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Functions of generalized variation
by

S. Perlman (Silver Spring, Maryland)

Abstract. A class of functions, 21-BY, of generalized bounded variation is defined in terms of
certain sequences, <. The following are proved : The interseéction of 4-BVY, taken over all sequences 4,
is the class of functions of bounded variation. The union of A-BV, taken over all sequences 4,
is the class of functions having a right and left hand limit at every point.

In his investigations on the uniform convergence of Fourier series, D. Waterman
introduced a class of functions which he calls 4-BV. These functions share many
of the properties of functions of bounded variation. We will show that this class
of functions lies between the regulated functions and the functions of bounded
variation. That is, we will prove that the union of the 4-BV functions over all
sequences A are the regulated functions and the intersection of the 4-BV functions
over all sequences A is the set of fiunctions of bounded variation. We will show that
these results cannot be improved by taking countable unions or intersections.

We now give the basic definitions.

Let f be a real function defined on an interval [a, b]. If I = [«, fl<{a, b] we
write £(I) = f(B)—f(a). Let A = {4,} be a non-increasing sequence of positive
numbers so that 4,—0 and ¥ 1, = . A function f is said to be of A-bounded
variation (A-BV) if for all sequences {I,} of non-overlapping subintervals of [a, ]
we have ¥ A, f(I,)|<co. It may be shown [5] that this is equivalent to assuming
that there is a number M <oo such that for all sequences {,} of non-overlapping
subintervals of [a, b] we have Y. 4| £ (Z,)| < M. We call the supremum of 3 2,/ f (Z,)|
over all sequences {/,} of non-overlapping subintervals of [a, b] the A-variation
of f.

TaeoReM 1. A-BV is a linear space.

Proof. For f, g in A-BV and «, f real

Y. dnlef+ BRI = 3 dulof )+ Bg T <l T Al f B +1B1 2 2ulg ()]

and this implies that af+fg is in A-BV.
THEOREM 2. If f€ BV, then fe A-BV.
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Proof. Since the A,’s are monotone we have
LASENKT MIf@) = A X 1 F T

from which the theorem follows. i

Theorems 3 and 4, which are due to Waterman [5], are included here for the
sake of completeness,

TeeoreM 3. If fe A-BV, then f is bounded. ‘

Proof. If fis not bounded there is a sequence {p,} in [a, b] so that | £ (p,)|—c0.
There is also a point x in [e, b] and a subsequence {g,} of {p,} so that g,—x. Further-
more, there is a monotone subsequence {r,} of {g,} and finally the sequence {r,}
has a subsequence {s,} so that | f(s,+,)=1+|f(s)l. If we let I, be the interval
determined by the points s, and s,4;, then the I’s will be non-overlapping and
[fUM = 1S (s0)—f () =1 Thus 3 4,1 f ()= Y 4, = o0 and so f is not in
A-BV. .

THEOREM 4. If fe A-BV, then f has a right- and left-hand limit at every point
of [a, bl.

Proof. It is sufficient to consider left-hand limi]ts only. Suppose there is a point x
in (a, b] at which f does not have a left-hand limit. If I, = Tm Sf(@®)and I = lim f(2),

t

. —x— —x—
then L>1. Set § = %(Z—1). There are sequences {P,} and {p,} so that P, <1",t1 <’c -
F@)—L, f(P)=L—8 and py<p,<..—x, f (p)—l, f(p,)<I+5. We choose sub-
sequences {Q,} of {P,} and {g,} of {p,} such that 1<Q:1<q<0y<... If
I, = [g,, O,] then the intervals I, are disjoint and | fENZ(L~8)—(+3) = 6.
Thus ¥ 4| f(I)I=Y 4,0 = oo and so £ is not in A-BV.

As a partial converse to Theorem 2 we have the following:

THEOREM 5. If f is in A-BV for every sequence A, then fe BV,
, Proof. Since fe A-BV for at least one choice of A, Theorem 3 says that fis
bounded. Thus there are numbers m, M so that m< <M. Defining
F = (f—m)/(M—m) we have 0<F<! and thus |F(|<1 for every subinterval I
of [a, b]. By Theorem 1, Fis in A-BV for every A and the theorem will follow if we
show that F is in BV.

If Fis not BY, there is a point x in [a, b] such that Fis not of bounded variation
on any neighborhood of x ([2], p. 328). Let {d,} be a sequence of positive numbers
so that ) d, = co. There is a finite partition Py of [a, d] so that

T IFD)|=dy+2 .
IeP,y

The point x is either an interior point of one interval in P, or an endpoint of at most
two mterx@}s in Py. If we remove this one, or possibly two, intervals from Py and call
the remaining collection of intervals Q 1 then, since [F(I)|<1, we will have

LIF(D) =4, .
TegQ,
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If Q, has g, intervals we write 0, = {If| k = 1,2, ..., q,} and writing (k)
instead of A, we define

D=4 =..=2gy)=1.
We then have

}?Mk)wa;)l d; |

The first step in our induction process is now complete.

Assuming that » steps in our induction process have been completed, we proceed
to the next step as follows. The one, or possibly two, intervals that were removed
from P, to form Q,, form a neighborhood U, of x. Since F is not of bounded vari-
ation on U, there is a finite partition P,., of U, so that ‘

Y IF(D =+ 1)y +2
TePpyy
The point x is either an interior point of one interval in P, ., or an endpoint of at
most two intervals in P,... If we remove this one, or possibly two, intervals from
P, and call the remaining collection of intervals O, 4, then since [F(J)<1 we will

have

2 [FDIZ(+1)d,y -
TeQn+i1

If O,+q has g,., intervals we write Q,,, = {Ii*} k=1,2,..,¢,:,} and
define

Moyt D) = 04D = o = At tss = —=
n
where r, = Y gq; and g, = 0. We then have
0
. qn+1
Z A’(rn+k)]F(]I:+1)[>dn+l .
k=1

We observe that because the intervals of Q,., are within U, that all the intervals
of 0, v Qv ... v Q,,, are pairwise non-overlapping. It follows that

n+l q i nil
iz . Iﬂ.(ri_l'f"k)lF(]k)l? .Zldz-
=1 k= =

In -this way, we construct a sequence of numbers {A(k)} and a sequence
{I k=1,2,..,q,; n=1,2,..} of non-overlapping subintervals of [a, b] so that
A(k) decreases to zero, Y, A(k) = co and

F Mo+ RIFE] = oo

DMs

i

]

1

Thus Fis not in A-BV for this particular sequence of A’s and our proof by contradic-
tion is complete.
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To show that Theorem 5 is best possible we need some preliminary  results.

LemMma 1. Let {a,} be a sequence of positive numbers tending to zero. Then there
exists a decreasing sequence {b,} of positive numbers tending to zero such thaty. b, = oo
and ¥ a,b,<co.

Proof. Setting N, = 0, we choose a positive integer N, such that a,<% for
n>N,andputb, = (N, —Ny)~* for Ny<n< N;. Assume that integers Ny, Ny, ..., N,
have been ‘chosen so that

No<N{<..<N,

@ a,<1/2* for nz=N,
and
b,>0 for Ny<n<gN,.
‘We then choose an integer N, so that
@ N1 Z N+ k,
®) Nyyy=Ny>by,!
- and
a, <12t for n2N,,
and then put
@ by = Ny =N~ for Ne<n<Niy;.

For Ni<n<Nyi, we have by (3) and (4) b, = (Nys1— N~ <by, and by (2)
b,<1/k thus showing that the b,’s decrease to zero. By (4) we have

Newt
Y b, =1
Ni+1
and thus ) b, = co. Finally by (1) and (4)
Nict1 Nesr - Nic 1
1 1 1
) b ) b= 7D b=y
NeF1 NeF1 Net1

and thus ) a,b,< 0.

We now extend Lemma 1 to a countable number of sequences.

LeMMA 2. For each Dpositive integer n let {a(n, k)} be a sequence of positive
numbers tending to zero such that

® a(n, )<a(+1,k)  (n,k=1,2,..).

Then there exists a decreasing sequence, {B(k)}, of positive numbers tending to zero

such that ), B(k) = oo and ¥ a(n; k) B(k)< o n=1,2,.).
3
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Proof. Let {¢,}, {d,} and {e,} be sequences of positive numbers such that
Y ¢,<, Y. d, = oo and &, decreases to zero. For each positive integer n we apply
Lemma 1 to the sequence {a(n, k)} to obtain a decreasing sequence {b(n, k)} of
positive numbers tending to zero such that Y. b(n, k) = oo and Y. a(n, k)b(n, k)< co.
k k

n
We will choose two sequences of integers {r,} and {s,} and set t, = . (s,—ry+1)

. 1

. .
and #, = 0. We let r; = 1 and choose 54 so that s, >ry, b(1, $;)<ey, Y, b(1, k) =d;
k=rg

and Y a(2,0)5Q2; k)<c,.

k=141
Assuming ryq, F3, .., ¥y 81, 82, .5 8, have been chosen we proceed as follows.
We choose 7,,; so that '

© 1> 145,
and v i
(7) b(n+1’rrl+1)<b(nssn)'

Then we choose s,,; so that

Spt1Z i1

® b(n+1, 5t 1) Su -
©) ) Y b(n+1,k)=d.
‘ k=rps1 :
and
1 Y a(n+2, Dbm+2, <z -

k=1 Ftney
It follows from (6) that #,<s, and hence
(11

We now choose the séquence {B(k)} of our lemma to be the following sequence
of b(n, k)'s:

rn+1'>’1+tlg .

b(1,1),b(1,2), ...,b(1, 1),
b(27 r2)5 b(zﬁ r2+1): sy b(2’ SZ) B

Becé.use b(n, k) decreases to zero, for a fixed n, (7) and (8) show that the sequence
{B(k)} decreases to zero. The divergence of 3, B(k) fcllows from (9). Finally; we
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need to prove- the convergence of ) a(l+1, k)B(k) for'l =0,1,2, ... Since
£ &%

© Sntg=tn+

, ,
;a(l—*—l, BBRy =3, Y al+1,t,+k+D)b(n+1,r.,+k)
n=0 k=0

we use (5), (11) and then (10) to obtain, for n>I,

Sn4+1™Tn+y

Y al+1, t,4k+Db@n+1, 1, +k)

k=0
Sntl="Pn+1
< kZ a(m+1, t,+k+1D)b-+1, 1y +k)
=0
Sn+1"Tnt
< Y a1, t+k+Db(r+1, t,+k+1)
k=0
et :
= Y am+1,0b(n+1,k)<c, .
) k=141,
Thus
00 Sa+1 T4l o
Py k;) a(l+1,t,,+k+1)b(n+1,r,,+1+k)<";c,,+1

and therefore Y a(l+1, k)B(k)<oo for I'= 0, 1,2, ...
4 :

LemMa 3. Let {a,} be a decreasing sequehce of positive numbers. If {b,} is
a sequence of positive numbers tending to zero and {B,} is the sequence {b,} arranged
In decreasing order, then Y, b, <Y a,B,. '

Proof. Fix an ixiteger n and consider the set {b, b, ..., b,}. Let b’ =by>... >b,
be this set arranged in decreasing order.. By [i], Th. 368, p. 261, Zna,b,sznj a;b;.
1 1

But, it is clear that b;<B, for i =1,2,..,n and so
£

W

n n Coon :
Y abi<Y abj<Y a;B;. 2
1 1 1 &

THEOREL{ 6.Let Ay = {A}} and A, = {22} be two decreasing sequences of positive
numbers tending to zero such that =Y 22 = 0. I Ay ={A}}, where 23 = M2
k k ’ - ’

then A;-BV = A,-BV n 4,-BV.

Pr.oof. If {1} is a sequence of non-overlapping subintervals of [, b] and fis
a function defined on [a, b], then the theorem follows from the equality

LRI =34 7@+3 RIFUD .

We now show that Theorem 5 is best possible in the following sense,

icm

Functions of generalized variation 205

THEOREM 7. For each positive integer n let A, = {a(n,k)} be a decreasing
sequence of positive numbers tending to zero such that Y. a(n, k) = oo. Then there is
P>

o0
a function in () A,-BV which is not of bounded variation.
| .

Proof. For each positive integer n let A" be the sequence {4 (n, k)} where
n
A(n, k) = Y a(i, k). By theorem 6 we have
i=1
A"-BV = A4,-BV A 4,-BV N ...n 4,-BV.

By applying Lemma 2 to the sequences A(n, k) we obtain a decreasing sequence,
{B(K)}, of positive numbers tending to zero such that Y B(k) = co and

T A(n, B)B(k)< oo
k

forn=1,2,.. ; . ‘
We define a function f on the interval [a, b] as follows. Let {¢;} be a sequence
of points in [a, b] such that a = ¢y<¢; <¢;<...<bandlime ¢, = b. Setting B(0) = 0,

let f(c,) = i(—l)"“B(k), )= i(— 1**{B(k) and extend f linearly to the
0 []

remainder of [a, b]. Then we see that fis a continuous function whose total variation
equals ) B(k) = oo. Thus f is not of bounded variation.
If I is the interval [c_q, c;], using Lemma 3 we see that the A" variation of

f equals
L A@ OIS W) =A@ DBER) <o .

Thus £ is in A"~BVEA,-BV and our theorem follows.

THEOREM 8. If ¢ is a monotone function mapping [a, b) into [c, d] and f is A-BV
on [c,d], then fo ¢ is A-BV on [a, b]. ) '

Proof. Let I, = [p,, g,] be a sequence of non-overlapping subintervals of
[a, b). Let J, be the interval determined by the points ¢ (p,) and ¢(g,). Then because ¢
is monotone ¢(I,)cJ,<[c, d] and the intervals J, are non-overlapping. Because
fed-BV on [c,d]

Y Al fo oUN = Zh,| fo 0(g)—f° o ()]
= Zh,| f (@)l =f le(p)ll = 22,1 f(J)l<o0

and thus f; ¢ is in A-BV on [a, b].

THEOREM 9. If f is a continuous function, then fe A-BV for some sequence A.

Proof. For §>0 define w(d), the modulus of continuity of f, by

Cl)(a) = Sup{lf(l‘)'*f(t')t t, t'e [aa b]i |t—t,|<6} .

Clearly, w(0) is increasing and w(6)—0 as 6—0 because of the uniform continuity
of f on [a, b].
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Let I, = [a,, b,] be a sequence of non-overlapping subintervals of [a, b]. For
each positive integer m define

b b—
E, = {I,,: w(ﬁ); | f(Ik)>w<;n—_{_£1)}.

If
< b—a
Y mr1’
then
b—a
[f U = 1fGd—fai<o(b-al)<o{—-].
m+1
Thus I, € E, only if
b—a
L) >—.
| > ——

Since the intervals 7, are non-overlapping and contained in [a, 3], it follows that
E,, contains at most m intervals, Also if I, € E, and I, € E,,,, then

b—a b—a
7@ sw(m) <w(7_—|_—-i-)<l 1@

Thus, by considering those intervals in E,, then those in E,, etc., the intervals may be
relabeled J, so that

12) ’ [ fUDIZFU =2 fU) .. 0.
Now we want to show that ‘
. (b—a
Lf Sw(——)
n
Indeed, vif m was an infeger for‘which
b—a\
[/ ()] >(,,(____) ;
m
then

a

AT TSN >m(9.;_

SN

This implies that

bfa P
s> —= (k=1,2, ..., m)
m
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. [ )
which is impossible since the intervals Je (k= 1,2, ..., m) are non-overlapping and
contained in [a, b]. Thus the sequence in (12) is term by term less than or equal
to the sequence

a3) w(b-}—“> a;(%f)wc—;—)

Because sequence (13) decreases to zero, we may apply Lemma 1 to obtain
a decreasing sequence, {4}, of positive numbers tending to zero such that

%

> A =0 and E'A,,a)(b—_—a) <o,
n
Applying Lemma 3 to the sequences {4,} and {| £(1,)|} we obtain

b—
ZA..lf(In)lszlnlf(Jn)ISZAnw(’Ta)<oo :

Since the 4,’s are a fixed sequence depending only on ®(J) and not on the I;’s,
Theorem 9 follows.

In what follows we need to make use of a theorem due to” Sierpifski [4].

THEOREM. A function has a right- and left-hand limit at each point if and only
if it is the composition of a continuous function with a monotone function.

Sierpinski proved his theorem for functions defined on the entire line. His theorem
is easily extended to functions defined on a finite interval. For, if F, defined on [, b},
has a right- and left-hand limit at every point, extend F to a function F defined on
(—00, 00) by setting F(x) = F(a) for x<a and F(x) = F(b) for x>b. Then by
Sierpifiski’s theorem, there exists a continuous function f and a monotone function @
such that F = o &. If we let ¢ be the restriction of @ to the interval [a, 5] and f
the restriction of f to the smallest closed interval containing the range of ¢, then ¢
will be monotone, f will be continuous and F = fo ¢.

TuEOREM 10. If F has a right- and left-hand limit at every point of [a, b], then
Fe A-BV on [a, b] for some sequence A.

Proof. By the discussion following Sierpifiski’s theorem there exists a monotone
function ¢ defined on [z, b] and a continuous function f defined on the smallest
closed interval, say [c, d], containing the range of ¢ such that F = f o ¢. Let # be the
linear function mapping the interval [c, d] onto the interval [z, b]. Then ¥ o ¢ is
a monotone function mapping [a, 4] into [a, b] and fe yy~* is a continuous function
defined on [, b]. By Theorem 9, o/~ is in A-BV on [a, b] for some sequence A
and by Theorem 8 F = (foy" ) o (i o @) is in 4-BV on [q, b].

THEOREM 11. If g is continyous and F is in A-BV on [a, b], then g o Fis in A'-BV
on [a, b] for some sequence A’.

Proof. By Theorem 4 F has a right- and left-hand limit at every point of [, b].
By the proof of Theorem 10 we know that F = & o 6 where k is a continuous function

4 — Fundamenta Mathematicae T. CV
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defined on [a, b] and @ is a monotone function mapping [a, b] into [a, b]. Since
= (goh)o0, and gk is continuous, Theorems 8 and 9 imply that go F is

* in A’-BV on [a, b] for some sequence A’.

It should be noted that in Theorems 11 the sequences A and A’ are not necessarily
the same. If they were, then by choosing F to be a BV function we would have
Fe A-BV for every sequence A by Theorem 2 and then also g o Fe A-BV for every
sequence A. Then by Theorem 4, g o F would be BV. We would have thus proved

the following: a continuous function composed with a BV functlon isagain BV, which

is false.
To show that Theorem 10 is best possible we need another result which is
similar to Lemma 2.

LemMA 4. For each positive integer n let {a(n,k)} be a decreasing sequence
of positive numbers tending to zero such that Za(n k) = co. Then there exists a de-

creasing sequence {B(k)} of positive numbers tendmg to zero such that Yy B(k) = oo
and Za(n KB =w (n=1,2,..).

Proof. Let {d,} and {g,} be two sequences of positive numbers such that
Zd = o0 and &, decreases to zero. For posmve integers n, k let
w(n, k) = 2 a(n,i).
i=1

Then, for n fixed .
w(, k)0  as

a(n, k) _
win, k)
k
by the Abel-Dini theorem [3] p. 290, and also

- 1 g
Z wm, k)
k

For positive integers n, k let

k—o0 ,

- 1
b(ﬂ, k) = N .
Z¢=1 w(i, k)

b(n, k)0  as
1

w(i, k)

gb(n, k) = o0

Then, for n fixed

k—oo0 ,

b(n, k)=

i=1,2,..,m),
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. ai, k)
Za(l, k)b(n, k)= Z T

n
We will choose two sequences of integers {r,} and {s,} and set t, = ¥ (s;—r,+1)
1

and

(i=1,2,...,m):

and t, = 0. We let r; = 1 and choose s; so that

5121‘1, b(l,sl)<31 ’

Y b1, K)=d, and Y a(l,k)b(l,K)>d; .

k=ry k=ry -
ASSUMINg 7y, #3, «-v» Iy, 81, S25 -5 §, have been chosen we proceed as follows.
We choose r,4 so that
a9 ryrs S48,
and
(15) b(n+1, 1) <b(n, s,) .

Then we choose 5,.., so that

Sut1Z T et
(16) b(n+1, 851081 5
an kj:z:lb(nﬂ 0=d,.,
and '
asy z‘ aGi, bn+1,)=dy; (= 1',2, e+ 1)

k=rn41
It follows from (14) that #,<s, and hence
(19) r,,+1>1+t,,.

We now choose the sequence {B(k)} of our lemma to be the following sequence -
of b(n; k)’s:
b(1,1),5(1,2), ...,

b2,r2), 62,141, ..y

b(l: sl) >
b(2,s52)
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Because b(n, k) decreases to zero, for a fixed n, (15) and (16) show that the sequence
{B(k)} decreases to zero. The divergence of > B(k) follows from (17). Finally, we
need to prove. the divergence of Y a(l+1,k)B(k) for [ = 0,1,2,... Since

k

0 Sn41=Mnt1t

Ya(l+1,0)Bl) =Y Y% a(l+1, t,+k+Db(n+1,r,, . +k)
k

n=0 k=0

we use (19) and then (18) to obtain, for n>],

Snt1=rn+1
Y a(+1, t+k+D)b+1, 1, +k)
k=0
Skt = ot

2 Y al+1, .y +h)bm+1, Tys1+k)

k=0
Sn41 .
= Y al+1,Kbm+1,k)2d,,, .
=rn+1
Thus
D Sp4g~Fni1 o0
; 2 al+1, t,+k+1D)b(n+1, 1y +6) > Z’ dyis

and so Y a(l+1,K)B(k) = o for 1=0,1,2, ...
k

We now show that Theorem 10 is best possible in the following sense.
THEOREM 12. For each positive integer n let A, = {a(n, k)} be a decreasing

Sequence of positive numbers tending to zero such that Ya(n, k) = co. Then there is
]
=]
a continuous function which is not in ) A,-BV.

L1 .
Proof. UsingLemma 4 there is a decreasing sequence {B(k)} of positive numbers
tending to zero such that 3 B(k) = oo and Ya(n, k)B(k) = oo for n = 1,2,..
k

We define a function f on the interval [a, b] as follows. Let {c} be a sequence
of pointsin [a, b] such that @ = ¢, <e, <¢;<...<bandlime, = b. Setting B(0) = 0,
let - "

Fle) = )(";(—Uk“mk), 1) = §<~1)"+1B(k>

and extend f linearly to the remainder of [a, b]. Then we see that fis a continuous
funetion. If I is the interval [¢,_,, ¢], using Lemma 3 we see that the A, variation

of f equals Y a(n, k)| f (L) = Sa(m, k)Bk) = o . Thus S is not in A,-BV and
k . k .

our theorem follows.
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