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DRUKARNIA UNIWERSYTETU JAGIELLONSKIEGO W KRAKOWIE

Generalized quantifiers in models of set theory
by

Malgorzata Dubiel (Warszawa)

Abstract. Generalized quantifiers as described by Keisler in [3] are considered. A complete
characterization of such quantifiers in models of ZFC and ZF set theory is given. It is also shown
that the generalized quantifiers introduced by Krivine and McAloon in [4] can be characterized
as certain subsets of those considered by Keisler (Lemma 3.5 and Theorem 3.6).

This paper is concerned with the kind of generalized quantifiers considered by
Keisler [3] and Krivine and McAloon [4]. One adjoins to first-order language a new
quantifier Qx which is interpreted as “there exist many x” and which obeys certain
natural schemata. Keisler considered quantifiers satisfying the additional schema

Qedye(x,») — [FyQxe(x, ») v Qydxp (x, 3.

Here we call such quantifiers regular.

After giving the basic definitions in Section 1, in Section 2 we give a characteri-
zation of regular quantifiers which are definable in models of ZF and ZFC. In
Section 3 we make some general observations about quantifiers. The main one is
that in a model of ZF any quantifier explicit in the sense of [4] generates in a natural
way an explicit regular quantifier.

1. Preliminaries. Let L be a countable first-order language. By L(Q) we mean
the Janguage obtained by adjoining to L a new quantifier symbol Q. As in [4] we
will interpret the formula “Qx¢(x)” to mean “there exist many x satisfying ¢”.
Also if M is a model of L then by L, and Ly,(0Q) we mean the languages L or L(Q)
respectively with constants for all elements of |M| adjoined.

DerINITION 1.1. Let M, N be two models of L and let M<N. Let ¢ be a for-
nmula of L with one free variable and with parameters from |M|. We say o is
preserved in N if

NEo@(@) — ae|M|.

@ is enlarged in N if there exist in N new elements satisfying ¢.

DErRINITION '1.2. Let M be a model of L and 2 be a family of subsets of |M].
A pair A = (M, 2) is called a weak model of L(Q). The notion of satisfaction
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is defined by the usual induction on length of formulas with the additional clause:
MEQxop(x) .=

- We think of 2 as the family of “big” subsets of |M]|.

DEFINITION 1.3. Let # = (M, 2) be a weak model of L(Q). We say 2 is
a generalized quantifier (or simply a quantifier) in M if the following axioms
are satisfied in
QD Vx(p—y) —
Q2 Qxpvy) —
Q3 Qx(x=x),
Q4 VyQx(x=1y).
If A satisfies also
Q5 QAxe — @xQyevQxdye),

then we say 2 is a regular quantifier in M. Axioms (Q.1)-(Q.5) are slightly different
from those given by Keisler in [3] but they are equivalent as was shown in [3].

DerINITION 1.4, Let' 2 and 2’ be two families of subsets of the same model M.
Denote (M, 2) by 4 and {M, 2') by #'. We say 2 and 2’ are equivalent over M
if for every sentence ¢ of L,(Q)

AaeM|: MEp@)}e2.

(Qxp — Qxy),
QxovQxy),

MEQo M E Q.
Consider the following expression:
* 2= {Ac]Mi: o e Ly(Q[ M EQrxo(x)& 4 = {ac |M|: #F <p(a)}]} .

Notice that for every family 2 of subsets of | M| we can find a unique family 2
satisfying () such that 2 and 2’ are equivalent over |M|. Hence sometimes we will
assume that a family 2 satisfies (x).

DerFINITION 1.5. Let M be a model of L and 2 be a quantifier in M. We say 2is
a definable quantifier in M if all elements of 2 are definable in M by formulas of Ly,.
We say 2 is an explicit quantifier if for every formula ¢ € L,,(Q) we can find a formula
¥ € Ly, which is equivalent to ¢.

One can easily check that if 2 is an explicit quantifier in M then 2 N Def (M)
is a definable quantifier in M and it is equivalent to 2 over M. Besides if 2, and 2,
are two quantifiers in M and they are equivalent over M then 2, n Def(M)

= 2, n Def(M) hence definable quantifiers are < -smallest in their equivalence
classes and they satisfy (x).

2. Regular quantifiers in ZF, ZFC, A, and A;. Until further notice by
“quantifier” we mean “regular quantifier satisfying (x).”
Now we start to characterize generalized quantifiers in models for ZFC and ZF
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set theories. We define cardinal numbers in ZF as in Jech’s book ([2], p. 152);
i.e., a cardinal »x will be a set having following properties:

L VaVy[x =x—(yex « %= 5&o(x) = oM,

2. VxVylxex& X = §— a(y) =0 (x)].

An infinite initial ordinal will be an aleph. An aleph x is singular if there exists
a function f such that dom () is an aleph < and for all y edom(f) f(y)is also
an aleph <s. We say aleph s is regular if it is not singular.

If a cardinal » can be well ordered, i.e., if

Ixdy(xex&yeOn&X =3%),

then there exists an aleph x such that § = x. In this case we will identify » with the
corresponding aleph.

Let M be a model of ZF and Ac|M|. We say A4 is a sef in M 1f there exists
an a in M such that

={be|M|: MEbea}.
We say A is a class in M if there exists a formula ¢ (x) of Ly, such that
={be|M|: MEop®)}.

DEFINITION 2.1. Let M be a model of ZF and » be an infinite cardinal in M.

(a) 2, denotes the family of definable subsets of |[M| which are either sets of
power =x in M or classes containing a subset of power >x.

(b) 2, denotes the family of all definable subsets of |M| which are not sets
in [M|. '

The following lemma, stated in a slightly different form, can be found in
Keisler’'s paper ([3], p. 34).

LEMMA 2.2. If M. is a model of ZF then 2y is a quantifier in M. Also if » is a reg-
ular aleph in M then 3, is a quantifier in M.

THEOREM 2.3. Let M be a well-founded model of ZFC. Then the only quantifiers
in M are 2y, and those of the form 2, where % is a regular cardinal in M.

Proof. Let 2 be a quantifier in M. Then either (1) there are no elements of 2

~ which are sets in M or (2) there are sets in 2. We will show that in case (1) 2 = 2y

and in case (2) there exists » & M which is a regular cardinal in M and such that
2 =23,

First assume (1) holds. Then obviously 2= 2,,. To prove the converse inclusion
suppose A is any element of 2,. Let ¢ be the usual rank function. Then.
P(d) = A, SO0n and 4, is not a set in M. Since 4, is well ordered we can define
by transfinite induction a one-to-one function ffrom A, onto On. Hence the function
g =fo(gtA) from A onto On is definable in M. Now we prove that One 2. Let
M = (M, 2). Since .# F QxIy(y = 0(x)) then by (Q.5)

M EAyQx(y = () vQyax(y = ¢(x))
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and since 2 contains no set . k Qydx(y = g(x)). This implies One 2. Now we
can finish the proof that 4 € 2. From above we can deduce that .# k Qx3y (x = g( y)).
Again by (Q.5) this implies .

M EIYQx(x = g(3)) v QJ;élx(x =g(»).

The left-hand formula of this disjunction fails because of '(Q.4), hence
M EQydx(x = g(»). This means that 4 € 2 which gives 2 = 9. '

Assume now (2). Let » be the smallest cardinal which is the cardinality of an
element of 2. Then also % & 2. To prove that x is regular suppose the converse;
Le., there exists y<x and a sequence {o,: ¢<y} of elements of x such that
% = sup{es: £<y}. Then # F QxIy(x € a,) and by (Q.5)

M EIyQx(xea,)v Qyidx(x = o).

The left-hand formula of this disjunction means that o€ 2 for some ¢ <y and the
right-hand formula means that y € On. Both contradict the fact that there are no
sets of power less than x in 2. Now we shall prove 2 = 2,. 2< 2, is immediate.
To prove 2,=2 suppose A4 € .2,. This implies that there is a function S from A
onto x in M. Hence 4 F QxJy(x = f(y)) and using an argument similar to that
used in the first part of the proof we get .4 k Q yAx(x = f( »)) which implies 4 e 2
and hence 2 = 2,. .

If a model M is not well founded the situation is more complicated. There may
be sets in 2 but no least cardinal which is the cardinality of a set from 2. The following
example illustrates this possibility. J. Hutchinson in [1] gave an example of a model
M k ZFC such that M is of power &, and there is no least uncountable ordinal in M R
Let 2 be a family of all uncountable subsets of |#/|. Then 2 is a quantifier in M and
it is neither of the form 2, nor of the form 2, for some x» from M. Unlike the quan-
tifiers 2y and 2,, 2 is not an explicit quantifier in M.

The following generalization of Theorem 2.3 is proved in similar fashion.

THEOREM 2.4. Let M be a not necessarily well founded model of ZFC and 2 be
a quantifier in M. Then either 2 = 2, or 9 = 2, for some n which is a regular
cardinal in M or 3 = {A<|M|: A3 % for some % e K } where K is a final segment of
the cardinals of M with no least element.

The situation becomes much more complicated when we start to consider
models for set theory without choice. It is impossible to give so simple a characteriz-
ation of quantifiers in models of ZF as in case ZFC because cardinal numbers are
not linearly ordered. But we will try to give as good a characterization as possible,

First notice that the axiom of choice was.not used in the proof of case (1) in

the proof of Theorem 2.3. Hence if M is 2 model of ZF and 2 is a quantifier in M -

such that there are no sets in 2 then 2 = 2y . Using the same idea we obtain the
following lemma:

LeMMA 2.5. Let M be a model of ZF and 9 be a quantifier in M. Then
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(2) If there exists an A<|M|, A € 2 such that A is a class in M and no subsets

of A which are in M belong to 2 then 9y =9.
‘/(b) Also, if One 2 then 2,<9.

This Jlemma gives us no new information for models of ZFC because obviously
if 2 is a quantifier in M F ZFC then all classes of M belong to 2. However, if the
axiom of choice fails in M it may be the case that 2,2 42. To see this let us first
recall the definition of the class WO® which proceeds by transfinite induction: -

1° xe WO® .=. x can be well ordered,

2° xeWO™! .= x = J {x;: iel} and Te WO® and x,e WO" for all iel,
3% xe WO* for 1eLim.=.xe WO" for some <A,

4° xe WO™ .=. x e WO® for some a € On.

Let M be a model of ZF+V ¢ WO®. Define the following family of subsets

of |[M|:

Oywo» = {AS|M|: A is a class in M and there exists

BcA s.t. Bis a set in M and B¢ (WO},

dwow is a quantifier in M and On™ ¢ Zyo- (see [3] p. 32 and [4] p. 253).

One can easily prove using the definition of WO® and condition (Q.5) that
if M FZF, 2 is a quantifier in M and there is an x € (WO®)* which is in 2 then
On™ e 2. This together with Lemma 2.5 implies the following theorem:

THEOREM 2.6. Let M be a model of ZF. Then:

(a) There exists a family 2 of subsets of |M| which does not contain all classes
of M| and which is a quantifier in M if and only if MEV % WO™.

(b) Every quantifier which does not contain all classes of M is a subset of Syqe.

(© If % is a cardinal in M and % ¢ (WO then 2, o

This theorem is a stronger version of Theorems 5.2 and 5.3 from [3].

Notice that in models of ZFC quantifiers (satisfying (+)) are linearly ordered
by < because of the linear ordering of cardinal numbers. Since every infinite partial
ordering can be embedded in the ordering of cardinals of some model of ZF (see [2],
p. 151) one can expect that the ordering of quantifiers can also be very complicated.
The following example shows that it may not be linear.

Let M be the model of ZF constructed by Cohen in which axiom of choice fails
but every set can be linearly ordered (see [2], p. 141). This model contains a Dedekind
set U; i.e., infinite set which has no subset of power w. Define the following family 4,
of subsets of |M]|:

Ae2,.=. A=|M| and there exists a relation RS Ux 4 which is.a set in M
such that dom R is infinite and for each  in A there are at most a finite number of
such that uRa. :

2, is a quantifier in M and o ¢ 2,. Also U¢ 2,, by definition of Dedekind set.
Hence 2, and 2, are two quantifiers in M such that 2,¢2, and 2,%£2,.
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At this point we should mention that Krivine and McAloon also considered
quantifiers based on the notion of Dedekind set. They let a set A<|M| be in 2 if
A n U was a Dedekind set. Note that 2 defined in this way is not a regular quantifier
and thus not a quantifier in the restricted sense of this section.

To say more about quantifiers in models of ZF we have to extend the notion of
regular cardinal to cardinals which are not alephs.

DermNITION 2.7. Let M be a model of ZF.

(a) A subset K of Card is regular in M if for every family {S;: ie I} which
is a set in M, if card { {S;: ieI}>x for some % € K then enthe1 I>/1 for some
A e K or there exists an ieJ such that S.=2 for some AeK.

(b) If x € M is a cardinal in M then we say x is regular in M if {x} is a regular
class in M.

() If % is a cardinal in M then we say x is *-regular in M if for any 4S|M |
such that 4 is in M a set of the cardinality less than x and all elements of 4 have
in M cardinality less than s then ) 4 <x.

The definition of a regular class and a regular cardinal was first formulated by
Keisler in [3], p. 32.

Notice that if % is an aleph then x is regular in the sense of this definition iff it
is regular in the previous sense. The notion of x-regularity can be quite different
from the notion of regularity. Using this notion we can define the following quantifier;

Let M E ZF and x be *-regular cardinal in M. Define the family 2% as follows:

AS|M| is in 2% iff 4 is not a set of cardinality <x in- M.

2} is a quantifier and it may be different from 2,. For example, in the model M
mentioned above 2 contains Dedekind sets and 2, does not, so 2 is different
from 2, (and also from 2,).

For the following lemma only we drop the convention that all quantifiers are
regular.

LemMaA 2.8. Let M be a model of L and 2,, 2, be two generalized quantifiers
in M. Then 2, © 2, is also a generalized quantifier in M. Moreover if 2, and 2, are
regular quantifiers then so is 9, U 2.

Now we give a characterization of quantifiers in models of ZF.

THEOREM 2.9. Let M be a model of ZF. Then

(&) If 2 is a quantifier in M which does not contain sets from M then 2 = 2.

(b) If 2 is a quantifier in M and there are sets in 2 then K = 2 ~ Card" is
a regular class in M.

() If K is a regular class in M then 2, and 92, U 2y are quantifiers in M. T, hey
are different iff M=V 3 WO® and K n (WO®) o = Q.

(d) If 2 is a quantifier in M then 2 is of the form either By or B v .@V Jfor some K
being a regular class in M.
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Proof. For the proof that 2y is a quantifier see Keisler [3], p. 34. We leave
the rest of the proof for the reader since the reasoning is similar to the used above.

‘We now consider the theories: A,, second-order arithmetic with the axiom of
choice, and A, second-order arithmetic without the axiom of choice. One can easily
prove that 2, and 2} are quantifiers in models for both these theories and 2y is
a quantifier in models of A,. We will define them now as follows:

2y = {A=P(0)™: A cannot be coded as a subset of w in M by means of the
pairing function},

= {A=P(o): AXVV2(y # z= XD % X and XD e 4)},
» = {A=P(0)™: A infinite}.

If M is a model of A,+V = L then 2, and 2, are the only quantifiers in M. Also
in models of A, the axiom of choice implies 2,, = 2.. But it is not known yet whether
there are any other quantifiers in models of A, and A, and even whether 2, is
a quantifier in models of A3.

3. Some general remarks about quantifiers. We now drop the convention that
quantifiers are regular.

The main reason that we are interested in generalized quantifiers is that one
can use them to obtain elementary extensions of countable models. This was first
noticed by Keisler [3] who proved the following.

THEOREM 3.1. Let M = (M, 2) be a countable model of L(Q) and 2 be a regular
quantifier in M. Then there exists a countable model N >.# such that for every for-
mula @, with one free variable, of the language Ly(Q)

o is enlarged in N < M F Qxp(x).

Another interesting paper about generalized quantifiers is [4], by Krivine and
McAloon. They showed that quantifiers which do not necessarily satisfy (Q.5) can
also be used to extend models elementarily. They introduced a notion of a countable-
like formula.

DEFINITION 3.2. Let M be a model of L and 2 be a generalized quantifier in M.

‘Let ¢ be a formula of Ly(Q), with one free variable. We say ¢ is countable-like

in s = (M, 2)if for every formula y of L,(Q) with x, y free the following sentence
holds in J:

(Q.6)  Quax[p() & Y (x, »)]— AxQy e (x) & ¥ (x, ).

Otherwise we say ¢ is not countable-like in M.
The following lemma explains this notion. For the proof see [4].

LEMMA 3.3. If ¢ is countable-like in M then # F 1Qx@(x). If 2 is a regular
quantifier then J# ¥ T1Qxq(x) implies ¢ is countable-like in M.
The following theorem was proved in [4].
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THEOREM 3.4. Let # = (M, 2) be a countable model of L(Q) and 2 be a general-
ized quantifier in M. Then there exists a countable N> such that:
@) All formulas countable-like in M are preserved in N';
(i) AN formulas not countable-like in M are enlarged in N .
(iii) If AS| M| is definable in both models then it is definable in # by a countable-
like formula.
_There is a simple way of generating many nonregular quantifiers from a given
regular one. '
LeMMA 3.5. Let M be a model of L and 2 be a regular quantifier in M. Let
Sy, ..., S, be members of 2 and L(Q)-definable in M. Then the family

2% = {Ac|M|: AN S;e 2 for some i<n}

is a generalized quantifier in M.

Notice that by the use of this lemma and Lemma 2.8 we can characterize all
quantifiers considered in the literature. There might be more complicated quantifiers
of course.

The above lemma shows that certain subsets of regular quantifiers are still
generalized quantifiers. However, they may not satisfy (Q.5). Also the converse is
true since for each model M the family of all infinite subsets of | M| is a regular quan-
tifier. Now the question arises what is the smallest regular quantifier containing given
quantifier 2%¥? We can answer this question in the case of models of set theory and
explicit quantifiers.

THEOREM 3.6. Let M be a model of ZF and 2% be an explicit quantifier in M.
Then the family

2 ={A<|M|: A definable and A not countable-like in M* = (M, 2%)}

Is an explicit regular quantifier in M. Moreover 2 is the smallest regular quantifier
containing 2*.

Proof. We first consider the explicitness of 2. There are two cases.

Case 1. For every 4 in 2 there exists Ao =S A.in 2 such that 4, is a set in M.
Let ¢ (x) be in L. By definition ¢ (x) is not countable-like in .#* if and only if
@) A* F QyAx(p (&Y (x, ) & VxT1Qy(p ()& (x, 3)
for some formula ¥ (x, y) of L,,. By the case assumption we may replace i (x, »)
by a set z and so ¢(x) is not countable-like in A4* if and only if

A* F 32[QyIx (9 (&L, ¥) € 2) & Yx1Qu (0 ()&(x, ¥) 2)].

This shows that 2 satisfies the condition for explicitness since 2* does.

Case 2. Otherwise. Then by Lemma 2.5 every proper class of M is in 4. Let

@ (x) be a formula of Ly,. In this case we see that ®(x) is not countable-like if and
only if

A% F 3Az[QyAx(p (x)6(x, ¥) €z)é V.%'WQy((p(x)é"(x, yyez)v
v I13zVx(p(x) — xez).

icm

©
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For, with the notation of Case 1, if {/ (x, y) cannot be replaced by a set z as in Case 1
it means that Ix(¢(x)&y(x, y)) defines a proper class. Also

A EVXT1Qy (0 ()& (x, )
together with the case assumption yields
Mk Vx3z(p ()& (x, y). >y ez).

Thus, if ¥ (x, y) cannot be replaced by a set z, then ¢ (x) defines a proper class. Again
it follows that 2 is explicit since 2* is.

Next we claim that 2 satisfies the axioms for a regular quantifier. This is straight-
forward; we treat (Q.5) as an illustration. Thus suppose we have

M= (M, 2> F QxJub(u, x) & Vu1Qx0(u, x)

where 0(u, x) is in Ly,. Since Ju0(u, x) is not countable-like with respect to 2* we

* have a formula Y (x, ) such that (#) holds when ¢(x) is taken to be Jub(u, x).

Now the formula Ix(6(u, x)& (x, y)) which we denote by x(u, y) witnesses that
Ix0(u, x) is in 2. We have 4* F Qyduy (u, y), because Juy(u, y) is equivalent to
Ax(ex)& (x,)). Also J* E Vu1Qyd(u, y) follows from # F Vu1Qx6(u, x).
This completes the proof that (Q.5) is satisfied and the proof of the theorem.

We want to end this paper with a few problems:

1. Describe all regular quantifiers in models of A, and Aj.

2. Let M be a model of L and 2 be an explicit quantifier in M. Is the family
{d<|M]|: A definable and A not countable-like in % = (M, 2)} a regular quantifier
in M?

3, Let M be a model of L and 2 be a generalized quantifier in M. Is there
a c-smallest regular quantifier containing 27
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