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Riemannian manifolds with many Killing vector fields
by

Ann K. Stehney * and Richard S. Millman (Carbondale, IIL)

Abstract. In this paper we consider Riemannian manifolds with many Killing vector fields
(infinitesimal isometries), specifically those for which the Killing fields span each tangent space and
those parallelized by Killing fields, which we call almost-Killing spaces and Killing spaces respect-
ively. We show in Section 2 that for a complete, connected Riemannian manifold, homogeneity follows
from the transitivity of the Killing fields on a single tangent space. This is the homogeneous analogue
of a theorem of Cartan for Riemannian symmetric spaces. Restricting attention to Killing spaces in
Section 3, we compare the following additional assumptions about Killing fields X3, ..., Xa which
are a parallelization for a Riemannian n-manifold: (1) each X; has constant norm, (2) each inner
product <Xj, X is constant, (3) the vector fields X, ..., X generate an n-dimensional Lie algebra,
and (4) Xi, ..., X» commute. We generalize some results of J. D’Atri and H. Nickerson on paralleli-
zations satisfying (2), which they called Killing frames. Finally we discuss in Section 4 the implications
of Section 2 for other geometric structures whose automorphism groups are Lie groups.

In this paper we consider Riemannian manifolds with many XKilling vector
fields (infinitesimal isometries), specifically those for which the Killing fields span
each tangent space and those parallelized by Killing fields, which we call almost-
Killing spaces and Killing spaces respectively.

Ambrose and Singer [1], Nomizu [7] and [8], Singer [9], and others have given
various criteria for the homogeneity of a Riemannian manifold. Approaching this
question in terms of the existence of global Killing fields we show in Section 2 that
for a complete, connected Riemannian manifold, homogeneity- follows from the
transitivity of the Killing fields on a single tangent space. This is the homogeneous
analogue of a th*rem of Cartan (see [6]) for Riemannian symmetric spaces.

Restricting attention to Killing spaces in Section 3, we compare the following
additional assumptions about Killing fields X7, ..., X, which are a parallelization
for a Riemannian n-manifold: (1) each X has constant norm, (2) each inner product
(X, X;> is constant, (3) the vector fields X, ..., X,, generate an n-dimensional Lie
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algebra, and (4) X, ..., X, commute. We generalize some results of J. D’Atri and
H. Nickerson [2] on parallelizations satisfying (2), which they called Killing frames.

Finally we discuss in Section 4 the implications of Section 2 for other geometric
structures whose automorphism groups are Lie groups.

1. Preliminaries. We let M/ denote a smooth n-manifold witha fixed Riemannian
metric tensor g and associated Levi-Civita connection . The tangent space to M at
a point m shall be denoted by M,,, the value at m of a vector field X by X(m), and
the Lie derivative with respect to X by Ly.

A vector field X on M is called a Killing vector field if the local 1-parameter
group of diffeomorphisms generated by X consists of isometries of M. This is equiv-
alent to the condition that its derivative 4y = Ly—fx be a skew endomorphism
on each tangent space, i.e., for all vector fields ¥ and Z, g (py X, Z) = —g(p X, Y).
The Killing vector fields on M form a Lie algebra which will be denoted [(Af).

If M is connected and complete, there is a correspondence between the Killing

- vector fields on M and the global isometries of M. In particular, every Killing field
on M generates a global 1-parameter group of isometries of M and the isometries
of M form a (locally compact) Lie group () in the compact-open topology, whose
Lie algebra is naturally isomorphic to [(M).

A connected Riemannian manifold M is called a Riemannian homogeneous space
if I(M) acts transitively on M. It follows that M is isometric to I(M)/H with an
I(M)-invariant metric, where H is the isotropy subgroup of I(M) at any point.

Remarks. 1. A proper subgroup G of J(3) may act transitively on M, so
that M may have several representations as a homogeneous space. If G is not closed
in I(M), then the isotropy subgroup of G need not be compact. In any case, there is
a G-invariant metric on G/H n G for which M is isometric to this quotjent.

2. If M is not complete in the Riemannian metric, then I(M) cannot act transi-
tively on M, for any homogeneous space G/H is complete in any G-invariant
metric.

3. In questions of the transitivity of I(M), only those isometries which arise
from Killing vector fields are relevant. For if a group of diffeomorphisms acts transi-
tively on a connected manifold, then so does its jdentity component.

2. Trapsitivity of the Killing vector fields. We consider a manifold with suf-
ficiently many Killing fields to span each tangent space. We first;recall a general fact
about vector fields which does not involve the Riemannian sttucture.

PROPOSITION 2.1. Let me M be given. If X, ..., X, are smaoth vector Sfields
on M such that {X (m)} span M,,, then each point in some neighborhood of m lies on
the integral curve through m of some linear combination X, ceR.

In particular, Proposition 2.1 implies that if the Killing fields span the tangent
space at m, then each point in some neighborhood of m lies on the integral curve

through m of some Killing field. This is the key to the following theorem which
provides a local criterion for homogeneity.
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THEOREM 2.2. If M is a complete, connected Rzemanman mamfold the followmg
are equivalent: ;

(1) M is Riemannian homogeneous,

(2) for each me M, {X(m): X e I(M)} spans M,,, and

(3) for some me M, {X(m): X e 1(M)} spans M,,.

Proof. That (1) implies (2) is well known. Since (2) implies (3), it ‘suffices to
show that (3) implies (1).

By 2.1, the orbit O of m under J(M) contains a nelghborhood of m, hence is
open. But 0 is also closed since in general the 01b1t of a point of M under (any closed
subgroup of) I(M) is a closed submanifold.

In considering Riemannian symmetric spaces, B. Kostant [6] has called con-
dition (3) the transitivity of I(M) at m.

From the proof of Theorem 2.2, we obtain

COROLLARY 2.3. Let M be a complete, connected Riemannian manifold and
X5 o, X, Killing vector fields on M which span some tangent space M,,. Then the
smallest closed subgroup of I(M) whose Lie algebra contains Xy, ..., X, is transitive
on M.

The size alone of the isometry group. of M gives little information about
whether M is homogeneous. There exist Riemannian homogeneous 7-manifolds with
dimI(M) as small as n (the standard torus). Inspection of the classification, in [5]
for example, shows that manifolds for which dimI(M)>%n(n—1), i.e,, dimI(M)
= ¥n(n—1)+1 or n(n+1), are all Riemannian homogeneous. The following con-
struction yields manifolds with dim7(M) = in(n—1) which are not. Let M, be
R, 8§71, RP"1, or H" ' with its usual metric as a space of constant curvature,
and M, be R* or §* with a metric with discrete isometry group. Then M = M, x M,,
with the product metric, is not Riemannian homogeneous since there are no Killing
vector fields in the direction of the second factor. Here dimI(M) = dimI(M,)
= }n(n—1). Note that M is homogeneous but not Riemannian homogeneous. Finally,
the Kervaire sphere of dimension n = 8k+1 also has a large isometry group, of
dimension 4(@*+7), [3], but it is not a homogeneous space.

3. Killing spaces. We define a Killing space to be a Riemannian manifold A/ which
admits a parallelization X = {Xj, ..., X,} by Killing vector fields. We shall first
consider the following conditions on such a Killing parallelization X and the impli-
cations between them.

(1) Each X, & X has constant iorm on M, i.e., its integral curves are geodesics.

(2) For X, X;eX, the inner product g(X,, X)) is constant on M.

In this case, the Gram-Schmidt process, applied to X at one point to obtain
orthonormal vectors, yields an orthonormal Killing parallelization globally. We
shall assume this has been done. J. Wolf has considered this condition in a different
context in [11] and [12].
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(3) The Lie algebra generated by {X,, ...

(4) The vector fields X, ..., X, commute

Clearly (4) implies (3), and (2) implies (1). We shall see that (3) implies neither (2)
nor (1). A local result shows that (4) implies (2):
) LemMA 3.1. If commuting Killing fields X, ...

set U, then g(X;, X)) is constant on U.

Proof. More is actually true. If vector fields ¥ and Z both commute with
a Killing field X, then Xg(¥,Z2) =0. B

The following lemma shows that orthonormal Killing spaces (condition 2)
are characterized by pyx,X; = 3[X;, X)], or equivalently px X = —pyx,X;. Tis
proof is a direct computation.

LemMA 3.2. If X and Y are Killing vector fields on M, then for any vector field Z,

9(rxY, Z) = +{g(X, Y1, 2)~2Zg(X, 1)} .

" Therefore if g(X, Y) is constant, yxY = }[X, Y], so yxY is a Killing field and
yxY = AxY.

These lemmas may be used to obtam the converse to a well known result about
flat manifolds:

PROPOSITION 3.3. If commuting Killing vector fields X, ...,
on an open set U, then the metric is flat on U,

, X} has dimension n.

, X, are independent on an open

X, are independent

For orthonormal Killing spaces, condition (3) can be expreséed in terms of the
derivatives Ay, of the Killing fields, as follows.

Lemma 3.4. Let {X,, ..., X,} be an orthonormal Killing parallelization of M.
Then Xy, ..., X, generate an n-dimensional Lie algebra if and only if Vx,V x,X;
= Axk o AX’(X,;) for all Isi,j, k<n.

Proof. Applying 3.2, X,,g ([X}, Xj], X}) = 2g 7x¥ x, X1~ A4x, o Ay (X)), X,). m

Manifolds with local orthonormal Killing fields have been studied by J. D’Atri
and H. Nickerson [2]. They show for example that all sectional curvatures are non-
negative and that the manifold is locally symmetric.

Counterexamples to other implications between conditions (1)~(4) are provided
by Killing spaces which admit no Killing parallelizations of certain types:

1. A Lie group G with left-invariant metric is parallelized by Killing (i.e., right-
invariant) vector fields which generate a Lie algebra of dimension n, but which do not
commute unless G is abelian and which do not have constant norm unless the metric
is also righi-invariant. Hence (3) implies neither (1), (2), nor (4).

2. 87 with its usual metric has global orthonormal Killing fields which arise
from its multiplicative structure as the unit Cayley numbers [2] and hence shares
many properties of a compact Lie group with a bi-invariant metric. However no
Killing parallelization of S generates a 7-dimensional Lie algebra (see Corollary 3.6),

hence (2) does not imply (3) in general As remarked in [2], (2) does imply (3) for
n<6.
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1t is false locally that (1) implies (2): on S” with the orthonormal Killing paral-
lelization of [2], replace X5 by [X;, X,] and consider the set on which the resulting
fields are independent. [X, X,] has constant norm but does not meet Xy, ..., X5
at constant angles. We do not know whether every complete manifold which admits
a geodesic Killing parallelization (1) also admits an orthonormal Killing parallel-
ization (2).

For Killing spaces, we may eliminate the hypothesis that G be closed in Corol-
lary 2.3, as follows.

THEOREM 3.5. Let M be a complete, connected Killing space. If G is the connected
Lie subgroup of I(M) whose Lie algebra is generated by the Killing parallelization,
then G is transitive on M.

Proof. Since the Killing fields span each tangent space M,,, the proof of
Theorem 2.2 shows that each orbit G(m) is open in M. Orbits either coincide or are
disjoint, so each orbit is also closed, hence all of M. M

If dimG = dimM, the isotropy subgroup of G' at any point is discrete. Hence

COROLLARY 3.6. If M is complete and a Killing parallelization of M generates
a Lie algebra of dimension n, then M is naturally isometric to G|D with a G-invariant
metric, where D is a discrete subgroup of G.

4, Applications to other geometric structures. The properties of isometry groups
needed to show Riemannian homogeneity are shared by the automorphism groups
of certain other geometric structures. Let M be a smooth, connected n-manifold
with a geometric structure which we shall denote by *, for instance a G-structure
in the sense of Chern (see [4]). Let I(*¥) denote the set of automorphisms of the struc-
ture. Then M is called *-komogeneous if I(*) acts transitively on M, and a vector
field on M is called *-Killing if the local difftomorphisms it generates lie in I(*¥).
Let 1(*) denote the set of complete *-Killing vector fields on M. In lieu of the com-
pleteness assumption in the Riemannian case, we shall require that I(*) be a (finite-
dimensional) Lie group whose Lie algebra is isomorphic to 1(*). Among such struc-
tures are Riemannian, pseudo-Riemannian, conformal, almost complex, and almost
Hermitian structures.

The proof of 2.2 yields

THEOREM 4.1. If the orbit of each point of M under I(*) is a closed submanifold
of M, then the following are equivalent:

(1) M is *-homogeneous,

(2) for each me M, {X(m): X e1(*)} spans M,,, and

(3) for some me M, {X(m): X e 1(*)} spans M,

COROLLARY 4.2. Suppose that the orbit of each point of M under a closed sub-
group of I(*) is a closed submanifold. If X1, ..., X, e 1(*) span the tangent space Tat
one point, then the smallest closed subgroup of I(*) whose Lie algebra contains
Xy, ., X, is transitive on M.
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To shiow that the first hypothesis of 4.2 is necessary, even if the orbit of a point
‘;under I(*) is closed, let * be the pseudo-Riemannjan metric g on R* defined by
g(X, X) = *—'g(Y Y) =1 and g(X Y) =0 for X = 8/dx and Y = 9[dy. The
vector fields X = X+ Y and X, = xY+yX generate a 2~ dimensional Lie algebra
and are linearly independent on R? except along the line x = y. Now the diffeomor-
phisms generated by X; and X, are respectively the translations ¢ (x,)
—(x+1, y+¢) and the “boosts” about the origin

/% (x ¥)—(xcoshz+ysinht, ycoshs+xsinh?),

Whlch are isometries. The full iSometry group I(*), of dimension 3, is transitive
on R?, but the subgroup generated by ¢, and ¥, is not transitive: its orbits are the
line x = y and the two open half-planes on either side of it. This subgroup is closed,
since its complement. in I(*) consists of those isometries which take some points
across the line x = y.

The generalizations of 3.5 and 3.6 require no assumption about the topology
of the orbits.

TarEoREM 4.3. If Xy, ..., X, € 1(*) parallelize M, then the connected subgroup
of I(*) generated by X1, ..., X, is transitive on M.

COROLLARY 4.4. If Xy, ..., X, € [(*) parallelize M and generate an n-dimensiopal
subalgebra, then M is the quotient of a Lie group by a discrete subgroup.

The properties of parallelizations by structure-preserving vector fields depend k

on the structure. A Killing parallelization of a compact Riemannian n-manifold will
in general generate a Lie algebra of dimension >n. For complex structures, this
cannot happen: it is not difficult to show than any parallelization of a compact
complex manifold by holomorphic vector fields generates a Lie algebra of the same
(real) dimension as the manifold. From this and Corollary 4.4, we recover the theorem
-of H. C. Wang [10] that a compact complex manifold is the quotient of a Lie group
by a discrete subgroup if and only if it is parallelized by holomorphic vector fields.
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