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Abstract. 1t is shown that under some assumptions on the product XX ¥ we have the
alternative: either X is hereditarily m-separable or ¥ is hereditarily m-Lindelsf. It is also
shown that for every completely regular X the power X™ is hereditarily m-separable (heredi-
tarily m-Lindelsf) if and only if the space C(X,Y) is hereditarily m-Lindeldf (hereditarily
m-separable) for every space ¥ with w(¥)<m. -

1. Introduction. In Section 2, it is shown that if Xx Y is hereditarily m™-
sequentially compact, then either X is hereditarily m-separable or ¥ is hereditarily
m-Lindeldf. In particular then, if X'x Y is hereditarily s;-sequentially compact,
then either X is hereditarily separable or Y is hereditarily Lindel6f. With the aid
of the generalized continuum hypothesis (GCH), if X'x Y is m-separable and
hereditarily normal, then either X is hereditarily m-separable or Y is hereditarily
m-Lindelsf. In [4], Michael displays a countable collection {X;| ie .4} of spaces

n

such that, for each n, [] X, is Lindelof but [] {X;| ie .#7} is not Lindelsf. Suppose
i=1

that {X,| ae A4} is a collection of spaces such that (1) | 4| <m and (2) if B is a finite
subcollection of A, then []{X,| be B} is hereditarily m-Lindelof (hereditarily
m-separable, respectively). Then [] {X,| a€ 4} is hereditarily m-Lindelsf (here-
ditarily ni-separable, respectively).

In 5], Rudin and Klee show that if X and Y are second countable, then C X, 1),
the space of continuous functions from X into ¥ with the pointwise topology, is
hereditarily separable and hereditarily Lindelof. In Section 3, we show that if X is
completely regular, then C(X, Y) is hereditarily m-separable (hereditarily m-Lin-
deldf, respectively) for every space ¥ with weight less than or equal to m if and only
if X™ is hereditarily m-Lindelsf (hereditarily m-separable).

In Section 4, spacesS and R are obtained so that, for each », S™ is hereditarily
Lindelsf but S is not hereditarily separable and, for each »n, R" is hereditarily -sep-
arable but R is not hereditarily Lindelsf.
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Before proceeding to the body of this paper, let us recall some definitions and
establish some conventions:

Throughout this paper, mt will denote an infinite cardinal.

Our notion of m-Lindeldf is different from the usual convention. We will say
that X is m-Lindeldf if each open cover % of X contains a subcover %’ of X with
|’|<m. Following conventions established in [3], we will write h1(X)<m if X is
hereditarily m-Lindeldf.

X is m-separableif X contains a dense subset H with [H|<nt. If X is nt-separ-
able, we will write d(X)<m (d stands for density). If X is hereditarily n1-separable
we will write hd (X)<m.

If Y admits a basis of cardinality less than or equal to n1, then we write
wX)<sm.

We will say that X is hereditarily - compact if each subset H of X with |H [Zm
contains a limit point of itself. ‘

ni* is the first cardinal greater than m and Q(m) will denote the first ordinal of
cardinality m or, equivalently, the set of ordinals of cardinality less than m. CX,Y)
will denote the space of continuous functions from X into ¥ with the pointwise
topology. E" will denote the Euclidean n-space.

We make extensive use of the following results which were obtained in [31:

LemMa 1. hd(X)<m if and only if it is true that if f: Q(m*) — X is one-to-one,
then there is a member a of Q(m™) such that f(d) is a limit point of {1 @) b<a.

Levma 2. hI(X)<m if and only if it is true that if f+ Q(m*) — X is one-to-one,
then there is a member a of Q(m™) such that f(d) is a limit point of {f(B)| b>a}.

2. Products.

TreOREM 1. If XX Y is hereditarily m*-compact, then either X is hereditarily
m-separable or Y is hereditarily m-Lindeldf,

Proof. Suppose the theorem is false. Then according to Lemmas 1 and 2
there are one-to-one functions f: Q(m*)— X and g: Q(m*)— Y such that it,‘
ae Q(m*) then £(a) is not a limit point of {f®)l b<a} and g(a) is not a limit point
4;)f+ {g9®) b>a}. Let L = {(f@, 9@) ae Qm™)}. Since Xx Y is hereditarily
m?-compact, there is a point & of 2(m™) such that (1 (%), g (b)) is a limit point of L.
Since f(b) is not a limit point of {f(a)| a<b} and g(b) is not a limit point of
{9 (@) a>b}, there are open sets U and ¥ in X and Y respectively such that

f®)eUc(X—{f(@)| a<b})) and g(b)e Ve(Y—{g(@)| a>b}).
Bu't then Ux ¥ is an open subset of X'x ¥ containing (F(®), g(®) but no other
point of L. This is a contradiction from which the theorem follows.

Note that if S denotes the Sorgenfrey line, then S$'x S serves as an example o
show that the converse to Theorem 1 is not true. The examples in Section 4 show
that Theorem 1 is the best available result.
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TreEOREM 2 (GCH). If X X Y is m-separable and hereditarily normal, then either X
is hereditarily m-separable or Y is hereditarily m-Lindelif.

Proof. The technique used here was first employed by Jones in [2]. Suppose
that hd(X)>m and hl(Y)>m. Then by Lemmas 1 and 2, there are one-to-one
functions f: Q(m*) — X and g: Q(m*)— Y such that if ae Q(m™), then f(a) is
not a limit point of {f(b)] b<a} and g(a) is not a limit point of {g(b)| b>a}.
As in the proof to Theorem 1, L = {(f(a), (@) ae Q(n*)} is a subset of Xx ¥
that contains none of its limit points. Let S be a dense subset of X'x ¥ such that
|S|<m. Since X x Y is hereditarily normal, for each subset H of L, there is an open
set U(H) containing H such that U(H)n(L—H) = @. For each HclL, let
s(H) = U(H) n S. Then s is a one-to-one function from 2L the set of subsets of L,
into 25. This is a contradiction since the generalized continuum hypothesis implies
that |25> 2.

THEOREM 3. Suppose that {x;| ie A} is a collection of spaces such that
|A|<m and such that if B is d finite subset of A, then [] {X| i€ B} is hereditarily
m-Lindeldf. Then [] {X| i€ A} is hereditarily m-Lindeldf.

Proof. If B4, m,; will denote the projection map of [] {Xil ie A} onto
[1{X| ieB}. Let o denote the collection of finite subsets of A. Let Y denote
a subspace of [ {X;| ie4} and let % be an open cover of ¥. For each Be <,
let % (B) denote the collection to which ¥ belongs if and only if ¥ is an open subset
of [T{X;l ie B} and 73 (V) N Yis a subset of some member of . Since, for each
Be o, hl(n{X) ie B})<m, there is a subcollection, # (B), of #(B) so that
U (#(B)) = U (%(B)) and such that |[# (B)|<m. Then the collection

W = {nz (W)n Y| We#(B),Be o}
is an open cover of Y refining % so that [#|<m.

THEOREM 3*. Suppose that {X,| i A} is a collection of spaces such that |d|<m
and such that if B is a finite subset of A, then || {X;| i € B} is hereditarily m-separable.
Then []{X,| i€ A} is hereditarily m-separable. '

Proof. Let ¥ be a subspace of [] {Xi| ie.4}. We will use the notation estab-
lished in the proof of Theorem 3. For each Be o, let Mpbe a subset of Y so that

| Mzl <m and mp(My) is dense in mg(Y). Then U {My| Be o} is a dense subset
of Y with cardinality no greater than nt.

3. Function spaces. The author is grateful to the referee for tl}e following lemma
which greatly simplifies the Author’s original Proofs to Theorems 4, 4%, 5, and 5*.

Lemma 3. Let R, S, T be three topological spaces and &: Rx S —T be a function
such that: b

() @ is continuous with respect to the variable s,

(i) the topology of R is the weakest topology for which @ is continuous with
respect to r. ‘ _ .
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Let w(Ty<sm. Then:
(@) (Ynhl(S")gm) = hd(R)<m,
(®) (¥ nhd(S™<m) = hl(R)m.

Proof. for xeS™, x = {s;} and reR, put ¥(r,x) = {&(r, s)} € T*. The
function ¥: RxS™ — T™ is continuous with respect to the second variable, and
the sets of the form M (x, U) = {r| ¥(r, x) € U}, where U belongs to the basis &
(of cardinality <my) of the space T™ and x e ™, form the basis of R (according
to (iD).

Proofof(a). Let ASR. For Ue & and ae 4 let U(a) = {x e $™| ¥(a, x) e U}
and &y = {U(a)] ae4}. The family &, is open in S*, 5o there exists Ay<s A4 such
that |Ayl<m and ()&, = U{U(a)| ae Ay}. Let B = (] {4yl Ue #}. We have
|Bl<m and B is dense in A.

Proof of (b). Let & = {M(x, U)| xe S™, Ue #}. Let &' <of. For Ue @
let Ay = {xeS™ M(x, U) e a'}. Since hd(S*°)<m (according to Theorem 3%),
there exists By< Ay such that |Byl<m and By=A4y. Let

A" = {M(x,U)] UeB,xeBy}.
We have [4”|<m and |J&#” = J&', which finishes the proof.

THEOREM 4. If, for each positive integer n, X" is hereditarily w-Lindeldf and
w(¥Y)Km, then C(X,Y) is hereditarily m-separable.

THEOREM 4%, If, for each positive integer n, X" is hereditarily m-separable and
w(Y)<m then C(X, Y) is hereditarily m-Lindeldyf.

Proof of Theorems 4 and 4% Take R = CX,Y), S=X, T=7Y, and
O(f, x) = f(x) for fEC(X, Y), xe X.

THEOREM 5. Suppose that X is completely regular, n is an integer, and C(X, E ")
is hereditarily m-separable, then X" is hereditarily m-Lindelof.

THEOREM 5*. Suppose that X is completely regular, n is an integer, and C(X, E")
is hereditarily m-Lindeldf. Then X" is hereditarily m-separable.

Proof of Theorems 5 and 5% Take R = X', §=C(X,E"), T = E"
for x=(x,..,x)e X", f=(f,..f)eCX, EY,
e Jolx)) € B,

To summarize the results obtained so far, we have; letting H denote Hilbert
space:

let @(x,f) = (fl(x1)> v

THEOREM 6. If X is completely regular then the

Jollowing are equivalent for the
cardinal m:

A. X" is hereditarily m-Lindelsf (m-separable, respectively) for every n.
B. X™ is hereditarily m-Lindelsf (m-separable, respectively).
C. C(X, E" is hereditarily m-separable (m-Lindelif, respectively) for every n.

and
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D. C(X, H) is hereditarily w-separable (m-Lindelif, respectively).
E. C(X, Y) is hereditarily m-separable (m-Lindeldf, respectively) for every
space Y with w(¥)m.

4. Two Examples.

ExAMPLE 1. We construct a space S such that S" is hereditarily separable for
every n but S is not hereditarily Lindeldf. Let ¢: Q(%,) — E' be a one-to-one func-
tion. Let Z = {¢""(U) n (0, all ae Q(s,), Uis openin E'}. Then # is a basis for
a Hausdorfl topology J~ on Q(%,). Let § = (2(s,), 7). It follows from Lemmas 1
and 2 that S is hereditarily separable but not hereditarily Lindelof. For each 7, let .S;

denote a copy of S. We wish to show that, for each n, [] S; is hereditarily separable.
i=1

N
To this end, suppose otherwise. Let N denote the first integer so that [] S; is not
i=1

ilereditarily separable. By Lemma 1, there is a one-to-one function f: Q(x,) —aﬁllS :
such that if a e Q(8,), then £ (@) is not a limit point of { f(b)| b<a}. For each i< N,
let 7; denote the projection of ﬁSi onto S;.

Suppose that there are an ii;;eger K and an uncountable subset FN of Q(xy)
such that my is constant on f(I'). Let = denote the projection of i];IlS,. onto
SN-1 = H S,. Let g be an order preserving map of Q(s;) onto I'. Then (mefo g)

iFk

is a one-to-one function from Q(x,) into S¥~1. By our hypothesis, SV-1 s herjed%-
tarily separable; and so, there is a point @ of Q (8,) such that (mofo g) ga) isa llm}t
point of (nofog)({s| b<a}). Thus since =|f () is a homeomorphism, g(a) is
a point of I, and thus of Q(x;), such that f(g(2)) is a limit point of ((0, g@)n I
and, hence, of { f(b)| b<g(a)}. This is a contradiction, from which it follows tha?t
if i< and if a € Q(x,), then the set {be Q|n,(f () = = f (@)} is‘ countable. This
permits us to choose an uncountable subset I'y of Q(x,) such that if /<N, then the
restriction of =« f to I'y is one-to-one. .
Choose an uncountable subset I' of I'y such that, for each 7, the restriction
o f|I" is order preserving on I'. Let ¢V denote the map taking sY — EY defined
by @"cy, oh xx) = (@0 s ¢ (xy)) and let g be an orde}' preserving map from
Q(x,) onto I'. Since EV is hereditarily separable, there is a point a of Q(,) such that
(@" o fo g)(a) is a limit point (in EY) of (9" < fo 9)({b] b<a}). It follows from the
construction of § and the fact that, for each i, m;ofe g is order-preserving that
f(g(a)) is a limit point of f (0, g(@)). This contradiction completes the proof.

ExaMPLE 2. There is a Hausdorff space R such that, for each n, R is hereditarily
Lindelsf, but R is not hereditarily separable. Let ¢: Q(x;) — E* be a one-to—?nle
function. Let @' = {¢~'(U) n [a, w))| aeQ(sy), U is open in E'}. Then £’ is
a basis for a topology I~ on Q(x,). Let R = (Q(xy), 7 /). The argument that, for
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each n, R" is hereditarily Lindelsf but R is not hereditarily separable is omitted here
since it is analogous to the arguments that S (in Example 1) is not hereditarily
Lindeldf but that S” is hereditarily separable for each n.

Finally, the author wishes to thank J. W. Rogers, Jr. for bringing Juhasz’s
Lemmas to his attention.

Added in proof. Using the continuum hypothesis, K. Kunnen has recently
obtained an example of a perfectly normal space X so that X© is hereditarily se-
parable but X is not Lindeldf.
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O pasmMepHOCTH NPOU3BEeZICHUH TONOTOrMUEcKHUX
NpOCTPAHCTE

B, B. Puaunmor (Mocksa)

Abstract. The inequality dimXX Y < dim X-+dimY is established if (1) X and Y are
completely regular spaces and the projection of XX ¥ onto Y is closed, and if (2) XX Y is
a normal countably paracompact space and Y is a paracompact p-space. Counterparts for Ind
ard also obtained under the additional assumption that XX ¥ is normal and the finite sum
theorem for Ind holds in X and in Y.

B aroit 3amerke MBI TIOJIyUUM HEKOTOPBIE YCIOBHA, JOCTATOYHBIC AJIS BBIIOJI-
HEHUSA HEPABCHCTB

(*) dimXx ¥Y<dimX+dim Y,
(x%) IndXx ¥Y<IndX+Ind Y,
indXx ¥Y<ind X+ind Y.

Hawu6onee cuiIsHBIM U3 MPEALIECTBYIOIMX PE3YIBTATOR, CBA3AHHBIX C BBIIOJI-
mervem () ABmsterca Teopema Komampr [10], cyliecTBEHHBIM yCHIIEHMEM KOTOPOH
ABIAETC TeopeMa 2.4 macrosumiell paboTsi, pewaromas ofHY u3 npoGrem Ha-
rarer [13].

OImeTHM, TT0 HEpPABEHCIBO (¥#) HE BEPHO A®KE AR GHKOMIAKTOEB, cM. [6].
TTOMOIKHTENBHbIE PEIyIbTATEL, CBASAHHEIE C (+4) OyAYT HamK MONYYCHBI B MO0~
HUTENEHBIX MPENTIONOMKEHHSIX, & HMEHHO, B IPEIIIOIOKEHMHE BEIIOJIHEHI TEOPEMBI
CyMMBI st pasmepHocT Ind B COMHOMHMTENAX.

Bynem ToBOpHTE, UTo npocmparcmso X ydogaemsopem YcA0suro (2), ecmm
RS MOB0ro KOHEUHOTO CEeMECTBa Y ero 3aMKHyTHIX JIOOAMHOMKECTE
Ind(U y) = max{IndF: Fey} (cm. [t4]).

Pesyssrarsr a10i 3ameriy GBUTH COOGIIEHBI 0€3 [OKasaTeldsCTB B [71.
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