiction. Hence p is concentrated at the point p, which completes
the proof.

to(U~(p)) = w(U) =1 and

Section 2. Using any one of the characterizations of the weakly Borel-complete
property, one may show that the class of weakly Borel-complete spaces is closed
under the formation of products, non-measurable sums, perfect pre-images, and
subspaces which are members of ¢(%) (the smallest family containing the closed
sets % closed under countable unions and countable intersections). Thus in particular
the weakly Borel-complete spaces form an epi-reflective subcategory of Tychonoff
spaces and the corresponding reflection vo.X of a space X may be compared with the
realcompactification vX. We note that vo X may be viewed as a subspace of vX" which
contains X (since each realcompact space is weakly Borel-complete by 2.1 below).

It would be interesting to have a description of the points in vX'—X which cor-
respond to points of v, X, analogous to the well known description of the points
of vX, where vX is viewed as a subspace of the Stone-Cech compactification.
BX: vX = {pe pX: each member of ¢(%,) intersects X}, where %, is the family
of open sets in BX containing p. One possible description of the points in vo X is the
following. Let %5 be the family of open sets in BX which meet each member of
0(%,). Then one may show that X’ weakly Borel-complete implies the existence
of a member of o(#%9) which missis X for each ¢ e pX—X. We have been un-
able to establish the converse of this statement.

THEOREM 2.1, Each almost realcompact (and hence each realcompact space)
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is weakly Borel-complete. If X has no closed discrete subspace of measurable power,
then each of the following types of spaces are weakly Borel-complete: (1) metacompact,
(ii) subparacompact, and (iii) screenable.

The proof of parts (ii) and (iif) are routine based on the proof of the implication
(iii)—(i) of 1.1. Now assume that X is almost realcompact (see [3]) and let u be a 0-1
o-additive Borel measure. Let # = {U: U is open and pu(U) = 1} generate an open
ultrafilter F <F. If there exists {F;}cF with \F, = @, then p(X—F)) =1 for
some j, so X—F;e. But F; n (X—F,) = @, which is a contradiction. Hence & has
what is called in [3] the C.C.L.P. property. Since X is almost realcompact, there
exists pe (\{F: Fe#} and one shows without difficulty that u is supported at p.

Now suppose that X is metacompact and let & be a Borel ultrafilter, Assuming
that # does not converge, we will show that # does not have the countable inter-
section property (*). Let #, = {Fe&#: F is closed}. Since # does not converge,
&, is free; let % be a point finite open cover that refines {X—F: Fe&,}. Using
Zorn’s lemma one may find a subspace H maximal with respect to the property
that [H n %|<]1 for each Ue %. It follows that H is a closed discrete subspace
and {St(x, %): xe H} covers X. Then %, = {Ue %: U H # @} is a point
finite cover of X, which guarantees that |%,| = [H].

For each Fe,, define F* = {Ue %,: Fn U # B). Since %, is a cover,

each F¥ 2 @, so () (FF)=( () F)F, {F,} <& ,, shows that the family (F¥#: FeF,)
=1 i=1

generates an ultrafilter #+ on the set %,.#¥ is free since %, refines {X—F: Fe&F,}.
The measurability restriction on [H| shows that #% does not have the countable
intersection property, so there exists a decreasing sequence {&;} of members of FH#
such that N€; = @. Now G, = X—J{Ue 8} ¢F,, for each i (otherwise one
obtains G A &, = @, which is a contradiction), so there exists F;e4 such that
G; " F; = @. We will show that (\F; = @ by showing that ({(X— G;) = O, which
will complete the proof of the result. If x ¢ G, for each i, then x e U, for some
U; e &;; thus % point finite implies that U, = U; for izj and hence that U, e N&,,
which is a contradiction.

CorOLLARY 2.2. Each metacompact or subparacompact space with points G5 sets
is Borel-complete provided it has no closed discrete subspace of measurable power.

COROLLARY 2.3. Each metacompact normal space is realcompact provided it has
no closed discrete subspace of measurable power.

Corollary 2.2 follows from 1.3 and the fact that F, sets inherit the weak Borel-
complete property. Corollary 2.3 follows from 2.1(i) since metacompact normal
spaces are countably paracompact and [9] closed complete normal spaces with this
property are realcompact. We note that 2.3 was first proved in [14] and reproved
in ([17], Corollary 2). ‘ :

For the convenience of the reader we summarize the overlap between [6] and the

. .(‘) In fairness, the authors note that the idea for the following proof is based on the
imaginative proof of ([17], implication (ii) — (@) of the theorem).
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present work. Theorem 1.1(i) and (ii) is essentially Theorem 3.5 in [6]. Although [6]
does not define weakly Borel-complete spaces, property B in [6] is the real-valued
(as opposed to 0-1 valued) analogue of this concept, while the 7-additive concept
used here is the weakly z-additive concept in [6] (for regulas spaces). Our Theorem:
2.1(i)-(iii) may be deduced from Theorem 3.9 and the remark after 4.2 in [6]; in fact
the proof shows that weakly 0-refinable (resp. 0-refinable) and no discrete (resp.-
closed discrete) subspace of measurable power implies closed complete (resp. weakly
Borel-complete). (The method used in the proof of our 2.1 may also be modified
to obtain these results). As a final note, we comment that the weakly Borel-complete
concept and results 1.3, 2.1, and 2.2 were announced by the authors in Notices Amer..
Math. Soc. August, 1972,

Section 3. In the following section we collect some results involving our filter
properties which may be obtained for locally compact spaces and for spaces with
special countably generated o-fields.

TreorREM 3.1. Each locally compact closed complete space is weakly Borel-
complete; hence each locally compact space X with the property that X —{p} is closed'
complete for all P e X, is Borel complete.

Let u be a 0-1 o-additive Borel measure. For each open set G, define py(G)
= sup{u(K): K=G, K compact} and for each Borel set H, define u*(H) = inf {u(®:
HcG, G open}. By a standard argument involving local compactness ([10], 51),.
u* is a regular 0-1 o-additive Borel measure, so by 1,1(ii) u* is concentrated at some:
point p. If U is an open set containing p, then p*(U) = 1 = p(U)<pu(U), so p is.
supported at p; hence the space is weakly Borel-complete.

THEOREM 3.2. (CH) Each compact Borel-complete tbpological group is metrizable;.
each locally compact abeliun Borel-complete topological group is metrizable.

Assume that G is a compact Borel-complete group. From ([11], 25.35) G is
dyadic (that is, the continuous image of a product of two point spaces). F1:om 21,
a dyadic space is metrizable (assuming (CH)) if it contains no copy of SN. Since SN
is not Borel-complete ([9]), it follows that G is metrizable. Now suppose that G is
a locally compact abelian Borel-complete group. From ([11], 24.30), G is isomorphic
to R'x G,, where G, is a locally compact group containing an open compac.t sub-
group Gy; hence G, = Y 4,Gy (topological sum of cosets) since Gy is clopen in G, .
Since G, is Borel-complete, the result above shows that Gy is metriza.ble and. hence:
that G, is metrizable (as a sum of metrizable spaces); thus G is metrizable and the
proof of 3.2 is complete. )

In view of 3.2, it should be noted that there exists a nonmetrizable Borel-complete
topological group. Example 4.22 of [11] is a countable (and hence Borel-com’plete)»
group G in which each point is a G; set, but G is not metrizable. Ther‘efore Baire ((f)
= Borel(G) = 2(G) is a countably generated o-field. It is interestlng to no.te in
fact that the assumption of a special countably generated o-field associated with X~
may imply that X is Borel-complete, as the following result shows.
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TueoreM 3.3. If either Baire(X) or'Borel(X) is a countably generated o-field,
then X is Borel-complete.
If Baire(X) is countably generated, by a result of Marczewski ([13]), there

exists a one-to-one mapping X-{eM onto a metric space such that £~ (Borel (M))
= Baijre(X). Since Baire(X) is countably generated, M has a most 2% points, so
by ([7], 15.24) M is realcompact. Since a space is realcompact exactly when each
Baire ultrafilter with the countable intersection property is fixed (which may be
proved using the lemma in 1.1), it follows that X is realcompact. Furthermore,
since each point of M is a zero set, each point of X is a Baire set and hence is a G4
set ([10],»Theorem D of Seetion 51), so X is hereditarily realcompact ([7], 8.15)
and hence Borel-complete by 1.3 and 2.1. If Borel(X) is countably generated, the
result from [10] mentioned above may be similarly used to show that X is Borel~
complete.

In conclusion, we comment that 3.2 and 3.3, combined, answer for topological
groups the following question mentioned in [5]: if X is compact and Borel(X) is
a countably generated o-field, must X be metrizable?

The following examples consider some of the ideas that have been discussed
in the paper.

ExamPLE 1. The Dowker space constructed in [15] is a closed complete
normal space which is not weakly Borel-complete; this has been shown in [16].
The authors have no example of a Borel-complete normal space that is not real-
compact; since each closed complete normal countably paracompact space is real-
compact ([9]), such an example would necessarily be a Dowker space.

ExampLE 2. Example 3.7 of [9] is a locally compact metacompact space that
'is not almost realcompact.

ExAMPLE 3. The space constructed in Problem 51 of [7] is & pseudocompact
Borel-complete space that is not realcompact.

ExampLE 4. A weakly Borel-complete extremally disconnected space need
not be almost realcompact. For example, the projective resolution of any weakly
Borel-complete space that is not almost realcompact is such a space, since the perfect
image of an almost realcompact space is almost realcompact and the perfect pre-
image of a weakly Borel-complete space is weakly Borel-complete.
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