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Upper semicontinuous decompositions of
convex metric spaces *

by

S. E. Rodabaugh (Youngstown, Ohio)

Abstract. All decompositions in this paper are upper semicontinuous.

THEOREM A. If G is a locally null, properly starlike-equivalent decomposition of a locally com-
pact, SC-WR~CE metric space (X, d), then G is radially-shrinkable in (X, d) and X|G = X.

COROLLARY. If G is a locally null, starlike-equivalent decomposition of E", then E"|G = E".

THEOREM B. If G is a star-0-di ional decomposition of a locally compact, SC-WR-CE
metric space (X, d), then G is& shrinkable and X|G = X. :

1. Introduction. All decompositions in this pap'er are upper semicontinuous.
The famous “dogbone” space of R. H. Bing [5] has spawned an amazing array of
results and questions. In [4], Bing showed that if G is a decomposition of E?® into
at most countably many tame arcs and points, then E3/G ~ E®. This raised the
following question (see S. Armentrout [2], Question 1): Suppose G is a decomposition
of E? into tame 3-cells and points; is E3/G =~ E*? A partial answer was given by
D. V. Meyer [11]: A null decomposition of E* into tame 3-cells and points is E>.
This result was improved by R. J. Bean [3]: Null, starlike-equivalent decompositions
of E3 yield E*. This led J. W. Lamoreaux in [8] to ask whether locally null, starlike-
equivalent decompositions of a SC-WR metric space (X, d) yield X. In this paper
we show the answer is no (see Example 1 of Section 2) yet obtain the following theorem.

TueorEM A. If G is @ locally null, properly starlike-equivalent decomposition of
a locally compact, SC-WR-CE metric space (X, d), then G is radially-shrinkable
in (X,d) and X|G ~ X. :

T. M. Price [13] has proved that if G is a decomposition of E" such that for
each g € H(G) and for each open set ¥ containing g there is an n-cell B such that
geIntBe ¥V and BdB n [ H(G)] = @, then E"/G ~ E". The condition that B is
an n-cell is weakened in this paper. We strengthen Price’s theorem and extend it to
SC-WR-CE metric spaces in the following theorem.

* This paper formed an essential part of the author’s dissertation written under Professor
Dix H. Pettey (University of Missouri-Columbia; December 1974). The author expresses his gratitude
to Dr. Pettey for his gnidance during the preparation of this paper.
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THEOREM B. If G is a star-0-dimensional decomposition of a locally compact,
SC-WR-CE metric space (X d), then G is shrinkable and X|G ~ X.

To illustrate Theorems A and B, we give three examples; Examples 1 and 2 are
consequences of Theorem A, Example 3 of Theorem B.

'ExAmpLE 1. If G is a locally null, starlike-equivalent decomposition of E*,
then E"|/G = E". In particular, we can choose G to be a locally null decomposition
of E™into tame cells (dimension <#) and points such that given ¢>0, infinitely many

of the cells have diameter >e.
nt1

S oxf=1,%20,..
i=1

X,+1 2%}, and let X (7) be topologized by d,, the “great "~ ! metric of S™ Let G be
a locally null decomposition of X(n) such that {J H(G) is contained in the manifold
interior of X'(n), H(G) is a collection of tame cells (dimension <#), tame whisk-
brooms, tame fan-spaces, etc., and given £>0, infinitely many members of H(G)
have diameter >¢. Then G is radially-shrinkable in (X(n), 4,)-and X(m)/G ~ X (n).
. ExAMPLE 3. Let G be a decomposition of E™ such that each g € G possesses
a neighborhood base {U,} such that BAU, n [UH(®)] = &, U,oClU,.,, U, is
an open n-cell, and ClU, is starlike but not an n-cell (BdU, could have a
“sin (1/x) configuration”). Then G is shrinkable and E"/G ~ E".

Example 3 can be modified for non-Euclidean spaces ala Example 2. It is the
principal goal of this paper to prove Theorems A and B: Theorem A is established
in Section 5 and Theorem B in Section 6. In Section 2 we give preliminaries and
in Section 3 we develop the machinery used in Sections 4, 5, and 6.

¢

EXAMPLE 2. Let X(n) = {(xy, .., Xps1): , %,20, and

2. Preliminaries. We are always in a locally compact, strongly convex metric
space (X, d). For the definitions of betweeness, midpoint, convexity, strong convexity
(SC), and without ramifications (WR), see D. Rolfsen [15]. We do not assume that
strongly convex spaces are separable or complete. Let a, b € X. We say L is a segment
between @ and b (or from a to b) if @, b e L, each point of L is between & and 4,
and L is isometric to a real line interval of length d(a, b). If L is the unique segment
from a to b we write L = [ab]. A segment L from p to y is maximal if there is no
x € X such that some segment from p to x properly contains L. It is well known
(see [15]) that in a complete, convex metric space, there is a segment between each
two points. In the presence of local compactness and strong convexity, the require-
ment of completeness may be dropped.

PROPOSITION 2.1. Let (X, d) be a locally compact, SC metric space.

(1) If a, be X then there is o segment from a to b (see [14]).

@ X is arc-wise and locally arc-wise connected.

(3) For each a, b e X, there is a unique segment joining a and b. If (X, d) is also
a WR space, y # y', [xy] and [x)'] are segments in X, y ¢ [xy' ], and y! 4.: [xv], then
[xy] 0 [xy'] = {x}.

(4) Let a,b, xe X such that x is between a and b. Then x [ab].
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Let [ab] be a segment in X and let & be the isometry of [ab] onto [0, d(a, b)]
such that k(a) =0. For x,yelab] and Ael0, 1], define (1-A)x+1y to be
A~ H{(1—-2)h(x)+ k()] This algebraic operation has many useful properties

‘(including that it is jointly continuous in A, x, y if x, y are contained in a compact

subspace of X") which will be extensively used in this paper (see [10], [14], and [15]).

The closure of a set 4 is denoted by Cl4 and its boundary by Bd 4. A collection
of neighborhoods containing a set 4 is a neighborhood base for 4 if each open set
containing A contains an element of the base. Neighborhoods are open. If N is
a neighborhood of p, then the edge of N w.r.t. p, or Ed, N, is {y e CIN: [py] is
maximal}. We say (X, d) has closed edges (or (X, d) is CE) if for each point p of X,
Ed, X U {p} is closed (the class of convex metric spaces satisfying the closed edge
property strictly contains the class of normed linear spaces). A set 4 is starlike
w.r.t. pif for each x € 4, [px] <A ; the point p is called a reference point of A. A starlike
w.r.t. p set A is properly starlike w.r.t. pif for each x € A —p, the segment [px] is not
maximal. A neighborhood N of p is ideally starlike w.r.t. p if N is starlike w.r.t. p and
for each x € X— N, [px] intersects BAN in at most one point. A set 4 is radially
pointlike w.r.t. p if 4 is starlike w.r.t. p and for each neighborhood U of 4, there is
an ideally starlike w.r.t. p neighborhood ¥ of 4 and homeomorphism H from X' —A4
onto X —p such that (1) C1V'<c U, (2) H takes C1V'— A4 onto Cl¥V—p, and (3) for each
xe X—~A, H(x) € [px]. A collection J of subsets of X is locally null if for each x € X,
there is an open set U containing x such. that the collection of all sets of J that inter-
sect U is a null collection.

For the definitions of upper semicontinuous (u.s.c.) decomposition, decomposition
space (X|G), monotone, pointlike, 0-dimensional, and shrinkable (or Condition B)
see [1], [9], or [17]. Let G be a decomposition of X. Let H(G) denote the collection
of nondegenerate elements of G and let G(8) = {g € H(G): diamg =6} where 5>0.
We say G is null (locally mull) if H(G) is a null (locally null) collection.

PrOPOSITION 2.2. Let G be an u.s.c., monotone decomposition of (X, d). Then
G is locally null if and only if for each 6>0, every subcollection of G(8) has a closed
point-set umion. In either case, H(G) -is countable and hence G is 0-dimensional
(see [14]).

We say K is an open covering of H(G) if K is a collection of open sets such that
each element of H(G) is contained in some element of K. We say G is starlike if
each g e H(G") is compact and starlike. We say G is starlike-equivalent (properly starlike-
equivalent; radially-pointlike) if each g € H(G) is equivalent under a space homeo-
morphism to a compact, starlike set (compact, properly starlike set; compact, radially-
pointlike set). Often when showing a decomposition to be shrinkable, the non-
degenerate elements are shrunk along arcs (e.g. see [3] and [11]). We isolate this
property, calling it radial-shrinkability. Intuitively, a decomposition is radially-
shrinkable if for each g € H(G) we can choose a space homeomorphism H, a compact,
starlike set g, and a reference point p of gsuchthat Htakes g onto ¢, and g can be shrunk
along segments toward p in such a way that g is shrunk along arcs toward H “p..
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Let H(G) = {g,: a € W}. We say G is radially-shrinkable in (X, d) if there are col-
lections of maps {&,}, compact, starlike sets {g.}, and points {p,} such that for
-each g, e H(G), h, is a space homeomorphism taking g, onto ¢, and g, is starlike
w.rt. Da» and such that for each £>0 and for each open set U containing UH(G),
there is 2 such that

(1) h is a homeomorphism from X onto X and A|(X'—U) is the identity;

(2) diamh(g,)<e for each g, € H(G); and

(3) if g, € G(g), there is a neighborhood ¥, and there is a map f, such that
9.<V,=ClV, and h,[CIV,] is starlike w.r.t. p,, f, is an embedding of /,[CIV,]
into /1, [C1V,] and f,|Ed,, k,(V,)} is the identity, f,(h.(x)) € [p.hd(x)] foreach x e C1V,,
and ACIV, = hJ1of, o b,

If B<X, then let G(B) be the decomposition of X such that H(G(B))
= {g € H(G): g =B}. We say G isshrinkable (radially-shrinkable) at g € H(G) if there

is an open set U containing g such that BdU n [ JH(G)] = @ and G(U) is shrinkable .

(radially-shrinkable). We say G is star-O-dimensional if for each g € H(G), there is
a neighborhood base {U,} for g such that for each n BdU, n [UH(G)] = @,
U,>ClU, 44, and ClU, is compact and homeomorphic to the closure of an open,
starlike w.r.t. p, set with empty edge w.r.t. p,.

Exampres. Let (X(2),d,) be as defined in Example 2 of Section 1. Then
{X(2), d;) is a compact, SC-WR-CE metric space (which is not the linear subspace
of any normed linear space). Let p = (%\/3 » 0, %) and let N'(p, &) be the neighborhood
of p with radius & Then p e CI(Ed, N(p, €)). Circumstanées like this will force us to
be careful when constructing shrinkings which move points radially toward a given
point.

ExaMPLE 1. Let G be the decomposition of X(2) such that H(G,) = {4},
where g = {(x,y,2): (¥,5,2) € X(2) and y = x}. Then G is a null, starlike de-
composition of (X(2),d,) and X(2)/G = X(2).

EXAMPLE 2. Let G, be the decomposition of X(2) such that H(G,) = {g},
where g = {(x,7,2): (x,7,2) € X(2) and y = 0}. Then G, is a null, starlike de-
composition of X(2) which is shrinkable and pointlike but neither radially-shrinkable
nor radially-pointlike in (X(2), d,). ‘

3. Neighborhood bases for starlike sets. One key to constructing the shrinkings
used by Bing [4], Meyer [11], and Bean [3] is the fact that in E? starlike sets possess
neighborhood bases of ideally starlike sets. In a convex metric setting, showing the
existence of such neighborhood bases is non-trivial. In this section we show that
in locally compact, SC-WR metric spaces, compact, starlike sets have neighborhood
bases of ideally starlike sets. Using this result, we establish two results needed to
construct the shrinkings of Sections 5 and 6.

LemMa 3.1. Let (X, d) be a locally compact, SC-WR. metric space. Letpe N X

and let h be a continuous map of N—p into N such that h(x) € [px] for each x € N.
Then h is extended contimuously to N by letting h(p) = p, and h, thus extended, is
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one-to-one if and only if ye[px]—{x, p} implies h(y) € [ph(x)]—h(x) for each
xeN—-p. :

Lemma 3.2, Let A and N be subsets of a locally compact, SC-WR metric space
(X, d) such that N is a neighborhood of A, and each of A and CIN is a compact,
starlike w.r.t. p set. Let h be an embedding of CIN into CIN such that for each x e CIN,
h(x) € [px}. Then there is an embedding H of CLN into CIN such that H(x)e [px]
for each x & CIN, H|4 = h, H|BAN is the identity, and if h|Ed,N is the identity,
then H is a homeomorphism of CIN onto CIN.

Proof. Let f be a continuous function of CIN onto [0, 1] such that f(4) = 0
and f(BAN) = 1 and let F(x) = max{f(y): y € [px]} for each x e CIN. It follows
that F is a continuous function of CIN.onto [0, 1] such that F(4) =0 and
F(BAN) = 1. Furthermore, if y € [px] then F(¥)<F(x). Now for each x e CIN—p,
define

_d(p, h(x))] d(p, h(x)

d(p, ) dip,x)
1t follows that G is a continuous function of CIN—p into [0, 1]. We now construct H.
For each x e CLN, define

G(x) = F(x) [1

GX)x+(1-G())p for x#p,
H(x)={p for x=p.

Clearly H satisfies the requirements of the conclusion providing H is an embedding.
The continuity of H follows from Lemma 3.1. We need only show H is one-to-one,
and this is done by satisfying Lemma 3.1. Let x € CIN—p and let y € [px]—{x, p}.
Tt is not hard to show that H(y) € [pH(x)]—H(x) if and only if G(»)d(p,¥)
<G(x)d(p, x). We establish this inequality by considering, thrqe cases: F(y) =1,
F(y) = 0, and 0 < F(y) <1. The inequality holds trivially in the first two cases. Now
suppose 0<F(y)<1. Observing that A(y) € [ph(x)]—h(x) by Lemma 3.1 and hence
d(p, h(»)<d(p, h(x)), it follows that
Maﬁipulating algebraicly, we have

F)[d(p, y)—d(p, k)] +d(p, k(»)<FW[d(p, x)—d(p, h(x))]+d(p, h(x))

<F)[d(p, x)—d(p, k()] +d(p, h(x)) .

This completes the proof.

"Limma 3.3, Let A bea compact, starlike w.r.t.p setin a locally compact, SC-WR
metric space (X, d) and let U be an open set containing A. Then there is a neighborhood
N of A such that CIN is compact, CIN=U, and N is ideally starlike w.r.t. p.

Proof. Let >0 such that CIN(4, 8) is compact and contained in U. Define N*

to be {y: [py] n BAN(4, §) = &}. It follows that CIN* is compact, CIN*c= U,
and N*is starlike w.r.t. p. Tt follows from Proposition 2.1 (4) that N* is a neighborhood
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of A. Let 4 = diam 4. Choose a circular neighborhood S of p such that C1S< N*,
Let e>0 such that 0<e<4 and CIN(p, &)=, and let 4 = ¢/d4. Define A by

h(x) = Ax+(Q—-)p  for x#p, .
= p for x=p.

As in the proof of Lemma 3.2, it can be shown that 4 is an embedding of CIN* into
CIN*. By Lemma 3.2, there is an embedding H of CIN* into CIN* such that
H(x) e [px] for each x e CIN*, H|4 = h, and H|BdN* is the identity. Tt follows
that H(4)<=S. We choose N to be H™!(S). It is straightforward to show that & is
the required neighborhood of A.

Lemma 3.4. Let A be a compact, properly starlike w.r.t. p setin a locally compact,
SC-WR metric space (X, d) and let U be an open set containing A. Then there is an
ideally starlike w.r.t. p neighborhood N of A such that CIN is compact, CIN<U,
and no nondegenerate segment from p in A has.its terminal point in Ed,N.

LemMA 3.5. Let 4 be a compact, properly starlike w.r.t. p set ina locally com-
pact, SC-WR-CE metric space (X, d), let U be an open set containing A, and let £>0.
Then there is an ideally starlike w.r.t.. p neighborhood N of A such that CIN is compact,
N<U, and Ed,N=N(p, ¢).

Proof. Let S denote the collection of segments in A from p which cannot be
extended in 4. Let s€ S and suppose the conclusion is false for s as a properly
starlike w.r.t. p set. Let {N,(s)} be a nested neighborhood base of ideally starlike
w.r.t. p sets for s such that CIN(s) is compact and 5 N Ed, N,(s) = & for each n
(Lemma 3.4). We choose x, € Ed, N,(s)~N(p, ) for each n. Then {x,,}’ is contained
in the compact set Ed,N,(s)~N(p, ).

We may assume x,—x, where x e Ed,Ny(s)—N(p, ). But xe[(CIN,(5)]—
—N(p, ¢); this implies x es—p, a contradiction. Thus for each se S, we have
a neighborhood N(s) of s such that N (s) = U, CLNis compact, and Ed,N(s)=N(p, &).
Since A is covered by {N(s): s & S}, we may choose an ideally starlike w.r.t. p neigh-
borhood N of 4 such that CIN is compact and CIN< |J N (s) (Lemma 3.3). Since
Ed,N<J Ed,N(s), we have Ed,NcN(p, ¢).

- LEMMA 3.6. Let (X, d) be a locally compact, SC-WR metric space and let U be
an open set in X containing p such that C1U is compact and Ed,U = @. Then U is
starlike w.r.t. p if and only if U= \J V, where each V, is ideally starlike w.r.t. p
neighborhood and C1V,cV, ., for each n.

Proof. Sufficiency is straightforward. As for necessity, let s be a segment from p
to Bd U and let p be considered the first point of s. Let x(s) be the first point on s
where s hits Bd U. Then U is starlike w.r.t. pimplies U = U(lpx(s)] ~x(s)). Now let

. _d(p,Bd
g,~>0 such that 81<—-2—U). It can be shown that there is §,>0 such that

YEN(BAU, &) implies [py] n N(Bd U, 6;) = @. Fix a segment 5. With respect
to the linear ordering on [px(s)], let y,(s) = sup{y e [px(s)]: there is ' e [yx(s)]
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such that d(y’, BAU)>e¢,}. Let Ay = U[py(s)]. Then Cl4, = U. Since A, 1s starlike
w.r.t. p and Cl4, is compact, Cl4, is starlike w.r.t. p. By Lemma 3.3 we obtain an
ideally starlike w.r.t. p neighborhaod ¥, such that C(4,) =¥, =Cl¥, = U. It follows
that d(BdV,, BdU)<e;. Let &,>0 such that e,<3d(BdV;,BdU). As above, we
obtain an ideally starlike w.r.t. p neighborhood ¥, such that ClV,c¥V,cClV,cU,
and d(BdV,, BdU)<e,. Necessity now follows by induction.

4. Radially-shrinkable and radially-pointlike decompositions. All spaces in this
section are locally compact SC-WR metric spaces. We show that radially-shrinkable
decompositions are radially-pointlike (Theorem 4.3); this result is an important cog
of Section 5. We also establish two results for radially-shrinkable decompositions
previously established for shrinkable decompositions (Theorems 7 and 10 of [9]).

LemMA 4.1. Let U be an open set in (X, d) containing a compact, starlike w.r.t.p
set A and let f be an embedding of ClU into CLU such that f(x)e [px] for each
x € CLU. Then (1) if V' is a starlike w.r.t. p neighborhood of A suchthat C1V is compact
and VU, then f(CIV)<=ClV, and (2) if f| Bd, U is the identity, then for each neigh-
borhood V of A such that V< U, there is a homeomorphism F of CLV onto ClV such
that F(x) € [px] for each x e ClV, F|d = f, and F|BAV is the identity.

Proof. (1) follows from the fact that ClV is starlike w.r.t. p. (2) follows from (1),
Lemma 3.3, and Lemma 3.2.

THEOREM 4.1. Let G and G' be 0-dimensional decompositions of (X, d) such that
H(G)>H(G"). If G is radially shrinkable in (X,d), then G' is radially-shrinkable
in (X, d). )

Proof. Some details are the same as in Theorem 7 of [9]; we sketch the
differences. Let H(G) = {g,: « € U} and let {A,}, {g.}, and {p,} be the collections
of maps, compact, starlike sets, and points, respectively, given us by the radial-
shrinkability of G. We claim that {h,: g,e H(G"}, {4.: 9,€ H(G")}, and
{Pa: 9. € H(G")} are the required collections for G'. Let e>0 and let U be an open set
containing |J H(G'). Then {U, X— ) G'(¢)} is an open cover of H(G) and is
refined by X, a disjoint collection of open sets ([9], Theorem 1). Let U’ be the union
of all components of |J K which intersect {) G'(g). Then U’ is an open subset of U
(Proposition 2.1(2)). Since G is radially-shrinkable, there is a homeomorphism A
of X onto X such that A|(X'— UK) is the identity, diam%(g,) <e for each g, € H(G),
and for each g, € G(g) there are V,, and f, such that r,, 4., pe, U, b, V,, and f, satisfy
the remaining radial-shrinkability conditions at g, for G. Define

x for xeX-U',
A = {Iz (x) for
then H is a homeomorphism of X onto X such that H[(X'— U) is the identity and
diam H(g) <¢ for each g € H(G"). Let g, € G'(¢). Choose a starlike w.r.t. p, neighbor-
hood W, such that g, W,ch(V,n U’) and CI1W, is compact (Lemma 3.3).
Letting F, = f,|C1W,, it is easy to verify using Lemma 4.1(1) that k,, q,, p,, U, H,
kY (W), and F, satisfy the remaining radial-shrinkability conditions at g, for G'.

xeU';
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THEOREM 4.2. Let G be a 0-dimensional decomposition of (X, d). Then G is
radially-shrinkable in (X, d) if and only if G is radially-shrinkable in (X, d) at each
element of H(G).

Proof. The proof of Theorem 10 of [9] may be modified to obtain this proof
in virtually the same way the proof of Theorem 7 of [9] is modified to obtain the
proof of Theorem 4.1 (see [14]).

THEOREM 4.3. Let G be a 0-dimensional radially-shrinkable decomposition of
X, d). Then G is radially-pointlike in (X, d).

Proof. Let g € H(G) and let %, g, p be such that / is a space homeomorphism
taking g onto ¢ and ¢ is a compact, starlike w.r.t. p set, given us by the radial-shrink-

) ability of G. Let U be an open set containing ¢. We must construct ¥ and H satisfying
the radially-pointlike conditions for ¢ in order to conclude G is radially pointlike.
The rest of the proof is divided into several parts.

(D) For each ¢>0, there is an open set O containing g such that for each open
subset W of O containing g, there are homeomorphisms H, and F, such that H, is
a homeomorphism of X onto X, H,|(X~A~ 1(U)) is the identity, diam H,(g)<e,
+F, is a homeomorphism of A(Cl1W) onto h(ClW), F,Bdh(W) is the identity,
F(h(x)) e [ph(x)] for each x € CIW, and H,|CIW = h™1c F,o h.

Let G, be the decomposition of X such that H(G;) = {g}. Then by Theorem 4.1
G, is a radially-shrinkable decomposition. Thus we have a homeomorphism #,
from X onto X such that )(X—h~Y(U)) is the identity diamh,(g)<e, and there
are O and f such that A, g, p, h~X(U), k,, O, and f satisfy the remaining radial-
shrinkability conditions at g for G;. Let W be any open set containing g such that
W<=O. By Lemma 4.1 there is a homeomorphism F, taking A(Cl1W) onto A(ClW)
such that F,(h(x)) € [ph(x)] for each x € C1W, F|q = f, and F,|Bd k(W) is the identity.
Define

H0) = x for xeX-ClW,
T W EMRE))  for  xeClW.

It follows that H, is a homeomorphism of X onto X and H|(X —~h"’(U)) is the
identity. It also follows that H,(g) = h,(g); hence diam H,(g)<e.

(ii) Construction of ¥V of H.

Let {V,} be a neighborhood base for g such that N oCIN,>N,>..., CIN,
is compact, #(CLN,) = U, and h(N,) is ideally starlike w.r.t. p for each k (Lemma 3.3).
Choose M, to be Ny and let ¥ = h(N,). By the uniform continuity of 4 on CI M, s
there is a sequence of positive numbers {5,} such that d(x,y)<25, implies
d(h(x), k() <1/n for each x, y € C1M, . For each positive ingeter #, let O, be the
open set containing g given us by (i) for 6, and A~*(U). Assuming M, e {N,} has been
chosen, choose M, € {N,} such that CIM,,; <M, n O,,,. Then by (i) we have
collections of homeomorphisms {H,} and {F,} such that for each n the following
hold: H, is a homeomorphism of X onto X, H,|(X—~"'(U)) is the identity,
diam H,(g)<3,, F, is a homeomorphism of #(ClM,) onto 2(ClAM,), F,|Bd(h(M,))
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is the identity, F,(h(x)) & [ph(x)] for each x & CIM,, and H,|CIM, = h™* o F, o h.
For each n define A,(x) = F,(..(F(x))...) for xe Cl(A(M,)—h(CLM,.,)). Define.

x for xeX—h(M)),
A = {h,,(x) for  xeBd(h(Mya)
and '
Hx) = {H *(x) for  xeX— Uh(M,)—h(CLM,. )],
A () for xeh(M,)—h(CIM,.,).

Clearly H is well defined on X'—gq.

(iii) x,—q implies H(x,)—p.

Let y,, = h™'(x,), let e>0, and let & be so large that 2/N<e. Since Hy is.
uniformly continuous on ClMy, there is £>0 such that é<diamg and d(x, ) <&
implies d(HN(x), Hy(3)) <8y for x,y e CLMy. Let J be so large that m>J implies.
{%a}=ClMy and d(y,, g)<diamg. Then m>J implies d(Hy(y,), Hy(q))<26x

-which implies

d(Fy(em), Fy(@) = d(h(HN(ym)): h(HN(Q)))< I/N.

So d(Ey(x,), p)<2/N<e. Now suppose %, & h(M,)—~h(ClM,.,), where m>J and
nxN. Since H(x,) = F,(...(Fy(x,))...), it follows that
d(H(x,), p) <d(Fy(-.(F1(¥n))--.), P) S A(Fn(x), P)<2N<e .

It follows that x,,—q implies H(x,)—p.

(iv) H is continuous on X—g.

Since {A(M,)} is a meighborhood base for g, then {h(M,)—h(ClM, . )} is
a locally null collection of disjoint, open sets. Since each of H* and A, is continuous.
oh its domain, it follows fiom Theorem 2 of [9], that H is continuous on X—gq,

(v) H(x) e [px] for xe X—q.

If x e X—V, then H(x) = x. If x € ¥, assume x is in some ~(M,)—h(CLM, ,)-
Then

H(x) = F, (o (F1(0)-) € |[pFes (- (Fi()...)] . c [PFy ()] =[]

by applying Lemma 3.1 inductively to {Fy, ..., F.}.

Vi) H(X—q) = X—p and HClV—q) = CIV—p.

Since H is the identity on X—¥, we need only show H(V—gq) = V'—p. Let
xeX~—q and assume x € A(M,)—h(CIM,.,). For each k, Fi(x) = p if and only
if x = p. Since x € V'—q implies x % p, then none of F,(x), ..., F,(x) equals p. By
induction, H(x) # p. Thus H(V—g)cV—p. Now let yeV—p and suppose
€ [pz]— z where we assume H(z) = z. From (v) we have H ~'(3) =[pz]. We suppose
there is no preimage of y on [pz]; then by the continuity of H, H([pz]—q)<=[yz].
From (iii) we have d(x, )—0 implies d(H(x), p)—0. This contradicts the fact that
d(y,p)>0. Thus HV—q)>V—p.
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(vi)) H™* is *contipuous on X—p.
It is straightforward to show (using (v), the properties of the Fs, and

Lemma 3.1) that H is one-to-one. It is also straightforward to show that for eachn, -

F, takes open sets of (M) onto open sets of ~(,). Hence it follows from (iif) that
{h [A(M,)—h(CLM, )]} is a locally null collection of disjoint, open sets. We now
apply Theorem 2 of [9], to obtain the continuity of H ~1on X—p.

5. Properly starlike-equivalent decomposmons. In this section (X, d) is a locally
compact, SC-WR-CE metric space. We show that locally null, properly starlike-
equivalent decompositions of (X, d) are radially-shrinkable. We then show that for
locally null decompositions of (X, d), some of the properties studied in this paper
are equivalent. These two results include Theorem A as stated in Section 1. We
must first establish a result (Lemma 5.1) in which we construct a preliminary shrink-
ing which moves along segments and moves any edge points; if a map moves
along segments and moves edge points, it cannot be an onto map and hence
cannot be a shrinking. The reader might find it heélpful to refer to the space (X(2), d,)
of the examples of Section 2 while workmg the proof of Lemma 5.1; he may also
wish to consult [14].

LiMMA 5.1. Let G be d monotone, locally null decomposition of (X, d), let g € H(G)
be a compact, properly starlike w.r.t. p set, let W be an open set containing g, and
let £>0. Then there is an open-set U, an open set M, and a homeomorphism h from X
onfo X satisfying.

1) geMcClMcUcW;

() UnBd[U H(@)] =

(3) M is ideally starlike w.r.t. p;

(4) h(x) e [px] for each x e CIM;

(5) R|{(X—M) is the identity; and

(6) diam#i(g")<e for each g' e H(G(U)).

Proof. The proof is given in three parts.

(i) Construction of the “controls” and the open sets U and M.

Because of Proposition 2.2 we may choose a neighborhood base {U,} for g such
that BdU, n [UH(®] = @ and U,cW for each n. Let G' be the decomposition
of X such that H(G') = H(G)—{g}. Because of Proposition 2.2 we may choose
a neighborhood base {¥,} for p such that Bd ¥, n [J H(G')] = & for each n. There
is a mested neighborhood base {N,} for g such that Cl¥, is compact, each N, is
ideally starlike w.r.t. p, and no nondegenerate segment from p in g has its terminal
point on the edge w.r.t. p of any N, (Lemma 3.4). Choose Ve {V,} such that
ClVeN; n N(p, te). Let §; >0 such that.if @, 5 € BAN, n Ed,N, and d(a, b)<é,,
then for every ideally starlike w.r.t. p neighborhood N with NcN;,

d([pa]l n [BdN © Ed, N, [pb] n [BdN'L Ed,N])<%e.
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Let 6,>0 such that if «,beBdN, v Ed,N,, cel[pa]l-V, de[pb]—V, and
d(c, dy<8,, then d(a,b)<8;. Let 83 = d(BdN,,g) and let 6>0 such that
S<min{d,, 8,, 85, §&}. Since G is locally null and g is compact, we may choose
Ue {U,} such that Uc=N, and if g’ € H(G)—{g}, then g’ =U only if diamg’' <.
Let R, = N(p, ), i=1,2,3,... We now choose M, ..., M, members of {N,} such
that :

(1) R, contains Ny;

@) g=M,cCIM,cM,c...c M,=CIM,cU n N(g, 5);

() if g e H(G)—{g}, and ¢’ nBdM; # @, then ¢’ nBdM; ; =G, i#k
implies g’ =M., and in any case diamg’<d;

(4) for each i, g n Ed,M, = & and Ed,M,=R, (Lemma 3.5); and

(5) if ae[BdN; U Ed,N,]—~R, and i,je{l, ..., k}, then

d([pa] n [BAM; U Ed, M),

We choose M to be M,.

- (ii) Construction of the shrinking % satisfying conditions (4) and (5) of the con-
clusion,

Let x € CIM,,—p and let s be the segment from p to a point.on BdN; u Ed, N,
so that [px]cs. For ie{l,..,k}, let

my(x) = sn [BdM; U Ed,M;] and

Tt follows that each of nii(x) and r(x) is continuous on ClM,—p. We now define
a map H from {J[BdM; v Ed,M]] into CLM; by

Hm) = m; for, d(Pami)sd(pﬁri(mi))n
- r{m;), otherwise,

[pa] N [BdM; U Bd,M;]) <& .

r{x) = s n [BdR; U Ed,R/].

where m; e [BdM; v Ed,M;] and i e {1, ..., k}. It follows from properties (1) and (4)

of {My, ..., M,} that H|[BdM, v Ed,M;] is the identity. It can be shown that H is
continuous on its domain. We now define 4 from ClM, into Clif, by
d(my (%), -"C) a"(x, m,(x))
S S H )+ S s H ()
d(mH 1(x), my(x g) ( )) (mi-n(x)s mi(x)) ( . )
for xeCIM;.,—CIM; and 1<i<k—-1,
Sl I(x, ) ’
™09, x)p cxp H(m(x)) for xeClM,—p,
d(my(x),p)”  d(my(x), p)
p for x=p.

It follows that A(x) e [px] for each x e CIM,, and that A is continuous on ClM;—p
and hence, by Lemma 3.1, on ClM,. It can be shown that 4 is one-to-one on CIM)
by satisfying Lemma 3.1. Now let x & ClM;~p. From the definition and continuity
«of & we have h([pm(x)]) = [pm(x)]. It can now be shown that h(ClM,) = ClM,.

5 — Fundamenta Mathematicae T, CV
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If we extend A to X—CIM, by h(x) = x, then his a homeomorphlsm of X onto X
such that h|(X— M) is the identity.

(111) The shrinking / satisfies condition (6) of the conclusion.

letg' e H(G(l{)). If g’ =« U~ClM,, then diam h(g") < <e. Let g’ n ClM,, # @.
Then g'cU and hence diam g’ <8. We assume for the time being that

g’ Nn[CIR, UCIM, U V] =

Now suppose g’ <CIM,. Then g'cM;,,; —CIM;_; for some i>1. Let x,ye g’
We distinguish three cases.

1) d(m,_1(x), p)>d(ri~1(x),p) and dm;_y(3),p)>d(ri-4(»),p); it follows
that d(h(x), 2(3)) <5+fe+8 <1ie.

(2) d(m;-1(x),p)<d(ri-1(x),p) and d(m;-,(3), p)<d(ri-1(»),p); it follows
that d(h(x), 2(»))<d+4s+0<3e.

(3) d(m;_1(x), p)<d(r;~1(x),p) and d(m;-((3),p)>d(r;-1(y), p); it follows
that d(h(x), h(¥))<é+5e+Fe+20<2e.

Thus if g’ = ClM,, diamh(g’)<Fe. Now suppose g’ N (X—CIM,) # @. From
the connectedness of g’ and the above three cases it follows that

diamA(g") <diamh(g’ —CIM)+diamh(g’ n CIM)<é+Ze<e.

Now let g’ n [CIR; L ClM; U V] # @. Then it follows that diamh(g")<4d <e,
diam#(g') <46 <e, and diamh(g’) <%e, respectively. Thus } satisfies condition (6) of
the conclusion.

THEOREM 5.1. Let G be a locally null, properly starlike-equivalent decomposition
of (X, d). Then G is radially-shrinkable in (X, d).

Proof. For each g,e H(G), we have h,, g,, and P, such that &, is a space
homeomorphism taking g, onto g, and g, is properly starlike w.r.t. P,. We claim
{Pa}> {9.}, and {p,} are the required collections for radial-shrinkability. Let >0
and let U be an open set containing ) H(G). We set G(e) = {g;, 9, ...}. Using
Proposition 2.2 we obtain a locally null, open covering {0, } of G(¢) such that g, <Cl 0,
is compact and O, n Bd[|J H(G)] = @ for each n, and C10, n Cl O, =Difn * m.
For each n let G, be the decomposition of X such that H(G,) = {h,(g): g<=O,}.
Then each G, is an u.s.c., monotone, locally nullfdecomposition of X with ¢, as
a nondegenerate element. We choose 4,>0 such that d(h,(x), 4,(y)) <8, implics
d(x,y)<}e for x,y € ClO,. From Lemma 5.1 we have U,, V,, £, for each n such
that

M g,=V,=ClV,cU,<h,(0,), U,n B[ H(G,)] = @, and V, is ideally
starlike w.r.t. p,;

(2) f, is a homeomorphism of X onto X such that f,,(x) € [px] for each x € C1V,,
and f,|(X—V,) is the identity; and .

(3) diam f,(g) <9, for each ge H(G,(U,)).
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We now define % from X onto X by

L A for xefiU) and 31
(x)—{x for  xeX—[U /i (U]

Tt can be shown that # and 4~ satisfy the conditions of Theorem 2 of [5] and thus / is
a homeomorphism. It is not difficult to show that {4,}, {g.}. {p.}. U, b, {fi *(V)},
and {f,} satisfy the conditions of radial-shrinkability for G.

PROPOSITION 5.1. Let G be a decomposition of a locally compact, SC metric’
space (Y, €), where G need not be u.s.c. If G is mdzally -pointlike in (Y, e), tlzen G is
properly starlike-equivalent in (Y, e).

Proof. The proof follows by contradiction.

THEOREM 5.2 (Theorem A). Let G be a locally null decomposition of (X, d). Then
the following are equivalent:

(1) G is properly starlike-equivalent in (X, d)

@352) G is radially shrinkable in (X, d);

(3) G is radially shrinkable in (X, d) at each element of H(G); and

(4) G is radially-pointlike in (X, d).

If any of the above hold, X|G~ X.

Proof. The circle of implications follows from the theorems of Sections 4 and 5.
That X/G=X follows from (2) and Theorem 4 of [9].

COROLLARY 5.1. Each compact starlike subset of E" is radially-pointlike.

Other consequences ?f Theorem 5.2 are given in Examples 1 and 2 of Section 1.

6. Star-0-dimensional decompositions. In this section (X, d) is a locally compact,
SC-WR-CE metric space. We recall from Section 1 that Price has shown [13] that
a decomposition G of E" yields E" if for each g € H(G), there is a collection of
n-cells {B;} such that {Int B,} is a neighborhood base for g and Bd B, n [|J H(G)]= G
for each k. Such a decomposition is star-O-dimensional, but star-0-dimensional de-
compositions may not satisfy Price’s conditions because there are open 7-cells which
are starlike but whose closures are not n-cells. In this section we prove Theorem B
after first proving Lemma 6.1, a result analogus to Lemma 5.1.

Lemma 6.1. Let G be a monotone decomposition of an open starlike w.r.t. p set U
in (X, d) such that C1U is compact and Ed,U = @. Then for each £>0, there is an.
ideally starlike w.r.t. p neighborhood V such that Cl V< U, and there is a homeomor-~
phism h from Cl1U onto C1U satisfying these conditions: h(x) € [px] for each x € C1U,
h|(U~V) is the identity, and diamh(g)<e for each g € H(G).

Proof. Let £>0. From Lemma 3.3 we may obtain an ideally starlike w.r.t.
p neighborhood N containing CIU such that CIN is compact and Ed,N = &.

By Lemma 3.6, U = |J V, where each V, is ideally starlike w.r.t. p, C1V, =V,
for each », and each Ed, V, = @. Let &, >0 such that if a, b € BAdN and d(a, b)<§,,
then d([pa] n BdM, [pb] n BdM)<%e for each ideally starlike w.r.t. p neighbor-
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hood McN. Let 6,>0 such that if a, be BN, ce[pa]—V, and de[pb]—7V,,
and d(c, d)<&,, then d(a, b)<J,. Let §>0 such that §<min{5,, §,, +¢}. It follows
that there is an integer J such that if a e BdN and n, m>J, then

d(lpd] A BAV,, [pa] A BdV,)<s .

Let ¥, € {¥,} such that n, >J and if diamg>d (where g€ H(®), then g=ClV,,.
Let V,, € {V,} such that n,>n; and if g n Cl1V,, # @, then g=¥,,. We continue
this process inductively until a ¥, has been chosen and k is so large that
ClU=N(p, k8). We choose V 1o be V,,. Let R, = N(p, i) nN for ie {1, .., k}.
Each R, is ideally stailike w.r.t. p. Let x € CLU—~p. Then x € [pa] where a € BAN.
Forie{l,.., k}, let r(x) = [pa] n BdR,; and v/(x) = [pa] N Bd¥,. The procedure
is now completely analogous to that of Lemma 5.1.

THEOREM 6.1 (Theorem B). Let G .be a star-o-dimensional decomposition of
(X, d). Then G is shrinkable. Hence X|GrX.

Proof. Let g € H(G), and let W be an open set about g such that C17# is compact
and BdWn [J H(G)] = . Let £>0 and let U be an open set containing
U H(G(W)). Let Gy(e) = {g' € H(G(W)): diamg’>¢}. Then |J Gy (e) is compact.
For each g’ € Gy,(¢), let O(g") be an open set containing g’ such that o(gH<=,
Bd(0(g")) n [U H(®)] = B, and Cl(0(g") is homeomorphic to an open, starlike
set with compact closure and empty edge w.r.t. p. Using Lemma 6.1, we proceed
exactly as in Lemma 1.2 of [13] to obtain a homeomorphism % of X onto X such
that /| (X— U) is the identity and diam/(g') < for each g’ € H(G(W)). Hence G(W)
is shrinkable, i.e. G is shrinkable at g. By Theorem 10 of,[9], G is shrinkable and
by Theorem 4 of [9], X/G~X. b

COROLLARY 6.1. Let G be a decomposition of E* such that H(G) is countable.

(1) The following are equivalent:

(1) G is star-O-dimensional;
(i) G is shrinkable;

(iii) E3/G~E®; and

(iv) G satisfies Prices condition.

(2) If G is starlike, then G is star-O-dimensional.

Proof. (1) follows from Theorem 6.1 and Theorem 1.4 of [13] (2) follows from
(1) and Theorem 2 of [4].

Other consequences of Theorem 6.1 are given in Example 3 of Section 1.

References

[11 S. Armentrout, Monot dec iti
Ann, of Math. Studies 60 (1966), pp 1-25.

[2]1 — A survey results on decompositions, Proc. Topology Conferenoe, University of Oklahoma,
1967, pp. 1-12.

of E®, Topology Seminar, Wisconsin, 1965.

icm

Upper semicontinuous decompositions of convex metric spaces 227

[31 R.J. Bean, Decompositions of E® with a null sequence of starlike equivalent non-degenerate
elements are E®, 1llinois J. Math, 11 (1967), pp. 21-23.

[4] R.H.Bing, Upper semicontinuous decompositions of E®, Ann. of Math. 65 (1957), pp. 363-374.

[5]1 — A decomposition of E® into points and tame arcs such that the d ition space is topoli
gically different from E®, Ann. of Math. 65 (1957), pp. 484-500.

[6] - — Poini-like decompositions of E® Fund. Math, 50 (1962), pp. 431-453.

[71 H. Busemann, The Geometry of Geodesics, New York 1955.

81 J. W.Lamoreaux, Decompositions of metric spaces with O-dimensional set of non-degenerate
elements, Thesis, University of Utah (1967).

[9] -~ Decompositions of metric spaces with a 0-dimensional set of non-degenerate elements,
Canad. J. Math. 31 (1969), pp. 202-216.

[10] A. Lelek and W. Nitka, On convex metric spaces, Fund. Math. 49 (1961),-pp. 183-204.

[11} D. V. Meyer, 4 decomposition of E# into points and a null family of tame 3-cells is E3, Ann.
of Math. 78 (1963), pp. 600-604.

[12] R. L. Moore, Foundations of Point Set Theory, (rev. ed.), Amer. Soc. Colloquium Publica-
tions 13 (1962).

[13] T.M. Pricé, A necessary condition that a cellular upper semi-conti de position
of E" yield E", Trans. Amer. Math. Soc. 122 (1966), pp. 427-435.

[14] S.E. Rodabaugh, Upper semicontinuous decompositions of convex métric spaces, Thesis,
University of Missouri-Columbia (December, 1974).

[15]1 D. Rolfsen, Geometric methods in topological spaces, Proc. Topology Conference, Arizona
State University 1965, pp. 250-257.

[16] W. Sierpinski, Sur les espaces metriques localement separables, Fund. Math 21 (1933),
pp. 107-113.

[17]1 G.T. Whyburn, Analytic Topology, Amer. Math. Soc. Colloquium Publications 28 (1942).

DEPARTMENT OF MATHEMATICS
YOUNGSTOWN STATE UNIVERSITY
Youngstown, Ohio 44555

Accepté par la Rédaction le 28. 3. 1977


Artur


o

icm

Remarks of the elementary theories of formal
and convergent power series

by , ,
Joseph Becker and Leonard Lipshitz (West Lafayette, Ind.)

Abstract. Iﬁ § 1 an example is given of two fields F,, F; of characteristic 0 such that F, = F,
but F[[xy, %]] # Fi[l%, %]]. In § 2itis shown that {C{x, 3}, C{x}><<C[lx, #]], C[{x]]>, where
x = (xy, %) and y = (Y1, ¥a, ¥s, Yo

Tn [3] and [4] Ax and Kochen and Ersov showed among other things that the
ring of convergent power series C{x}, over the complex numbers C, is an elementary
subring of the ring of formal power series/C[[x]] over C. This means that the same

first order statements (in the language of valued rings) with constants from C{x},

are true in both rings. (This is denoted C{x}<C[[x]].) Also they showed that if
fields F, and F, of characteristic O are elementarily equivalent, denoted Fy=F,

- (i.e. the same first order statements in the language of fields are true of F, and Fa)

then F,[[x]] = F,[[x]] as valued rings (i.e. the same first order statements, in the
language of valued rings, are true about Fy[[x]] and F,[[x]]). It is natural to ask
whether these results extend to power series rings in several variables. In Section 1,
we show that one can have fields Fy=F, but F[[x,, x,]] # Fa[[x;, x.1]. In
Section 2 we show that a slightly stronger statement than C{x, ..., x¢}<<
C[[xl, «es Xg]] is false (). These remarks contradict some results claimed in [7].

Section 1. Ersov [4] showed that for any field F and for n=2, F[xy, ..., x,]]
is undecidable. We shall give a slightly different proof of this for the case that F has
characteristic zero and use this proof to show that we can have F; =F, of charac-
teristic 0 but Fy[[xy, ..., %,]] # Fo[[%1, ..., %,]] (r2) as rings. Let F be a field of
characteristic zero. ‘

For the sake of clarity, we begin by showing that & = F[[x,, ..., %,]] is un-
decidable as an F algebra with x, and x, picked out, i.e., that & as a ring under
the operations of addition and multiplication, with constants for x; and x,, and with
an additional predicate which picks out a particular lifting of the residue field F

(*) (Added in proof) Some of the results of this paper and some extensions have been

discoverd independently by F. Delon, Résultats d’indécidabilité dans les ux de séries for-
melles (to appear). )
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