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whose non-degenerate elements are the sets F, for all Ze &,. The quotient space
K/G, is homeomorphic to K,/G, where G, is the decomposition of K, whose non-~
degenerate elements form the good family &,. By Lemma 4 K,/G;, and so K/G,
is homeomorphic to the 3-manifold K,. Since we have supposed that K is
a 3-manifold and G, was shown to consist of sets which are cellular in K, it follows
from the theorem of Armentrout (see [1], p. 66, Theorem 2) that X is homeomorp-
hic to K, for every natural n. This implies that K, is homeomorphic to K,. K; is
a 3-sphere and K, contains the fake 3-cell F, which is impossible (see [5], The-
orem 5). This proves that K is not a 3-manifold.

VI. Proof that dimK = 3. dimK<3, because dimK, = 3 for every n and
K = lim{K,, &,,} and dimK>3 because H3(K,Z) # 0 (see [7], p. 152).

The author would like to thank H. Torufczyk for his help in the prepara-
tion of this note.
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A theorem on the weak topology of C(X) for
compact scattered X

by

Roman Pol (Warszawa)

Abstract, We prove that if a function space C(X), where X is a compact scattered space,
is K-analytic under the weak topology, then C(X) is a WCG space, i.e. X is an Eberlein compact.
This result is related to a recent author’s example of a non-WCG space C(X) with X compact
scattered, which is LindelSf in the weak topology, a recent example of Talagrand of a non-WCG
space C(K), which is K-analytic in the weak topology, and the recent theorem of Talagrand that
every WCG Banach space is K-analytic in the weak topology. ‘

1. Introduction. Tt was an old problem of Corson [6] whether the WCG Banach
spaces (the terminology will be explain in the next section) are exactly the Banach
spaces which are Lindelsf in their weak topology. An example of a Banach

" space which is Lindeldf in the weak topology but not WCG was given by Ro-

senthal [12] and, on the other hand, Talagrand [15] proved that a WCG Banach
space is 2 -analytic (which is much more than the Lindeldf property) in the weak
topology. It was still open after these works if the Corson’s problem has an affirm-
ative solution in the class of function spaces [9], Problem 6, &', [4], Problem 7.
Recently, the author [11] and independently, about the same time, Talagrand [16]
constructed the appropriate counterexamples. The content of these examples is
however quite different. The function space C(X) in the author’s example is not
A -analytic in the weak topology, while the compact X is scattered, whereas the
Talagrand’s space C(K) is 2 -analytic in the weak topology, but the compact K is
not scattered,

The aim of this paper is to show that if a function space C(X) is o -analytic
in the weak, or pointwise topology and the compact X is scattered, then C(X) is
a WCG-space, or equivalently — X is an Eberlein compact.

It is worth while to mention that one can exploit the Talagrand’s example to
show (1) that in fact there is no topological property which is invariant under con-
tinuous mappings, closed hereditarily and characterizes the Eberlein compacts as
the compacts whose fanction space in the weak. (or pointwise) topology has thlS.

(*) By means, for example, of the reasonings given in [11], the proof of Lemma 1; cf. also [2]:
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- property. Our result shows that, when restrict ourselves to the class of all scattered
compacts, the £ -analycity is such a property.

The author would like to thank to K. Alster for some valuable conversations
about the subject of this paper.

2. Terminology and notation. Our terminology follows [7], [9] and [13]. The
symbol N stands for the set of natural numbers; |4| denotes the cardinality of a set 4
and |1 is the cardinality of an ordinal 1; all cardinals are assumed to be infinite.
In Section 5 we shall use some basic facts about the stationary sets of ordinals; all
needed material one can find in [8], Chap. X, § 1.

For a compact space K we denote by C(K) the Banach space of all continuous
real-valued functions on K endowed with the sup-norm; the same set equipped with
the pointwise topology is denoted by C,(K). )

A Banach space is weakly compactly generated (shortly WCG) if it is the closed
linear span of a weakly compact subspace; a function space C(K) is WCG iff K is
an Eberlein compact, i.e. if K can be embedded in a Banach space with the weak
topology, or else — if X can be embedded in some C,(T) with compact T [9]. In the
sequel we exploit the following characterization of Eberlein compacts [12]
(cf. also [3], [4] and [1]): K is an Eberlein compact iff there exists a o -point-finite
family % of open F,-sets in X which separates the points of K (3); if X is zero di-
mensional one can assume that % consists of clopen sets.

A completely regular space 4 is & -analytic [5] iff it is the projection of some
closed subset of the product 4x N, where 4 is a compactification of 4 (3).

3. Auxiliary facts. The following recent result of Alster [1] will play a very
important role in the sequel.

ALSTER’S THEOREM. Let K be a compact scattered space and let F be a family
of closed subsets of K such that every point of K belongs to less than t members of F,

where t is a regular cardinal. Then there is a decomposition & = U&,, such that
seS

|F <t for every se S and the family {|J #,: se S} is point-finite.
We need also the following two simple (and certainly well-known) facts about
A -analytic spaces.

- Lemma A ([16], Cor. 12). If X is a compact space with C,(K) oA -analytic, then
© the weight of K is equal to its density (*).

LemvA B. If a space A4 is A -analytic then there exist sets Ayyois  Where
(15 s ) runs over all finite sequences of natural numbers, such that

(*) We say that a family + of subsets of a set A separates the points of a set B C A if for every
pair of distinct points from B there is a member of # which contains exactly one of them.
(*) The choice of 4 is inessential. The JG-analycity is a substitute of the classical notion of
_ analycity for non-metrizable spaces. .
() It follows from the fact that C,(K) admits a continuous injection into a space of weight t
‘equal to the density of X and the well known fact (cf. [10], 3.15) that if a J¢-analytic space has
such an injection, then it has a net of cardinality < t.

° ©
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(1) 4= %JAH Ahmlk = EJAis.mikl;

@) if G)eN" and a,€ ;... then the sequence (@) has an accumulation
point in 4.

Proof. Let 4 be a compactification of 4 and let F be a closed subset of the
product A x NN which projects onto 4. Given a finite sequence of natural numbers
(il: rern ik) Put

Nt = {Um € NV: ji, = 1, for m<k}

and let A;,..;, be the projection of the set F'n (Ax Ny,..,) parallel to N"-axis.

4, ToeoreM. If X is a compact scattered space whose function space C(X) is
A -analytic in the weak, or equivalently — in the pointwise topology, then X is an
Eberlein compact.

Remark. Recall, that for a compact scattered space X the weak and the point-
wise topology coincide on every norm-bounded subset of C(X) ([13], Cor. 19.7.7).
We shall consider in the sequel just the pointwise topology, i.e., the space C,(X)
(see also [16], Théoréme 4).

5. Proof of the theorem. The proof goes by induction with respect to the
cardinality of X (cf. the proof of the proposition in [1]) (®). So, let us assume that

(%), if K is a space of cardinality less than m satisfying the assumptions of the theo-
rem, then K is an Eberlein compact,

and let X be a space of cardinality m which satisfies the assumptions of the theorem.
We shall consider separately the case of singular m and the case of regular m.

A. The case of singular m. We begin with the following

LEMMA 1. Let % be a family of clopen subsets of X of cardinality |%| <m. Then
there exists a o-point-finite family ¥~ of clopen sets in X such that \) V"< U % and
if U separates the points a,be X then so does V.

Proof. Let ¢y be the characteristic function of a set Ue%. The diagonal
mapping ¢ = 4{py: Ue®} maps X continuously onto a compact subspace K
of the Cantor cube of weight [%|. Thus K is a compact, scattered space ([1‘3], Prop-
osition 8.5.3) of cardinality <m (see footnote () and C,(K) is o -analytic (as the
mapping adjoint to ¢ embedds C,(K) onto a closed subspace of C,(X)); by the
inductive assumption (¥) we infer that K is an Eberlein compact. ObserVe. that
XNU % = @~Y(p), where p s the point of the Cantor cube with allﬂ coordinates
equal to 0, Let % be a o-point-finite family of clopen subsets of K which separates
the points of K (see Sec. 2); one can assume moreover that p¢ U # . We take
¥ = {p~(W): WeW}.If % separates points x, y € X, then ¢ (x) # o () hence ¥
separates the points ¢ (x), ¢(y) € K and thus ¥ separates the. pomts' x, y.

We pass to the proof of the case A. There exists an increasing sequence

(®) Recall, that the weight and the cardinality of a scattered space coincide.
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Xi=..cXo..cX, {<A of sets such that X = | X, |X/<m and || = n<m.
&<

For every <A choose a family %, of clopen subsets of X fo cardinality U <m

which separates the points of X,. Let us replace each %, by a family ¥ & as in

Lemma 1. The family %" = (J #°, consists of clopen sets, separates the points
E<A

of X (as |J %, does) and each point of X belongs to at most n members of 4.
E<a

Using Alster’s Theorem (where t is the succesor of 1) we obtain a decomposition

W = UWs where [#|<nfor se S and the family {W;: W, = U#,,5e8)} is
se8

point-finite. Using once again Lemma 1 we take for every s &S a o-point-fnite
clopen family %, which separates the same points as %, and ) %, W,. The family
% = U 9, is o-point-finite, consists of clopen sets and separates the points of X,

seS
Thus X is an Eberlein compact.

B. The case of regular m. Let A be the initial ordinal of cardinality m; in
the sequel Q stands for the set of all ordinals less than A and A< is the set of all
limit ordinals from Q.

LemMa 2. Let Xyc...cX;c..cX, <] be an increasing sequence of closed
subsets of X of cardinality <m such that X = ) X:. If the set
&<

L={ted: X\ U X, # @)
a<&

is not stationary in Q, then X is an Eberlein compact.

Proof. Let f: L— Q be a regressive function such that | S ()] <m for every
«eQ; extend f over Q letting f(x+1) = « and f(0) = « for a e ANL. For every
&< 1 we choose a family % ¢ of clopen subsets of X of cardinality <m, disjoint
from Xj such that the family {W ~ (X \X;p): WeW,}is a base of the space

X Xy, Put % =€Ul“llf¢. Given a point xe X we have x e X, for some £<A
<

and thus x can belong only to the members of the family (J {#",: f(@)<¢&} of cardi-

nality <m. Let x,, x, be distinct points of X and let £, be the first ordinal ¢ with

X;€ X;; assume that ¢, <&, = 5. Observe that 1 is either non-limit, or y e L; in

both cases f(n)<n and hence x, e X \Xpopy. Since x, € X, there exists WeW’,

with x, € Wand x, ¢ V. Thus % separates also the points of X. By Alster’s Theorem

(where t = m) we have a decomposition % = U %,, where |%,|<m and the family
sef

{U%,: se S} is point-finite. Now replace each family %, by a family ¥, as in

Lemma 1. The family ¥ = J ¥, is clopen, o-point-finite and separates the points
seS

of X, which completes the proof.

We are ready now for the proof of the case B. Let 4 1o Cp(X) satisfy the
condition (i) and (i) of Lemma B, Sec. 3. Let X = {x,: «<1} and put
X; = {x,;: a<¢} for {<A The sequence Xic..cXc..cX is as in Lemma 2,
by Lemma A, Sec. 3 (cf. also footnote (°)). Put

@
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Pi=X~NUX, and L= {{ed: P +@}.
a<é

" A property of the sequence (X) which will be important in the sequel is that

Xy = UX, for every limit ¢<A.
a<E
Suppose that X is not an Eberlein compact; then, by Lemma 2, the set L is
stationary. Our goal is to derive a contradiction from this statement. .
We shall construct inductively: a) natural numbers iy, iz, ..., b) points
ay, a, - € X, ¢) functions SfisJfas o € C(X) such that

(cy) Je€ Apyoes
(c2) fila) =1 if izk,
[CH) ' flay =0 - if  i<k.

Assume that we have done it. Let a & X be an accumulation point of t.he sequence (a)
and let fe C,(X) be an accumulation point of the sequence ( f;), which exists by the
condition (iig of Lemma B, Sec. 3. By the condition (c;) we have f(a) =1 for
every k & N and, by continuity of f, also f(a) = 1. On the otllxer. hand, the cgin-
dition (c5) gives fi(a) = 0 for every ie N, and thus f (@) = 0. This is the contradic
N 6 )

tion we were looking for (°). . . ' o

It remains to construct the desired objects. This requires some preliminary
reasoning. Let us put for arbitrary A=X

L(4) = {feL: P,n A+ @},
and let ‘ ‘ )
F=X\U{UcX: Uis open and L(U) is not stationary} .
The space F contains an isolated point p (F # @, as X is compact and L ;t?tio]il:ryzé
et Z be a clopen neighbourhood of p in X such that Z r\.F = {p} an Fe V};
E = L(Z)\{a: a<7t} where pe X,; of course the set E is stat1ona;y. orte. g
y a pol ighbourhood ¥, of p, containe
e E choose a point pyePrnZ and a clopen neig : : '

ifn Z\X,; since Vy is compact and disjoint from F, the set L(¥) is not stationary
Let fy & C,(X) be the characteristic function of the. set I/:g. '

We pass to the construction. We shall define inductively:

(2) natural numbers iy, iz, ... and points ay, a, ... from Z,

(by stationary subsets Ey>E;>... of the set E, ,

(c) ordinal numbers A, € E,
such that for k1 the following conditions held:

(o) Ec{& fiedyt,
(B fla) =1 for te B,
() fala) =0 for i<k.

(% Similar reasonings appear in the
‘compactness in function spaces (cf. [14],

standard proofs of a classical - theorem on countable
the proof of 11.1 in Chap. IV).
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To begin with put E; = E, 4, = C,(X) and assume that the construction is done
for k = n.

By the condition (i) of Lemma B, Sec. 3 there exists #,,, such that the set
G={lek: fe Ad;.q,,} Is stationary; the set H= G\L(V;) U ...u L))
is also stationary and for every & € H the set Ve\(Vi, U oo U V) = Wy is a neigh-
bourhood of the point p,. Since p,e UﬁX,x for ¢ e H, there exists s(&)<& with

a<

Wen Xy # . The function s: H—» @ is a regressive function with the stationary
domain H and therefore there exist a stationary set I H and an ordinal «e Q
such that Ics™*(z). Thus Wen X, # @ for every ¢ el and, since |X,|<m, there
exist a stationary set E.; =7 and a point gy, € X, such that .1 € Wy whenever
¢ € By . Finally, let A, be an arbitrary ordinal from E,, 1+ We have fy(a4. ) = 1
for &€ Ly q, as Wy Vyand also fy (a4 1) = 0 for i<k, as ey € Vi U UV,
This completes the construction. .

It is now easily verified that the conditions (c,), (c,), (¢;) are fullfield if we put
fi = f;, (indeed, if i>k then A€ B,y and therefore f;(a;) = 1).
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Kan fibrations in the category of
simplicial spaces

by

R. M., Seymour (London)

Abstract, The notion of Kan fibration of simplicial spaces is defined as a direct gznex;ghz—
ation of Kan fibration of simplicial sets. The covering homotopy property for these fibrations

is proved.

Introduction. The category of simplicial spaces Fsee § 1) has tvs{o h?;m:top}:
theories, which might be called, respectively, fcopollo.gxcal and algebrﬁm. The cngf
logical homotopy theory is based on the simplicial space j*, w ised sp;ierac
n-simplices is the unit interval I for each ‘n>0, and whose fa]cne.: an fe;m o ay1
operators are all identity maps. Thus, in ‘thI.S theory‘, two morp 1sn11)s- c} XXp_> o
spaces, f;: X - Y, i = 0, 1, are homotopic if there ‘1s a morphism h. ; - ei
such that, for each n20, F,|{i}x X = fi, for i = 0, 1. On the other . ailh, the fry
braic theory is the natural extension of the u§u.al hor'no.topy theory 1m e qrdeg o
of simplicial sets, and is based on the simplicial unit interval, 4[1], rega

iscrete simplicial space. ‘ o
: d]ST?.l;: (i)rséijllzllix1 [3],p11.9 and 11.10, that geom.etric reali_zatlon_ of sxmpixcnal fﬁ:g:; .
preserves both kinds of homotopies. Thus, in using tc'chm.ques. 1%1 homo opyld oy
which obtain results about spaces by first wor}<i11g with .snnpllcml spgceslzi | then
realizing (techniques which have beem much in vogue in lrec_ent yc:ils;e Sil f 13:; g
connection with infinite loop spaces), it is possible'to work with e%th;r ct) he st Eallcd
homotopy theories, whichever is the more convenient. The use ?I‘ w ?3 ]wHowever oy
the topological theory, has been fairly wides?read, for exampf} in th”;t o algel;raic
analogy with the category of simpliciz;l se'ts‘:l, it seems to the author tha '
homotopy theory should prove much richer. .

Thc? purpose of the present paper is to 'exteTxc'l some of t‘he Ziticular o fon
have been developed for simplicial sets, to simplicial spaces, Am p e fopo.
of Kan fibration. The corresponding notion of fibration 'Wlthg; resplezc o e
logical simplicial homotopy theory has been developed in [3], § 12,

5 — Fundamenta Mathematicae CVI

sic notions which
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