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Classification problems in K-categories
by

Melvyn B. Nathanson * (Carbondale, L)

Abstract. We describe a large class of classification problems in linear algebra, or, more
generally, in any abelian category or K-category. These problems can be partially ordered, in a natu-
ral sense, by difficulty. We prove that there are simple problems which are of maximum difficulty,
that is, problems whose solution would give the solution of all classification problems in the category.

§ 1. Introduction, Let X be a ring with unit. A K- category is an abelian category €
such that Hom(U, V) is a K-module for all objects U, ¥ of %, and composition
Hom(V, W) x Hom(U, ¥V)—Hom(U, W) is K-bilinear for all U, V, W of 4. For
example, the category of finite-dimensional vector spaces over a ficld K is a K- category.
We shall describe a large class of classification problems in any K-category.

A graph I' will consist of a finite nonempty set of vertices I', = {1, 2, ..., m}
and a finite set of arrows I',. = {a;, a,, ..., @,}. Each arrow is of the form ¢ = (h, 1),
where i and ¢ are vertices. We say that the arrow @ goes from the tail ¢ to the head .
If t = h, then the arrow a = (&, k) will sometimes be called a loop. The set Iy,
may also contain multiple arrows: a; = a; for i # j.

Let # and / be vertices of the graph I'. A composite arrow from ¢ to 4 is a finite
sequence ¢ = (a;,, ,_,, ..., @, &) of arrows of I, where ay, = (hy,, 1), such
that 7, = ¢, hy,=h,and by = t,,, fork =1,2,...,p—1. If h = ¢, we introduce
the formal symbol e,, and consider this also as a composite arrow from % to A.

Ifey, ey ey ¢, are composite arrows in I' from # to 4, then a linear combination

A= agey g et to,g

with coefficients o, & K is called a relation on I'. :
Let % be a K-category. To every graph I' we shall construct a new category € (I").

The objects of #(I") are the following “representations of I' in ¥”. To each vertex

ie T, we assign an object U, of 4. To each arrow a = (%, ) € I'y,, We assign a mor-
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phism f, from U, to U,. Thesets U = {U;; JulieTvenacrae Will be the objects of the
category % (I).

LetU = {U;f,} and V = {¥3; g,} be two representations of I' in 4. A morphism
from U to Vis afamily @ = {@;}ier,.,» Where ¢; is a morphism {rom U, to V; in &,
such that @,f, = g. ¢, for every arrow a = (h, 1) in I'y,.

Let¢ = (a;,, ai,.,» -» &) be a composite arrow in I from 7 to LIEU = {U;fi}
is a representation of I" in %, then f, = f,,ip- f"c,,_, f,,i1 is a morphism in % from
Uito U,. If h = tand ¢ = ¢, let f; = f,, = ly,, Where 1y, is the identity morphism
of U, in €. Let 1 = Y o;c; be a relation on I, that is, a K-linear combination of
composite arrows ¢; from ¢ to 4. Then f; = 2o f., is a morphism in ¢ from U, to Uj,.
(Here we use the fact that Hom(U,, U,) is a K-module.) If A is a set of relations onTI’,
we let % (I, A) be the full subcategory of #(I") consisting of all representations
U = {U;; f,} such that f; = O for all Ae 4. If U € B(I', A), then U is called a rep-
resentation of I' in % which satisfies the relations A. Clearly, €(I') = 4 (I, 9).

Let € be a K-category, and let 4 be a set of relations on the graph I'. Then
@ (I, A)is again a K-category [11]. In particular, if U = {U;; f,} and V = {V}; g.}
are representations in % (I, 4), then their direct sum is U@V = {U,®V;; /,Dg.}-
A nonzero representation in € (I', 4) is called indecomposable if it is not isomorphic
to the direct sum of two nonzero representations. In the special case when % is the
category of finite-dimensional vector spaces over a field K, then the Krull-Schmidt
theorem holds in every category % (I', 4): Every representation in ¥(I', A) can be
written uniquely (up to order) as the direct sum of indecomposable representations.

To every graph I" and every set A of relations on I' there is the following clas-
sification problem in the K-category 4: Describe the isomorphism classes of rep-
resentations of I' in % which satisfy the relations A, and, in particular, describe the
indecomposable representations. These problems have been intensively studied
in the case when ¥ is the category of finite-dimensional vector spaces over a field X
[1-10, 12]. .

However, there is an abundance of graphs and of relations on the graphs, and
a corresponding abundance of classification problems in any K- category. It is useful
to be able to compare the difficulty of two classification problems, and to reduce one
problem to another problem. This can be done in the following way.

Let I'y and I', be graphs, and let A, and 4, be sets of relations on I'; and I',
respectively. Then the classification of representations of I'y in ¢ which satisfy the
relations A, can be reduced to the classification of representations of I'; in € which
satisfy the relations 4, if there exists a functor' F: €(I'y, A,)—=€([';, 4,) such that
for any U, Ve %4 (', 4,)

(1) U= Vin €T, Ay) if and only if F(U) = F(V) in 9(I', 4,) and

(2) U is indecomposable in €(I';, 4,) if and only if F(U) is indecomposable
in €(I',, 4,).

In this case we also say that the classification problem %(I',, A,) is more difficult
than the classification problem ¥ (I'y, 4,), and we write €(I";, A)<E([;, 43).
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The object of this paper is to prove that there exist classification problems which
are of maximum difficulty, and that such problems can be “simple”. More precisely,
let I'* be the graph consisting of one vertex I'y,. = {1} and two loops I'*_ = {a;, a,},

arr

where @y = a; = (1,1). Let A* consist of the following five relations:
A* = {ayay—aza,, a}, a%dz; aaj3, ﬂ;} .
We shall prove that € (I'™*, A*) is a problem of maximum difficulty, that is,
BT, AKET*, %)

for every K-category 4 and every graph I’ with relations A. This means that the
classification of a pair of commuting endomorphisms which satisfy nilpotency
conditions of index 3 would solve all classification problems in %. The proof of this

result depends on a ring-theoretic lemma which uses an idea of Gel’fand-Pono-
marev [9].

§ 2. Large sets of endomorphisms. In this section we prove that any classification
problem can be redliced to the simultaneous classification of 7 endomorphisms for
sufficiently large n. Let ™" be the graph consisting of m vertices I'y,. = {1, 2, ..., m}
and m*t arrows I, = {a,(}‘)}, where £,j=1,2,..,m and k=1,2,...,¢ and
af) = (i, ). That is, there are exactly ¢ arrows from j to i for every pair (i, ) of
vertices. In particular, I'"™ is the graph consisting of one vertex and » loops. A re-
presentation of ™ in & is of the form U = {U; r,, r,, ..., r,}, where Uis an object
of € and ry, 1y, ..., 1, are endomorphisms of U. If U, Ve #(I'™), then U = V
if and only if there exists an isomorphism ¢: U—V in € such that s, = @r,p™* for
i=1,2,..,n

THEOREM 1. Let I' be a graph with m vertices and at most t arrows from j to i for -
every pair (i, j) of vertices, where t>1. Let A be a set of relations on I'. Let n = mt+
+m(t—1)+1. Then

EI, H<SET ™™
for every K-category €.

Proof. If I' is a graph and 4, and A, are sets of relations on I' such that
A, S 4y, then (I, 4,) is a full subcategory of ¢(I", 4,), and it suffices to consider
only the inclusion functor (I, A;)—% (I, A,) in order to show that €(I, 4,)
<E(T, A,). In particular, with 4, = @ and 4, = A, we have
(¢)) G, A)<¥I) .

Similarly, if I'; is a subgraph of I';, then there is a natural injection of #(I";) into
¥ (I';), since every representation of I'; in % can be extended to a representation
of I'; in % by assigning to each additional vertex of I', the zero object of # and to
each additional arrow of I', the zero morphism. In particular, if the graph I' has m

vertices and at most £>>1 arrows between any two vertices, then I' can be considered
a subgraph of I'™", Therefore,

@ SI)<Er™Y).
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The last step is to show that
3) (g(r(m,'))s(g(r(l,n))
where n = mt+m(t—1)+1.

Let U = {U; £} be in (™), where i,j = 1,2, ..,mand k = 1,2,
and £ U«—»U is the morphism corresponding to the arrow aff = (1, J) of 1"""")

Let U¥ = GB U# where UH,,,(k_l) =U fork=1,2,..,tand i= 1,2, ey m

Then U# P+,,, forp = 1,2, ..., m(t—1). Every endomorphism of U# is defined
by an (mt) % (mf) matrix whose (r s)~th component is a morphism from U7 # to UM,
In particular, for p = 1,2, ...,mt, let 8" = (5F) be the endomorphism of. U#‘
defined by

5 = lyg if r=s=p,
7 o otherwise
where ly# is the identity morphism of U¥ in @. For ¢ = 1,2, ..., m(t—1), let
& = (g1) be the endomorphism of U¥ defined by
. lyg if r=gqgands=gqg+m,
e = '
® o otherwise .

Finally, let f# = ( f,f#) be the endomorphism of UH defined by

P { oAy = i+m(k—1) and s = j+mEk-1),
0 otherwise .

Then UH# = {U#; &%, s“,f#} for p=1,2,...,mt and ¢g=1,2,..,m(-1) is
a representation of I'™™ in @. We construct the functor F: € (I'™")—% (F“'") in %.
We construct the functor F: €(I''™?)—¢(I''"") by setting F(U) =

Let V= {V; g{¥} be another object in #('™"), and let V# E(V)
= {V¥#; 8,69, g# e @ (Y™, Let ¢ = (¢)= 1,..m be a morphism in @(I™")
from U to V. Then ¢;: Ur—V; is a morphism in ‘ﬁ such that ¢,/ = g, for
i,j=1,2,..,mand k=1,2,..,t We deﬁne F(p): U¥VH# in @) by

o; if r=g5=i+m(k—1) for some
(F(@)s = i=1,2, ., mand k=1,2,..,1¢,
0 otherwise . .

It follows ,d’irectly by matrix multiplication that
F(p)o® = 6°F(g),
F(p)e* = &"F(g),
F(o)f¥ = g*F(p)
and 50 F(p) is a morphism from F(U) to F(V) in the category % (l’(l"')).
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Now suppose that U, Ve #(I'™"), and that y: F(U)>F(V) is a morphism
in @('"™), Then y: U¥-¥# is a morphism in ¢ such that

Yor = &%,
pet =y,
Y = gty

Moreover, ¥ has the matrix representation W = (i,,), where ¥,,: U V¥ By
multiplying the matrices for y and 6” we see that the condition 8" = 6%} implies
that,, = O for r # s, and so the matrix for y is diagonal. By multiplying the matrices
for ¥ and &% we see that the condition Y& = &% implies that Vg = Yotm, g+m fOT
q = 1,2, ..., m(t—1). Therefore, there exist morphisms ¢;: U—V,fori = 1,2, ...,m
such that
_Joo it p=g=itmk-1),
Voo = {0 otherwise .

Finally, the condition ¥ = g implies that

P fu = g{’;’fp

for'i,j=1,2,..,m and k = 1,2,..,t,and so @ = (@;)=y,..,m IS a morphism
from U to ¥ in 4(I'™ ") such that F(p) = . Therefore, F imbeds €(I'™ ") as’
a full subcategory of #(I'™ ™). In particular, y: F(U)—F(V) is an isomorphism
in @(I'*"™) if and only if = F(p), where ¢: U—V is an isomorphism in @ (I'™ ).
Moreover, in any abelian category, and, in particular, in the categories & (I'™ ")
and € (I'"*™), decomposability is equivalent to a resolution of the identity morphism
into a sum of orthogonal idempotents. If follows that a representation U e % (I'™ ?)
is indecomposable if and only it F(U) e €(I""*™) is indecomposable. This proves
that F(r'™" <% (T ™), Theorem 1 now follows from (1), (2), and (3).

§ 3. A ring-theoretic lemma, Let % be an additive category, and let U, Ve %.
Then R = Hom(U, U) and S = Hom(V V) are rmgs, and H = Hom(U, V) is

an S—R bimodule. Let U = @ U and let V¥ = @ V. Then Hom(U#, UH)

= My,(R), Hom(V#, p#) = Mz,,(S), and Hom (U#; V#) M, (H), where M,,(X)
denotes the set of 2nx 2n matrices with elements in X. Moreover, M,,(H) is an
My (S)~ Mg,,(R) bimodule. This indicates the application of the following technical
lemma,

L.EMMA Let R be a ring with 1, and let r = (ry, rz,l..., r,) be an n-tuple of el-
ements of R. Let a(r) = (at;)(r)) and B(r) = (B,r)) be the following matrices in M,,(R):

Fiea If (19J)=(1:])f0rj=3,4’ "'sn+‘1’
: 1 i G0 =12 or if G,)) = G, n+i)
wuylr) = fori=2,3,..,n
0 - otherwise,

3 — Fundamenta Mathematicae T. CV
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v (s G =) forj=2,3, k1,
Bii(r) =11 if (@,))=({n+i=1) fori=3,4,..,n+1
: 0 otherwise.

Then
L a(®)B(r) = f(r)a(r),
IL a(r)® = a(r)?B(r) = a(B(r)? = B(r)® = 0.
Let S be a ring with 1, let s = (51,83, ..., 8,) be an n-tuple of elements of S, and
let a.(s) and B(s) be the corresponding matrices in M. 2(S). Let H be an S— R bimodule.
If the matrix ® = (¢;)) in M,,(H) satisfies
L. Pua(r) = a(s)d,
IV. 38(r)'= B(s)®
then
V. There exists ¢ € H such that ¢; = @ for i=1,2,..,2n,
VL or; = s5;0 for j=1,2,..,n,
VIL ¢4 = 0 for j<i.
Proof. By multiplying the matrices «(r) and B(r), we see immediately that
a(r)B(r) = B(rya(r) and a(r)® = a(N*B () = «(r)B(r)* = B(r)* = 0. This proves I
and IL

Let & = (¢,;) € M,,(H) satisfy conditions III and IV. The (i, j)-th components
of @u(r) and a(s)® can be computed explicitly:

0 if j=1,
Qi1 if j=2,

Po(r)); = N

( ¢ ))ij Qurj-, if j=3,4,..,n+1,
Qi j-n I j=n+2,..,2n,
n-1

(p21+kzlsk¢k+2:j if i=1,

it i=2,3,..,n,
if i=n+1,n+2,..,2n.

a(s)P);; =

( «) )“ Prti, j

Similarly, the (7, 7)-th components of &4 (¥) and B(s)® can be explicitly computed.
0 if  J

(¢ﬂ("))ij =3@ul;-1 ) if j

Pi, j~n+1 if j

L,
2,3,..,n+1,
n+2,n+3,..,2n,

Il

]

n
Z SPk+q,y; i P =1,

D) = &=t )
(ﬂ() )“ Pnti-1,j if i=23,4,.,n+1,

0 if {=2o0ri=n+2,n+3,.., 2.

The proofs of statements V, VI, VII proceed by direct computation in nine steps.
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(1) For i =n+1,n+2,..,2n and j = 2,3, ..., n, we have
@i = (Pa()s, j4n = @SBy, j4n = 0.
0)) For i = n+1l,n+2,..,2n we have
@iy = ($a(P)p = (oz(s)‘ds)u =0.
(3) It follows from (1) that for i = 2,3,..,n
l Py = (@Z(’))tz = (oc(s)d))u = ¢u+i,2 =0.
(4) For i =2,3,..,n and j = 2,3,..,n we have the recurrence relations
Py = (‘p“(’))i.nﬂ = (a(-v)(b)f,nu
= Grvionss = (BODirsnes
= (45/3(’))”1, ntj = Pit1,j+1 -
(5) In particular, it follows from (4) that

P =02,2=03,3= . = Quu= Pnt1,n41 =+ = P2n, 20

for some ¢ € H. Also, since @,.;; =0 for j=1,2,..,n, we have

@i = Putints =0

for i=3,4,.,nand j=2,3,..,i-1
(6) It follows from (3) that

P1,1 = (‘p“("))nz = (“(s)qj)l,z
n—1

= @3,2F 2, Sk Prsz, 2
: =1

=02=¢.

Therefore, ¢, = ¢ for all i. This proves V.
(7) For i =2,3,..,n we have

Pntiyndt = (“(s)‘p)z.uﬂ = (4)“(’))1.”1 = @it =0.

1t follows from (1), (2), (3), (5), (7) that ¢;; = 0 for j<i. This proves VIL
(8) For j = 3,4,n+1 we have

Q25 = (¢ﬂ(f))2,j+nf1 = (B D)z, j4n-1 =0.

It follows from the recurrence relation (4) that Py = 0 for i=2,3,..,n and
J=1i+1,i4+2,..,n+1 o

™
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(9) Finally, we ‘have for j=1,2,.,n
Pry = Qq,11; = (djﬁ("))i.jn

n
= (B(S)‘p)1,j+1 = kZISk{Pk+1,j+1

= sjq)j-l.-l,j+1 =80 .
This proves VL.

Remark. It would be of interest to construct matrices a(r) and f(r) in M,(R)
for some p, not necessarily p = 2n, which would satisfy I, V, VI, VII, and, instead
of II, the stronger condition

I, «(r)® = a(r)?B(r) = B(r)? = 0.

§ 4. Problems of maximum difficulty. In this section we reduce the classification
of n endomorphisms to the classification of a pair of commuting nilpotent endo-
morphisms. : ' ‘

THEOREM 2. Let T™* be the graph consisting of one vertex I, = {1} and two
loops Ty, = {a;,a,}, where a; = a, = (1, 1). Let A* consist of the Jollowing five
relations on I'*: .

3 2 V .
. A* = {aya,—a,a4, a1, 03, az, 4y, q%,ai}.
Then
(g([.(l, n)) <SE(T*, A4%)

Jor every K-category % and for all n.

Proof. Let U= (U; ry, 7y, ..., 1) €8T ™), where Ue % and 1, 1y, ..., 1,
eHom(U, U) = R. Let r=(r, 73, .., 1), and let a(r), p(r)e M, (R) be the
2

matrices constructed in the lemma. Let U = GB" U. By.the lemma, the matrices
a(r) land B(r) are endomorphisms of ‘U# fvhich'js;isfy the relations A*, Therefore,
F(U) = (U%; a(p), B(H) e €(T*, A%) .
Let V= (V; 51,52, 0, 8) € €T™™), where Ve® and 515 8z, . 5
€ Hom(V, V)‘= S. Setting s = (51, 53, ..., 5,) and VH# = :G:D V, we have |
: =1

FV) = (V¥%; a(s), B(s) e €(I*, 4%).

Let ¢: U—V be a morphism in € (I'"™ ™). Then ¢ € Hom(U, V) = H, and or, = 8,0
for i =1,2,..,n Let F(p): UH~V¥ be the matrix in M,,(H) defined by

F = o .if i=j, -
(F@)y {o i ig.
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Then )
F(p)a(r) = a(s)F(p) ,
F(@)p(r) = B® F(p) .

Therefore, F(¢): F(U)—F(V)is amorphism in 4 (I"*, A*). We have thus constructed
a functor F: @ (") (I'*, 4%). ‘

Let @: F(U)—F(V) be any morphism in #(I'*, 4*). Then ¢ = (¢,)) € M,,(H)
satisfies III and IV of the lemma. Therefore, ¢;; = 0 for j<i, and @44 = @;; = ...
= Qop,2n = ¢ € H,where ¢: U—V is a morphism in FE M), If &: F(U)-F(V)
is an isomorphism, then there exists ¥: F(V)—F(U) such that ¥® = 1py, and
O¥ = lpy,. Again by the lemma we see that ¥ = (i), where y;; = 0 for j<i,

and Yy; = Wpp = . = Yoy 2y = ¥ is a morphism from ¥V to U in @(I*™).
Multiplying the matrices for ¢ and ¥, we obtain
(¥ = oy

for i =1,2, ..., 2n. But & = lp, implies that (®¥),; = 1,. Therefore, gy = 1.
Similarly, Wo = 1y, and so ¢ = y~* is an isomorphism in €("*™). Therefore,
if F(U) = F(V) in @(™*, A*), then U = V in € ™).

Similarly, if Ue @™ ™) and if F(U) is decomposable in & (I'*, A*), then
the identity morphism 1gy can be decomposed into a finite sum of nonzero ortho-
gonal idempotents in & (I'*, A*). Applying the lemma to this decomposition, we see
that the identity 1,is also a finite sum of nonzero orthogonal idempotents in % e,
and so U is decomposable in @ (' ™). On the other hand, the functor F is additive,
and if U is decomposable in @('*"*™), then F(U) is decomposable in @ (I'*, A¥).
This proves the theorem.

Combining Theorems 1 and 2 we obtain

THEOREM 3. Let I' be a graph and let A be a set of relations on I'. Then

G, H<KET*, 4%)

for every K- categary' %.

If % is the category of finite-dimensional vector spaces over a field X, then
Theorem 3 can be restated in the following form. Let K[x, y] be the algebra of poly-
nomials in two commuting variables x and y, and let I = {x*, x*y, x3?, »*) be the
ideal of K[x, y] generated by the monomials of degree 3. Then 4 = K[x, y]/I is
a six-dimensional K-algebra. An object in the category € (I'™*, A*) is simply a finite-
dimensional 4-module, and the classification of such 4-modules is a problem of
maximum difficulty in linear algebra.

The classification of a pair of commuting endomorphisms which satisfy nilpotency
conditions of index 3 is not the unique classification problem of maximum difficulty.
Any problem which includes the classification of a pair of endomorphisms is also
of maximum difficulty. Here is an example.
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THEOREM 4. Let I'** be the graph consisting of one vertex I'te. = {1} and three
loops T** = {a,, a, as}, where a; = a, = az = (1,1). Let A** consist of the
following nine relations on I'**:

A* = {d, a3, a3, 0185,0,0,, Ay 83, G308, G103, A3dy}
Let ' be a graph and let A be a set of relations on I'. Then
B, HKEI**, A*%)
Jor every K-category €.
Proof. By Theorem 3, it suffices to prove that @(I™)EI™**, A**). Let

U= {U;r,r,}e@(I*), where Ue® and ry,r,eHom(U,U)= R Let
U# = U@U. Let Hom(U¥, U%) = My(R). If re R, define y(r)e M(R) by

Then the morphisms y(1g), y(ry), y(r;) € My(R) = Hom(U¥, UH) satisfy the rela-
tions A**,_ and so

F(U) = {U%; y(1p), 7o), y(r2)}

belongs to F(I™**, A**).
Let V= {VF; s;,5}e€™), and let

F(V) = {V¥; y(1y), y(s1), y(52)} € GI™**, 4*¥)
If ¢: U—V¥ is a morphism in ¥(I'*), then

F(p) = (g 2)

is a morphism F(p): F(U)-F(V) in @ (I**, A*¥). Thus, F: @ (*)—@ ("%, A*¥)
is a functor. .

Let U, Ve¥I*), and let &: F(U)—~(V) be a morphism in @(I**, A*¥),
Then @ = (p;;) € M,(H), where H = Hom(U, V). Then

Dy(ly) = y(Iy) @

implies that ¢,; = 0 and that ¢, = ¢,;, = ¢ € H. Since ¢@y(r) = y(s)® for
i=1,2, we see that ¢r; = 5;¢ for i = 1,2 and so ¢: U—V is a morphism in
G (™). 1t follows that if &: F(U)—F(V) is an isomorphism in & (I'**, A**), then
¢@: U=V is an isomorphism in ¥ (I'*), and so U= V in (™) if and only if
F(U) = F(V) in €(I'**, A**). Similarly, U is decomposable in #(I'*) if and only
if F(U) is decomposable in € (I'™**, A**), This proves the theorem.

Let B = K[x, y, z]/J, where J is the ideal of K[x, y, z] generated by the mono-
mials of degree 2. Then B is a X-algebra of dimension 4, and the classification of
finite-dimensional B-modules is another problem of maximum difficulty in linear
algebra. '
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