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TuEoREM 12.1. Let p: E— 8" and q: E' — S" be cell-like mappings of compact
ANR’s onto S™. Then for each £>0 there exist mappings h: E—~E’ and g: E'— E
such that d(qh, p)<e, d(pg, q)<e and the composites hg and gh are homotopic to
the identity.

Theorem 12.1 follows also from [1] and [15] in the case when E = E' = §",
n # 4, ’ .
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The Bing-Borsuk conjecture is stronger than
the Poincaré conjecture

by
W. Jakobsche (Warszawa)

Abstract. It is shown that the existence of a fake 3-cell implies the existence of a 3-di-
mensional homogeneous compact ANR-space which is not a manifold.

We say that the space X is homogeneous, if for every pair of points x, ye X

. there exists a homeomorphism A#: X — X such that h(x) = y. We are concerned

with the following conjecture:

CoNJECTURE 1 (Bing, Borsuk [4]). Every n-dimensional homogeneous compact
ANR-space is an n-dimensional manifold.

In dimensions 1 and 2 this conjecture was proved by Bing and Borsuk in [4].
Here we prove that in dimension 3 Conjecture 1 is stronger than the Poincaré con-
jecture,

CoNsECTURE 2 (Poincaré), Every homotopy 3-sphere is homeomorphic to
a 3-sphere.

By a homotopy 3-sphere we mean a closed 3-dimensional manifold which has
a homotopy type of 3-sphere. We shall use the term fake 3-cell for a compact
contractible 3 -manifold which is not homeomorphic to a 3-cell. Itisknown ([61, p. 26)
that (2) is equivalent to the statement that there are no fake 3-cells, Our main goal
may be formulated as follows:

THEOREM 3. If there exists a fake 3-cell F, then there exists a 3-dimensional
homogeneous compact ANR-space K which is not a manifold.

The proof of Theorem 3 consists of several parts: first we shall construct the
space K (assuming the existence of the fake 3-cell), then we shall prove that
Ke ANR, that K is homogeneous, that K is not a manifold, and finally that
dimK = 3. All the time we shall assume the existence of a fixed fake 3-cell F with
a given triangulation (by [3] F can be triangulated) and with a fixed orientation.
Moreover, we can assume that there exists a homotopy 3-sphere H such that F is
obtained from H by removing from it a single open 3-simplex, in particular that
the boundary OF is equal to the boundary of a 3-simplex (see [6], p. 26).

4*
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L. The construction of X. We shall construct a sequence of 3-manifolds K, and
maps a;;: K; — K; such that X = lim{X;, «;}. We define X; inductively. For K, we
take the boundary of a 4-simplex, and we fix on it an orientation. Let us suppose
we have defined K;_; as a manifold with a given triangulation and a fixed orien-
tation. Then for each closed 3-simplex ¢ of K;_, we perform the following construc-
tion: we take the second barycentric subdivision of o, we choose one of it is closed
3-simplexes ¢’ such that ¢’ <Into, and we remove the interior of o’. Now we take
a copy F, of a fake 3-cell F and we construct the space (e\Inte") U f, F, where
Jot OF,— 8o’ is a simplicial homeomorphism which reverses the orientation (both
00'c K, and OF, have a triangulation of a boundary of a 3-simplex, and have
an orientation induced by the orientations of X;_, and F,, respectively). Performing
this construction for all 3-simplexes of K;_,, we get a new manifold K;, with an
orientation determined by the orientation of K;_, (i.e. the orientations induced
on g\Inte’ by the orientations of K; and K, are equal for each ¢). The triangu-
lation of X; is determined by the second barycentric subdivision on each set of the
form o\Int¢’, and it is a fixed triangulation of F on each set F,. K; is in fact homeo-
morphic to a connected sum K., # H, # H, #..# H, where each H;is a copy of
the homotopy 3-sphere H (see [6], p. 24]. We define 010 Ky— K;_ 4 as follows:
for each 3-simplex ¢ of K;., we take a;;~1/(6\Inte’) = ido\Inte’ and on each

FocK; we let w;;4|F,: F,—¢' be any simplicial map which, restricted to

do' = 0F,, is equal to the identity map. Finally, we take

Qij = Ojpgj " O oy oo Xyyy

for j<i. By a;: K~ K, we shall denote the natural projection of K =

Hm{K;, a;)}
into K;.

II. Proof that K e ANR. Let X; be as in I. Since dimK; = 3 we can consider K,
as a polyhedron lying in the Fuclidean space E’. Let {61,02, .., o, be the family
of 3-simplexes of X;, and let {G,, ,, ..., &,} be the family of 7-simplexes in E’
such that for 1<j<k<n, d; contains ¢; as a 3-dimensional face and for J#k we
have &; N &, = 0; N g;,. Moreover, we can require that diame; = diam ; for
I<j<n;. We put B, =6, Ud,..u G,,- Of course B;o>K,. Let us notice that
K44 can be realized as a subpolyhedron of B,. In fact, each fake 3-cell 7, , attached
in the construction of K., instead of the removed simplex ¢}, can be realized as
a subpolyhedron of &; such that oF, ;= 050 Fy,, and that each simplex of F, ; has
diameter smaller than }diamo;. Moreover, we can claim that X L1 S B e By

o0
So we can assume ﬁhat B> B, Byo... Itis easy to check that (B, is homeomorphic
i=1
to K. For each 7 polyhedra K, and X, 1 and consequently B, and B, 1 have the same
homotopy type, so there exists a retraction rii By— By.q (see [10], p. 39). Moreover,
we can claim that for each 0;<B;, r(&)=6;. The last condition implies that

o0
{ri-rioq-..or(} is a sequence of maps convergent to the retraction r: B, — \B,,
i=1

which proves that Ke ANR.
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1. Some auxiliary remarks. Let 2 be the family of 3-cells contained in the
interior of a given 3-manifold M. By S(2) we shall denote the sum of all interiors
of 3-cells Z e Z. In all the cases where we say that M is orientable we assume that
we have a fixed orientation on M and the induced orientations on oM, and on Z
and 8Z for every ZeZ.

We shall say that a family & of 3-cells in the interior of a given 3-manifold M
is good if: 1) for every Z,,Z, e %, Z; +# Z, wehave Z, N Z, = &, 2) each Ze &
is a tame 3-cell in M, i.e. (M, Z)'is homeomorphic to a polyhedral pair, 3) Z is
a null-family in M, i.e. for every >0 the set {Z e Z': diamZ> ¢} is finite, 4) (%) is
dense in M. The following proof of the lemma is due to H. Toruficzyk:

Lemma 4. Let M and N be orientable 3-manifolds let h: M — N be an orientation-
preserving homeomorphism, let % and & be two good families of 3-cells contained in
the interior of M and N respectively and, for every (Y,Z)e ¥ x %, let ¢%: 0Y —0Z
be an orientation-preserving homeomorphism. Then there exists a bijective function
p: W — & and a homeomorphism h': M\S(@)—=N\S(%) such that I'|0M = h|0M,
and K1Y = ¥ for every Yed. ‘

Proof. Without loss of generality we can assume that N = M, h = idy;, and
diamM< 1. Bach ¢% can be extended to a homeomorphism ¥%: ¥ — Z for Y‘e@
and Ze %, Let = {Y%: Ye®,Ze%}, H(M) be the set of all homeomorphisms
of M which are an identity on oM, .

%, ={Ze%: diamZ>2"", ¥, = {Ye¥: dam¥Y>2""}

and, for any fe H(M) and any family &~ of subsets of M, (7)) = {f(T): Te T }.
We shall construct inductively homeomorphisms f,,, g, € H(M), n = 1,2, ... such
that the following conditions are satisfied:

(a,) if Ye%,, then there is a Z € & such that £,(Y) = ¢,(Z) and g{lﬁ,l Yey,

(a,) if ZeZ,, then there is a Y e® such that £,(¥) = g,(Z) and g, '£,| Ye ¥,

(b,) diam f,(¥)<2~" for every Ye@\@, v f; '9.(Z).

(b)) diamg,(Z)<2™" for every Z e Z\(Z, U g, ' [(#.),

(Cn) f;ll Y :-.f;,_1| Y for every quyn—i Uf;::ign—](-dzn—i):

€)' gulZ = gu4)Z for every ZeXp_y L 451 fu-1@-1),

(d) dist(f,, fo) <272, dist(f,™ ", £ <272,

(dn)’ diSt(gn: g"_])gz-ws’ diSt(gn_lo g;}1)<2—"+3' s

Then f = limf, and g = limg, are in H(M) (see [2], p. 121), b = g7'f is
a homeomorphism such that &'(M\S@)) = M\S(Z) and h'|Yey for every
Ye®. So we can take & = h'|M~S@) and p(¥) = h"(Y) for every Ye&.

In the construction of f, and g, we shall need the following

SUBLEMMA. Let 7~ be a good family of 3-cells in M, let 7y be a ﬁnfte sub-
Jamily of &, and let u e H(M). Then for any £>35>0 there exists a v € H(M) such
that:

T =uT for any TeTy,
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diamv(T) <3 for any T'e I\ ; with diamT<¢ and diamu(T)<e; and dist (o, w<e,
and dist(v™%, u"Y<e. .
. Proof of the sublemma. For any element T of the finite family

To = {TeI\T: diamT<e and s<diamu(T)<e}

we find an open 7 -saturated neighbourhood Uy homeomorphic to an open subset
of R?, such that diamUp<e and diamu(Up)<e. Moreover, we can require that
Ur, " Up, =@ for any T\, T, €Ty, Ty # Tj, and that Uy n T = & for any
Tedo, T'e7 ;. By Lemma 2 from [9] there is a v’ € H(M) such that V'(x) = x
for xe M\ | Uy and diam(w'(T)) <6 for any Te 7 with T | Up. Tt is easy

Ted o TeT o
to see that v = wv' satisfies all the conditions of the sublemma.

The inductive construction: we put fo = g, = id,,. Suppose that for some
n=1 f,—; and g,.; are already constructed. Using (b,) and the sublemma
with & = 27"*", § = min{diam f,_,(¥): Ye¥\¥, |}, T =%, 9, =2,_,u
Vgt foo1@,-)) and u= gn—1, We get a new homeomorphism ve H(M) such that:
UZ=g,4|Z for ZeT |, diam(v(Z))<$ for ZeZ\T,, and dist(v, Gumg) <270
dist(v™*, g5-t) <271, Given Ye#,N(£ol g, (- )U ¥, 1), we can use (b,_,)
to get an % -saturated neighbourhood Uy of ¥ which is homeomorphic to an open
subset of R* and satisfies diam Uy <2~ and diam Jo-1(Uy) <27+ we require in
addition that the Uy’s are pairwise disjoint and miss the elements of Yoy U
uf, -t 9n-1(Z4-1). Note that f,_,(Y) is not contained in any element of v(%) and
hence there is aZyeINZ NGy S 1 (¥,_ 1) With v(Zy) < fy-1(Y). Since every Ye@
and Ze Z is a tame cell in M, it follows from Annulus, Theorem [8], that we can
find a w e H(W) such that: w(x) = x if x is in none of the Uy's, wf—1(Y) = 0(Zy)
and w™lof, ||Y ey where Y runs over @,,\@,,-Aj},:ig,,_1(:’!‘,,_1). Applying the
sublemma again with & = 27"%2, § = min{27", diamo(Z): Ze X \Z, .}, T =¥,
T1=%, uﬁ,:ig,,_l(&",‘_l) and u = wf,_, we get a homeomorphism f, € H(M)
such that f,| ¥ = wf,_,|¥ for Ye T4, diam f,(Y)<§ for every Ye@\J,, and
dist(f,, wf,_;)<2™"*! and dist(f, %, Oufymg) ™) <2702 It s easy to see that,
With v in place of g,, conditions (a,), (by), (c,) and (d,) are satisfied. Now, given
ZeZN\Z, N o@,_,), the set v(Z) is not contained in any member of S
and hence there is a Yy e NN o(%, ) with f( Y)ev(Z). Using [8],
the Annulus Theorem, and the sublemma again as in the construction of w and f,
above, we get g, € H(M) such that GlZ=0ZifZe, ., uv! S #,), and con-
ditions (a,)’, (b,)’, (c,)" and (d,) are satisfied. This completes the inductive con-
struction and the proof of Lemma 4.

Next we shall prove

Lemma 5. If & is a good Jamily of 3-cells in the interior of a 3-manifold M,
and G is a decomposition of M whose non-degenerate elements are exactly the elements
of &, then M|G is homeomorphic to M.

Proof. By Lemma 4 we can assume that there is a triangulation 7 of M. , such
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that the 2-skeleton of v misses all the elements of 2. For every 3-simplex o of = it
follows from the proof of Theorem 2 in [9] that there is a homeomorphism
gt o= w(0) with h(x) = m(x) for each x € do where n: M — M/G is a projection,
The h,’s glued together yield the required homeomorphism 4: M — M|G.

Let X; and F,< K; be the sets described in Section I for a fixed natural i and for
a fixed 3-simplex o of K. We denote (F,dF) = (o] {(F,), of Y(0F,)), where
o;: Lim(K;, o) — K is the a natural projection. It is casy to see that, if we take any
other natural number i’ and simplex o, we shall get a pair (F/, 6F ") homeomorphic
to (F, 0F). ay|0F, = idsp, for j2i; so of !|0F,: 0F,—9F is a homeomorphism
of 2-spheres which induces an orientation on aF.

For every orientable 3-manifold M we let M* to be a faily of metric spaces
such that: X'e M* iff there exists a good family & of 3-cells in M such that

X =M\S&)u UF, and 1) for every ZeZ there is a homeomorphism
76

/4 @,
9z F—=Fy;2) Fy 0 Fyy = @for Z, # Z, and (MN\S(2) n Fy = 0Z = g,(0F)
where Z e £, and moreover ¢,|0F: aF — 8Z is an orientation-reversing homeo-
morphism; 3) X is equipped with a metric in which for every >0 the set
{ZeZ: diam F,>¢} is finite. Of course each X e M* contains the oriented boun-
dary M of M. We shall denote it by dM or 0X alternatively.

Lemma 6. If M and N are orientable 3-manifolds, h: M — N is an orientation-
preserving homeomorphism, and X, € M* and X, € N*, then there is a homeomorphism
ki Xy — X, such that K|oM = h|oM.

Proof. We have two good families of 3-cells: % in M and & in N, such that
X, =MS@) v U Fyand X, = N\S(@) v | F, and two families of homeo-

Ya®/ ZeX
morphisms {gy: F— Fy}yew and {gz: F— Fj}ee. If we put o% = (g7 D0 Y
for (¥,Z) e ¥ x %, we shall get by Lemma 4 a bijective function p: # — % and
a homeomorphism A': MN\S(@)— N\S(%) satisfying all the conditions of
Lemma 4. Putting fi(x) = A'(x) for all x e M\S@) and h(x) = (g gy ) (x) for
xefy, Ye®, we get the required homeomorphism.

Lemma 7. Let P be a subpolyhedron of K, (in the fixed triangulation of K,) which
is a 3-manifold. Then ay '(P)eP*. In particular K € K;¥ for every natural n.

Proof. It follows from the construction in Section I that K, an"“
= KNS(&',) where &, is some finite family of 3-cells in X,. If we put & = iyl&“’,,i
and #p = {Ze¥: Z<P), then &p is a good family of 3-cells in P. S{nce
Ul PNS(Z'p) = idp\grpy for mzn, the projection o, establishes a hOIIleOl.norp‘hlSm
between o, ' (P\NS (%)) and PN\S(Zp); in the sequel these sets will be identified,
ie oy '(P) = P\S(Zp)u U F, where Fy = o« *(Fy) and Fy is a copy of the fake

ZeX'p ) . i
3-cell F attached in the ith step of construction I instead of the removed interior of

a 3-cell Ze %y Of course Fy is a copy of F, 0F, = 8Z and this identification re-
verses the orientation for each Z e & p. It is easy to check that in any metric coin-
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cident with the topology of K the set{Z e #'p: diam F,> ¢} is finite for every >0
So «, }(P) e P*.

LemMA 8. For every orientable 3-manifold M and every X € M*, X e (M 4 H)*
where Hy is some copy of the homotopy sphere H.

Proof. We have X = M\S(Z) v U F; for some good family & of 3-cells
Ze%

in M. Tt follows from Lemma 7 that Fy, & Fy, for any Z; € Z. So Fy, = FN\S@)u
u |J Fy where F, is a copy of F, and & is a good family of 3-cells in it. Letting
¥

Y
T =% uZ\{Z,}, we hence have X = ((M\IntZ;) v F))\S(") U TU Fp, but
: ad”

(M\IntZ,) v Fy = M4 H, for some copy H, of H, and 7 is a good family of
3-cells in M4 H,. This completes the proof.

IV. Proof that X is homogeneous. Let x, y € K. We find two sequences {U}},.y
and {V}.y of open sets in K such that x = U, y = NV, UinUyyy, Vio Vigy
leN ieN

for every i, and each of U; and V; has the form «; '(4) where 4 is some open poly-
hedral 3-cell in K for some natural j = j(7). For example we can take 4 to be an
open star of some vertex of K;, for j suficiently big. Moreover, we require that for
i=1j=j1)=1 and so U; and V; have the form a7!(4) for some open
3-cell A=K, and that j(k)<j(l) for any natural k<l It is easy to see that the
construction of the sets U; and ¥, is always possible,

By Lemma 7 K\U, € (Ki\4,)* and K\V; € (K;\4})* for some open 3-cells 4,
and 4 in K. So by Lemma 6 there is a homeomorphism /,: K\U; — K\V; such
that 7,(0U;) = 8V and that ,|6T,: 80U, — 8V, is a homeomorphism preserving
the orientation. Let us suppose we have constructed a homeomorphism
By KNU, — K\V, such that h,(0U,) =8V, and that a homeomorphism
1,)|0U,: 8U,— 0V, preserves the orientation. For p = j(n) and g = j(n+1) w
have polyhedral open 3-cells 4,, A,< K, and 4,, A;= K, such that ‘

UnNUnsr = 0 (ANt H(A4g) = o Mg (A NA,)
and
ViNVars = o7 1(“:;1:1(‘1;)\‘4;) .
By Lemma 7
UNUpsr € (0 @ENA)*  and TNV, e (o CAINA* .

From construction I it follows that there are orientation-preserving homeo-
morphisms from ocq"pl(Z,,)\Aq onto Dy 4Dy H, 4.4 H, and from g (AN,
onto Dy 4 Dy 4 Hy #...4 H,,, where D, and D, are 3-cells, each H;is a copy of H,
and r; and r, are two naturﬂ numbers. So using Lemma 8 and Lemma 6, we get
a  homeomorphism E,,:I: UNUpsy— V\Vy4y such that k,,,(00, = 4|00,
and .that Py 1|0Uy 412 0T,  — 0 Vi1 18 an orientation-preserving homeomorphism.
Putting A, (x) = h(x) for xe K\U, and By () = By (x) for xe ONU,.q
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we get a homeomorphism /4 10 K\Upy.q = KNV, such that i1 (00,0 ) = 87,
and that the homeomorphism 4,,,|00,4: 8T, — 0V, preserves the orien-
tation. So we have inductively defined #, for each ne N, and we can define 2 homeo-
morphism h: (K, x) — (K, ) putting Al(K\U,) = h,|(K\U,) for each ne N and
h(x) = y.

V. Proof that X is not a 3-manifold. Let us suppose that X is a 3-manifold.
By Lemma 7 K e K for every natural , i.e. K = K\S(Z,) U Fy where #, is
Ze,

a good family of 3-cells in K, and there exists a family of h:)meomorphisms
{970 F— F3}yez,. For every e>0 the set {ZeZ,: diam(F;)>g} is finite. This
implies that there exists a Z, &2 and a 3-cell Q contained in K = K\S(Z,) U

v U Fyz, such that Fy,cIntQ. It is easy to see that the quotient space X,/Z, is
Ze#n
homeomorphic to K,. Let ny: K, — K,/Z, be the quotient map. We consider a fam-

ily @ of 3-cells in K,/Z, defined as follows: Y e iff there exists a Z e Z\{Z,}
such that mo(Z) = Y. It is easy to check that & is a good family of 3-cells in
K,/Z,. Now we consider the space

K/F 70 = (K\S(Z,) U zeL.'Jz F z)/F Zo

and the corresponding quotient map n;. We have

K/on = ni(Kn\S(&’n)) U U
Ze2,\{Zo}
We identify 7(K,\S(%,)) and ny(K,\S(Z) = (K, NZNS(@). Then the family
{ny 9.t F— mi(F)}zea(zo) i @ family of homeomorphisms satisfying the require-
ments of the definition of the family (K,/Z,)*. So K/F, € (K,/Zo)*, and Trom Lemma 6
and from the fact that K,/Z, and K, are homeomorphic we deduce that K/F,
and K are homeomorphic. Since Fy, is contained in a 3-cell Q=K, we can easily
deduce from [5], Theorems 3 and 5, that Fy, is a cellular set in K.
We shall prove that F is cellular for every Z € Z,,. For this purpose we take any
Z,e#, and we consider the space )
EN\IntFy, = (KNItZ NS(@&NZhov U Fy.
Zedn\{Z1}
Z,\{Z,} is a good family of 3-cells in K, \IntZ;, so we have K\Int F, & (K,\IntZ,)*,
and by the same argument KN\IntFy, e (K,\IntZ,)*. Of course

(92,0F) (92,10F)™*: 0Zy — 0Z,

is a homeomorphism preserving the orientation (mote that 6Z; =Fyz, <K, and
0Zy<Fy = K). There exists a homeomorphism k: K,\IntZ,— K\IntZ; such
that Al0Zy = (g,,|0F)(g2,]0F)™*, and so by Lemma 6 there exists a homeomorphism
i KN\Int Fze— K\Int Fy, such that Bl0Zy = (g2,|0F) (9z,/@F)™*. ki can be extended
to a homeomorphism #': K — K if we put h'(x) = gz,9z, " for xe Fpo 1t is easy
to sce that h'(Fy,) = Fy,. This implies that F,, is cellular in X for any Z; e Z,.

Let us consider the decomposition G, of the space K = KN\S(Z,) uzg'nﬁz

731(Fz) .
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whose non-degenerate elements are the sets F, for all Ze &,. The quotient space
K/G, is homeomorphic to K,/G, where G, is the decomposition of K, whose non-~
degenerate elements form the good family &,. By Lemma 4 K,/G;, and so K/G,
is homeomorphic to the 3-manifold K,. Since we have supposed that K is
a 3-manifold and G, was shown to consist of sets which are cellular in K, it follows
from the theorem of Armentrout (see [1], p. 66, Theorem 2) that X is homeomorp-
hic to K, for every natural n. This implies that K, is homeomorphic to K,. K; is
a 3-sphere and K, contains the fake 3-cell F, which is impossible (see [5], The-
orem 5). This proves that K is not a 3-manifold.

VI. Proof that dimK = 3. dimK<3, because dimK, = 3 for every n and
K = lim{K,, &,,} and dimK>3 because H3(K,Z) # 0 (see [7], p. 152).

The author would like to thank H. Torufczyk for his help in the prepara-
tion of this note.
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A theorem on the weak topology of C(X) for
compact scattered X

by

Roman Pol (Warszawa)

Abstract, We prove that if a function space C(X), where X is a compact scattered space,
is K-analytic under the weak topology, then C(X) is a WCG space, i.e. X is an Eberlein compact.
This result is related to a recent author’s example of a non-WCG space C(X) with X compact
scattered, which is LindelSf in the weak topology, a recent example of Talagrand of a non-WCG
space C(K), which is K-analytic in the weak topology, and the recent theorem of Talagrand that
every WCG Banach space is K-analytic in the weak topology. ‘

1. Introduction. Tt was an old problem of Corson [6] whether the WCG Banach
spaces (the terminology will be explain in the next section) are exactly the Banach
spaces which are Lindelsf in their weak topology. An example of a Banach

" space which is Lindeldf in the weak topology but not WCG was given by Ro-

senthal [12] and, on the other hand, Talagrand [15] proved that a WCG Banach
space is 2 -analytic (which is much more than the Lindeldf property) in the weak
topology. It was still open after these works if the Corson’s problem has an affirm-
ative solution in the class of function spaces [9], Problem 6, &', [4], Problem 7.
Recently, the author [11] and independently, about the same time, Talagrand [16]
constructed the appropriate counterexamples. The content of these examples is
however quite different. The function space C(X) in the author’s example is not
A -analytic in the weak topology, while the compact X is scattered, whereas the
Talagrand’s space C(K) is 2 -analytic in the weak topology, but the compact K is
not scattered,

The aim of this paper is to show that if a function space C(X) is o -analytic
in the weak, or pointwise topology and the compact X is scattered, then C(X) is
a WCG-space, or equivalently — X is an Eberlein compact.

It is worth while to mention that one can exploit the Talagrand’s example to
show (1) that in fact there is no topological property which is invariant under con-
tinuous mappings, closed hereditarily and characterizes the Eberlein compacts as
the compacts whose fanction space in the weak. (or pointwise) topology has thlS.

(*) By means, for example, of the reasonings given in [11], the proof of Lemma 1; cf. also [2]:


Artur




