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A note on transfinite sequences
by

Norman R. Howes (Copénhagen)

Abstract. The purpose of this paper is to show that transfinite sequences can be used to
characterize topologies, various mappings and certain topological properties. The investigation
leads to some set theoretic problems and a translation of the Axiom of Choice is obtained in terms
of the existence of a certain type of well ordered neighborhood base at each point of any arbitrary
topological space. Some of the properties characterized are: paracompactness, the Lindelsf
property, compactness, the linearly Lindelsf property and the Hausdorff property. Furthermore,
some of these characterizations demonstrate the interaction of the transfinite sequences with the
uniform structure of the space.

Applications of these results by other authors to various problems are indicated and the
paper concludes with characterizations of topologies and mappings (continuous, open, pseudo-
open, closed, quotient) and a treatment of spaces whose topologies are determined by ordinary
convergence of transfinite sequences as opposed to the clustering of transfinite sequences used
elsewhere in the paper.

Introduction. The theory of convergence is fundamental to the study of topology
and analysis. Classically, continuous functions were ones that preserved convergent
sequences and metric spaces were compact if each sequence had a convergent sub-
sequence. As metric spaces were generalized it was found that sequences were inad-
equate for characterizing topological properties. Suitable generalizations were sought;
the most obvious being a transfinite sequence. However, preliminary work with
transfinite sequences led investigators to the widely accepted conclusion that trans-
finite sequences are inadequate for describing topological properties.

To date the most fruitful generalizations have been nets and filters. Whereas
nets lack two pleasant properties of sequences: 1) they are not well ordered and 2) the
domain of a subnet need not be a subset of the domain of the original net, filters are
better described as a generalization of a neighborhood base than a sequence. The
pﬁrpose of this paper is to show that transfinite sequences, if properly applied, can
be used to characterize topologies and certain topological properties. In addition,
the investigation leads to some set theoretic problems and we obtain a translation
of the Axiom of Choice (AC) in terms of the existence of a certain type of neigh-
borhood base in an arbitrary space.
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Definitions and known results. A non-void set is said to be directed by the binary
relation < provided that 1) if m, n and pe D with m<n and n<p then m<p,
2) m<m for each me D and 3) if m, n e D then there isa p € D with m<p and n<p.
A netis a function y: D — X from a directed set D into a space X. In the event D is
well ordered (i.e., for each m, ne D either m = n or n<m or m<n and each non-
void subset of D has a first element) then v is said to be a fransfinite sequence. For
each a € D let x, = y(«). We will often identify a net or transfinite sequence with its
range (D) = {x,}sep. If the set D is understood we will simply use {x,}.

If Re D is such that R # & and whenever ¢ &€ Rand € D with «< 8 then f e R,
we say'that R is residual in D. If C< D such that whenever e D there is an-a e
with f<o we say C is cofinal in D. We also say {o,} is frequently in B X if there
is a cofinal C<D with {x,}, ..=B and evenmally in B if there is a residual R D
with {Xg}ee x=B. {x,} is said to converge to pe X if it is eventually in each neigh-
borhood of p and to cluster to p if it is frequently in each neighborhood of p. {x,} is
said to cluster to a set Fif it is frequently in each open set containing F. If ¢: A4 — X
is the transfinite sequence {yﬁ} and S is cofinal in A4, the restriction of ¢ to .S, which
we will denote by ¢, §— X, will be called a subsequence of ¢. We will also find
it convenient to denote ¢, by {X,},es Or simply {x,}.

A subnet is a more complex object than a subsequence. A net ¢: E — X is a subnet
of the net i: D— X if there exists a function f: £— D such that 1) ¢ =y of
or in other words ¢ (%) = ¥ ( f(a)) for each « € E and 2) for each . D thercisa f e E
such that if y>p§ then f(y)>a.

In what follows, if a uniformity is not mentioned in the statement of a theorem
we will assume the space to be arbitrary, otherwise we will assume the space to be
completely regular and T (i.e., uniformizable). A uniformity u for a space X is
a filter of covering with respect to <* (star refinement) as defined by Tukey [24]
whose development is equivalent to the one given by Bourbaki [3]; confer Isbell [14]
p. 12. The pair (X, ) is called a uniform space.

A transfinite sequence (resp. net) {x,},. 4 is said to be cofinally Cauchy if for
each % e p there is a cofinal C< A with {x,}, .= U for some Ue%. {x,} is Cauchy
if for each % e u there is a residual Re A4 with {x0}oer=U for some Uew.

A family of coverings v in which every member has a star refinement in v is
said to be a normal family. Since every collection A of coverings contains a largest
normal family y we say the members of » are normal in A A covering 4 is said to
be normal with respect to A if it is normal in % where % is the collection of all open
coverings refined by members of 2. Given a completely regular.topology 7, there
exists a finest uniformity u for 7. It consists of all coverings that are normal with
respect to the family of all open coverings. The open members of » are simply called
normal coverings and u is called the universal uniformity.

If X is a completely regular T, space there is 2 uniformity f for X that has a basis
consisting of all finite normal coverings. The completion of (X, f) is X, the Stone--
Cech compactification of X, Shirota [21] showed that every completely regular T,
space has a uniformity that has a basis consisting of all countable normal coverings

icm

©

A note on transfinite sequences 215

which he called the e-uniformity and established what. Isbell refers to [14] as the
first deep theorem of uniform spaces.

TuroreM (Shirota). For a completely regular space X the follawing are equivalent
1) X is e-complete (complete with respect to the e-uniformity),

2) X is realcompact (X is a Q-space, see Hewitt [7]), and

3) X is homeomorphic to a closed subspace of a product of real lines.

Completeness with respect to a uniformity is defined as the property that each
Cauchy net converges. In [9] we defined a uniform space to be cofinally complete
if each colinally Cauchy net clusters and proved the following:

THEOREM. For a completely regular T, space X we have:

1) X is paracompact if and only if (X, u) is cofinally complete,
2) X is Lindeldf if and only if (X, e) is cofinally complete and
3y X is compact if and only if (X, B) is cofinally complete.

Characterizations of topolegical properties. First, we can obtain an improvement
of the above theorem in terms of transfinite sequences as follows:

THEOREM 1. For a completely regular Ty space X we have:

1) X is paracompact if and only if each transfinite sequence that is cofinally Cauchy
with respect to the u-uniformity clusters. ‘

2) X is Lindeldf if and only if each transfinite sequence that is cofinally Cauchy
with respect to the e-uniformity clusters.

3) X is compact if and only if each transfinite sequence that is cofinally Cauchy
with respect to the B-uniformity clusters. )

Proof of 1). Let X be paracompact and {x,} be a cofinally Cauchy transfinite
sequence with respect to the w-uniformity. Suppose {x,} does not cluster. Then
for each x & X there is an open U(x) containing x with {x,} eventually in X—U(x).
Put % = {U(x)| xe X}. Since X is paracompact, % is normal as shown in [23]
and hence % e u, so {x,} is frequently in some U(»). But then {x,} cannot be eventu-
ally in X~ U(p) which is a contradiction. Therefore {x,} clusters.

Conversely, assume each transfinite sequence that is cofinally Cauchy with respect
to the u-uniformity clusters. By a theorem of Mack [17], it suffices to show that
each well ordered open covering has a locally finite open reﬁnemenﬁ. Let {U,} be
a well ordered open cavering of X (i.e., «< implies U, = Up) and put F, = X-U,
for each a. Then [ F, = ©&. For each o let <, be a well ordering of F, apd let
E = {(F,, )| xeF,}. Define the well ordering < on E by (Fy» X)<(Fp, ») if f'md
onlyif a<p ora = f and x<,y, For each (F,, x) in E put (¥, x) = x. The assign-
ment y: E— X is a transfinite sequence that cannot cluster to any p € X for other-
wise p e F, for each o which contradicts ) F, = @. Denote § by {4} ’

For each % e u there exists ([14] p. 7) a uniformly continuous f: X — M where M
is a metric space such that for each ball B(m, ¢) of radius e<lin M, Y(Bm, §))=U
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for some Ue%. {f(yp)} cannot cluster to any me M for otherwise there is
a cofinal C=F with {/(»,)},cccB(m, &) for e<1. Then

{rdes T {F O es " (Blm, 9)<U
for some Ue% so {y,} is cofinally Cauchy and therefore clusters which is a con-
tradiction. :

Suppose p e () ]ﬁ_ Let U be an open set containing p and y € E where y
represents some (F, z). Pick o> f. Since U n f(F,) # @ there is an x e F, with
f(x)e U.If 6 = (F,, x) then y; = x 50 f(y;) € U.But y<§ so_m{,]fr(_yﬂ)} is frequently
in each neighborhood of p which is a contradiction so [ f(F,) = @.

For each o put ¥, = M—f(F,) and let ¥ = {V,}. Since M is metric and there-
fore paracompact, there is a locally finite open refinement %" of ¥ and hence
Yy = {f~ (W) Wew?} is locally finite in X. If We# there is a V,e ¥

with WeV, =M —}"(Fa) so that
AW e X~f(f(F))cX~F, = U,.

Therefore f~*(#") refines {U,} so that X is paracompact.

Proof of 2). Assume X is Lindelsf and suppose {x,}, .4 is a cofinally Cauchy
transfinite sequence with respect to the e-uniformity that does not cluster. For
each x € X there is an open U(x) containing x such that {x,} is eventually in X — U(x).
Let% = {U(x)| x & X}. Since X is Lindelof % has a countable subcovering {U(x,)}
and since X is paracompact, {U(x;)} is normal and therefore belongs to the e-uni-
formity. But then {x,} is frequently in some U(x,) which contradicts {x,} eventually
being in X— U(x;).

Conversely assume that each transfinite sequence that is cofinally Cauchy with
respect to the e-uniformity clusters. Then each transfinite sequence that is cofinally
Cauchy with respect to the u-uniformity clusters so by the proof of 1) X is para-
compact and therefore countably metacompact. We will first show that a transfinite
sequence {y;}pep With no countable subsequence clusters. Let % € e, Then there
is a {U;} € e that refines %. Put D, = {f| ype U} and let D= ) D,. Suppose D,
is not cofinal in B for each i. Since {y,} has no countable subsequence, D is not
cofinal in B so there is a § e B with y, ¢ U, for each / which is a contradiction. Con-
sequently some D; is cofinal in B so that {y;} is cofinally Cauchy with respect to
the e-uniformity and hence clusters.

Next we show that a countably metacompact space in which each transfinite
sequence with no countable subsequence clusters, must be Lindelsf, Suppose X is
not Lindelsf. Let# be the least cardinal such that some open covering % = {U e<n}
has no countable subcovering. For each o put ¥, = |J {Uy| <o} and
let F, = X—V,. It is easily shown thateach F, # & so pick x, € F, for each o.
If {x,} has no countable subsequence it clusters which is impossible so assume a count-
able cofinal {a;}<n. N F,, = @ since {V,} covers X. We can apply a theorem of
F. Ishikawa [15] which says: In a countably metacompact space, if {F,} is a de-

©
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creasing countable sequence of closed sets with an empty intersection, there is a de-
creasing countable sequence {G,} of open sets with an empty intersection such that
F,cG, for each i. Let H; = X—G,. Then {H}} is an ascending closed covering
of X and

Hy= X=GicX~F, =V, = J{U] f<a;).

Now %, = {Uj| p<e} has cardinality <y so there is a countable subcollection
of %, that covers H,. But since {H,} covers X, % has a countable subcovering and
therefore X is Lindeldf,

Proof of 3). Suppose X is compact and {Xa}ze 4 is & transfinite sequence. For
each « put M, = {x;| f>a} and let U, = X —M,. If {x,} does not cluster {U}
covers X and therefore has a finite subcover {U,}. Let 5 € 4 such that a;<& for
each 7. Then x; ¢ U,, for each i which is a contradiction. Therefore every transfinite
sequence in X clusters. .

Conversely assume each transfinite sequence that is cofinally Cauchy with respect
to the f~uniformity clusters and suppose X is not compact. Let 7 be the least cardinal
such that there is an open covering {U,| a<n} having no finite subcovering and
pick x, & X—U, for each a. It is easily shown that all transfinite sequences in X are
cofinally Cauchy with respect to the B-uniformity so {x,} clusters to some p e X.
But then pe () (X—U,) which implies {U,} does not cover X which is a con-
tradiction. H '

A transfinite sequence {x,} will be called cofinally 4 Cauchy if for each open
covering % of X there is a p & X such that {x,}is frequently in Star(p, %). Mans-
field [18] calls a space almost 2-fully normal if for each open covering % there is
an open refinement " of % such that if pe Ve ¥ and ge We ¥ with VAW £0
then there is a Ue% containing both p and q.

COROLLARY. 1) An almost 2-fully normal T, space is paracompact if and only if
each cofinally 4 Cauchy transfinite sequence clusters.

2) A regular, countably metacompact space is Lindeldf if and only if each trans-
Sinite sequence with no countable subsequence- clusters.

3) A space is compact if and only if each transfinite sequence clusters.

Proof of 1), This follows from part 1) of Theorem | and the method of proof
in Proposition 3 of [9].

Proofof2). The sufficiency was proved in part 3) of Theorem. I and the necessity
in the case where the space is 7', follows from the fact that each transfinite sequence
with no countable subsequence is cofinally Cauchy with respect to the e-uniformity.
In the event the space is not Ty, a direct proof is obtainable. -

Proof of 3). The proof is based on the fact that if the space is uniformizable,
all transfinite sequences are cofinally Cauchy with respect to the f-uniformity. If
the space is not uniformizable, the necessity was proven in part 3) of Theorem 1 and
the sufficiency is a straightforward argument based on the descending chain charac-
terization of compactness, a statement of which is given in [16] p. 163.

§ — Fundamenta Mathematicae CVI
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The property that each transfinite sequence with no countable subsequence
clusters is equivalent (as will be shown) to a property investigated by Alexandroff
and Urysohn [1] called “final compactness in the sense of complete accumulation
points”. A space is [z, §]-compact in the scnse of complete accumulation points,
where o and 8 denote cardinals with a3, if every M < X with [ M| a regular cardinal
in [, B] has a point of complete accumulation; i.e., a point p such that if U is an
open set containing p, (U M| = |M| A space is finally compact in the sense of
complete accumulation points if it is [o, f]-compact in the sense of complete accumu-
lation points for all cardinals f>o.

TurorReM (Alexandroff and Urysohn). A4 space is [, fi]-compact in the sense
of complete accumulation points if and only if every open covering U of X, with ||
a regular cardinal in [o, B, has a subcovering W' with |U'| <.

We define a space to be linearly Lindeldf if for each well ordered ascending open
covering ({U,| a<x} such that a<p implies U,=Uy) has a countable subcover.

THEOREM 2. The following properties are equivalent in a space X:
1) linearly Lindeldf,

2) final compactness in the sense of complete accumulation points,
3) each transfinite sequence with no countable subsequence clusters.

Proof. (1)—(2) Suppose X is not finally compact in the sense of complete
accumulation points. Then there is an M < X of uncountable regular cardinality #
with no complete accumulation point. Let M = {m,| a<n} and for each a put
U, = X—M, where M, = {m,| y>a}. Then {U,} is a well ordered ascending open
covering. Let {U,} be a countable subcovering of {U,}. But then {o;;} is cofinal
in x contradicting the fact that n is regular.

(2)—(3) Suppose there is a transfinite sequence with no countable subsequence
in X that does not cluster. Let {x,| o<z} be such a transfinite sequence of least
cardinality #. Then 5 is regular. Therefore {x,} has a point of complete accumulation
say p. It is easily shown that {x,} clusters to p.

3)—(1) Suppose X is not linearly Lindelsf. Then there is a well ordered ascend-
ing open covering {U,| a<n} of least cardinality  having no countable subcovering.
For each a<n put ¥, = {J {U,] f<a} and F, = X—V,. Then F, ¢ & for other-
wise {Uy| f<ea} would cover X and therefore have a countable subcovering. For
each a pick x, € F,. Since {U,} has no countable subcovering, {x,} has no countable
subsequence so {x,} clusters to some p e X. Then p e | F, which implies {U,} does
not cover X which is a contradiction. B

E3
A. MisCenko [19] exhibited a space that he named R that is completely regular,
Ty, finally compact in the sense of complete accumulation points, but not Lindelsf.
MiS€enko’s space is constructed as follows: Let ‘

o
= Hl [0,w] where [0, ] = {0} «is an ordinal and a<w;}.
i
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Then R is a compact HausdorfT space in the product topology,

R is a subspace of R
defined as follows: let P

k @ oo
=110, ox 11 10, @) R=UR,.

=1

and put

M1§cenko did not know if R was normal or not. M. E. Rudin showed the author
that R is nol normal by exhibiting two disjoint closed sets

H = {{x;} eRl x; # 0 for each i} and

%
K = {{x;} € R] there is an n with x,,, = 0 and for i<n, x, = ;)

that cannot be separated by disjoint open sets. By Theorem 2, Misenko’s space is
a uniformizable (completely regular, T,) space that is linearly Lindeldf but not
Lindelsf.

In the preliminary report [10] the author pointed out that if there existed a normal
Hausdorff space that was linearly Lindel6f but not Lindeldf, it would be a Dowker

- space (this follows from part 2 of the corollary to Theorem 1). If a space X has

an uncountable open covering with no subcovering of smaller cardinality let A(X)
be the least cardinal such that there is an uncountable open covering # with
|%| = A(X) having no subcovering %' with |%’| <A(X). Otherwise put A(X) = w.
We call A(X) the Lindelf cardinal of the space.

PROPOSITION 1. A necessary and sufﬁczem condition for a linearly Lmdelof
Space X to be Lindelof is that A(X) is a regular cardinal.

COROLLARY. If there is a normal Hausdorff space that is linearly Lindelsf but
not Lindeldf, the Lindeldf cardinal of the space must be singular.

The proof of the above proposition is based upon the techniques used in the

* % .
proofs of Theorems 1 and 2. Since |R| is the first singular cardinal, and R is linearly
*
Lindelsf but fails to be Lindelsf A(R) =
sk

author that a modification of R would be a good candidate from which to construct
a normal Hausdorfl space that was linearly Lindelof but not Lindelsf. Such a space
would then be a Dowker space. This is the singular cardinal idea referred to by

*
| R|. Therefore, it was pointed out by the

*
M. E. Rudin in [20]. In fact, she increased the quantity of open sets of R by consider~
ing a strong product topology (called a box topology in [20]) and after removing

some undesirable paints of }k{ so topologized, produced a Dowker space.
However, as she pointed out to the author, her space fails badly at being linearly
Lindelsf, being the union of uncountably many disjoint open sets. Consequently,
we still do not know if there exists a normal Hausdorff space that is linearly Lindelsf
but not Lindeldf. Since the mentioning of this question in the preliminary report [10],
there have been further results by other authors that shed additional light on the
problem. [8] and [25] are systematic treatments of [«, f]-compactness. Smirnov [22]

5%
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defined a space X to be [«, f]-compact in the sense of covering if every open cover %
of X with |%| < B has a subcover %’ with |%’| <o. A space is said to be finally compact
([et, co]-compact) in the sense of coverings if it is [«, f]-compact in the sense of
coverings for all f>o.

Following the convention of Hodel and Vaughan [8] we will abbreviate
{2, B]-compactness in the sense of coverings to [«, B]-compactness and [a, f]-com-
pactness in the sense of complete accumulation points to [x, §]-compactness” where
they state that the superscript r is a reminder of the restriction to regular cardinals.
With this convention we note that [K,, co]-compact is the same as compact,
[0, 8o]-compact is countably compact and [%;, co]-compact is the Lindelsf prop-
erty. The above problem then becomes: Does there exist a mormal Hausdorff
[s;, co]-compact” space that is not [&,, co]-compact? [8] is a study of the more
general question of when an [, f]-compact” space is [«, ff]-compact. The method
of attack here is to generalize part 2) of the corollary to Theorem 1 and other results
by Alexandroff and Urysohn and Misdenko simultaneously. [25] is a study of three
other properties that have been reported in the literature as being equivalent to
[e, B]-compactness or [u, B]-compactness”. It is shown that none of these claims
are correct and an implication diagram is given showing the relationship among these
properties -and [a, f]-compactness.

Part 2) of the corollary to Theorem 1 shows that countable metacompactness
is a sufficient condition for a linearly Lindel6f space to be Lindelsf and it is both
necessary and sufficient if the space is regular (7T}). It is possible to generalize both
Proposition 1 and part 2) of the corollary by considering only the boundaries of
proper open subsets.

PROPOSITION 2. 4 linear Lindeldf space is Lindeldf if and only if the boundary
0U of each proper open subset U has one of the following properties:

1) 08U is regular and countably metacompact,

2) A(0U) is a regular cardinal.

Characterizing topologies and mappings. The success of the theory of convergent
sequences in metric spaces is due to the existence of a countable well ordered neigh-
borhood base at each point such that the well ordering is identical to the partial
ordering of set inclusion. Our next result is that in any space, each point has a well
ordered neighborhood base such that the well ordering is compatible with the
partial ordering of set inclusion. In other words, if U and ¥ are two neighborhoods
in this well ordered neighborhood base such that U< ¥V, then U must follow V in
the well ordering. Let (N) be the following statement: each point in a space X has
a well ordered neighborhood base such that the well ordering is compatible with the
partial ordering of set inclusion.

THEOREM 3. AC <+ N.

The proof relies on the following lemma which is an equivalent form of the
Axiom of Choice and was first stated by the author in [12] and proved in [11].

©
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Vaughan has recently included a proof in [25] which he claims to be slightly shorter
than the author’s so we will omit the proof here. Vaughan uses the lemma in showing
that the property which he calls S{o, f] introduced by Smirnov [22] is equivalent
to oz, 8]-compactness provided the cofinality of fis >o and in showing that another

property which he denotes by G[a, #] which was introduced by Gaal [5] is implied
by S{a, Bl

Lemma. If (P, <) is a partially ordered set and < is any well ordering of P then
there is a subset S of P, cofinal with respect to < such that < is compatible with <
on S; i.e, if a,be S with a<b then a<b.

Proof of Theorem 3. AC implies the above lemma which in turn implies (N).
Conversely, given the statement (N). Let X be a set and let 7 be the finite complement
topology on X. Let (B, <) be a well ordered neighborhood base for some peX.
For each y e X distinct from p let @(y) = 4 such that 4 is the first neighborhood
in B with respect to < with A= X~{y}. Then @: X¥—{p} — B and &~ !(A4) contains
at most finitely many members. For each A € B with ®~1(4) %= & we can well order
@~ !(A4) by some well ordering < 4 since ®~(4) is finite. Define the well ordering <
on X—{p} as follows: if x,ye X—{p} put x<y

D) if &(x)<®(y) or

2) if @(x) = @(y) and x< 4 » where 4 = &(x). )

We conclude that X can be well ordered so that (N) implies the Well Ordering
Principle and consequently AC. B

A transfinite sequence {x,| a<n} is said to cluster to two points p and g simul-
taneously if for each pair of neighborhoods U and ¥ of p and g respectively, there is
a cofinal Cayn with {x,| «e ClcUn V.

THEOREM 4. The following statements are valid in any space X.

1) U= X is open if and only if no transfinite sequence in X~ U clusters to a point
of U.

2) FeX is closed if and only if a transfinite sequence in F can only cluster to
a point of F,

3) p is alimit point of M < X if and only if there is a transfinite sequence in M —{ p}
that clusters to p.

4) X is Hausdorff (Ty) if and only if no transfinite sequences can cluster to two
distinet points simultaneously. i

5) X is T, if and only if for each pair of distinct points there are two transfinite
sequences clustering to the two points respectively but neither clustering to the other
point.

6) X is Ty if and only if for each pair of distinct points there is a transfinite
sequence that clusters to one of the points but not the other.

Al parts of Theorem 4 rely directly or indirectly on the lemma to Theorem 3.
We will only indicate a proof of 1) and 4) as representative. It is possible to formulate
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characterizations of regularity and normality similar to the characterization of
Hausdorff in 4). Also, it is easily shown that the 7', property is equivalent to the
statement that each constant transfinite sequence clusters to exactly one point.

Proof of 1). Assume no transfinite sequence in X— U clusters to a point of U
and suppose U is not open. Then there is a pe U each neighborhood of which
meets X —U. By Theorem 3 there is a well ordered neighborhood base {V,| a<y}
such that the well ordering is compatible with the partial ordering of set inclusion.
For each a<y pick x, € ¥V, n (X—U). It is easily shown that {x,} =(X— U) clusters
to p which is a contradiction.

Proof of 4). Suppose X is not Hausdorff. Then there are distinct points p and ¢
with each neighborhood of p meeting each neighborhood of ¢. Let B(p) and B(q)
be neighborhood bases for p and ¢ respectively and put P = B(p) x B(g). Define <
on P as follows: if U, We B(p) and V,Ze B(g) with UcW and V<Z then
(W, Z)<(U, V). By the lemma to Theorem 3, there is a well ordered cofinal subset

(S, <) of (P, <) such that < is compatible with < on S. For each (U, V)e S -

pick y(U, Vye Un V. Then the assignment y: S— X is a transfinite sequence
which can be shown to simultaneously cluster to both p and ¢.

Let E be a well ordered set and for each o € E suppose ¢,: 4, — Xis a transfinite
sequence. Consider the 4, to be formally disjoint and put 4 = |J 4,. Define the well
ordering < on A4 as follows: if @,be 4 then a<b

1) if y<d in E where ae 4, and b e 4; or
2) if a and b both belong to the same A, and a<b in 4,.

The ordering < on A is usually called the lexicographic ordering of 4. Next .

we define the transfinite sequence X: 4 — X called the sum of the transfinite se-
quences {¢,} as follows: Z(a) = ¢,(a) where aeAd,.
PropoSITION 3. Let X be a space, ¢: E— X a transfinite sequence and for
each o€ E let ¢,: A,— X be transfinite sequences and 3 be the sum of the Q. Then
1) if @ is constant (p(x) = p for all x) then ¢ clusters,
2) if E = A v Band ¢ clusters to p then either ¢4 or ¢y exists and clusters to Py
3) if for each w, @, <{p(B)| <o} and ¢, clusters to p then ¢ clusters to p.
4) if for each a, @, clusters to ¢ (&) and ¢ clusters to p then X clysters to p.
The proof of Proposition 3 amounts to a routine verification of the four prop-
erties above. Next we define a fransfinite sequence class (TS class). Let S be a set
and % a class of ordered pairs (¢, p) where ¢ is a transfinite sequence in Sand pe S.
We will call € a TS class on S if % satisfies the four conditions of Proposition 3,
i.e., if “¢ clusters to p” can be replaced by “(p,p)e %" in 1) through 4) of Prop-
osition 3 and “¢ does not cluster to p” can be replaced by “(p,p)¢E.”
THEOREM 3. Let € be a TS class on a set S and for each A<=S let A be the set
ofallae S with (¢, a)e % and o= A. Then  is a closure operator on S and (p, a)e 4
if and only if ¢ clusters to a relative to the topology associated with °.
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Proposition 3 and the above theorem set up a one-to-one correspondence
between the various topologies a set can have and the TS classes on the set. It is
clear from the definition of clustering that if %;, and ¢, are two TS classes and 1,
and 7, are the associated topologies, that %, =%, if and only if t,=7,. Also, one
notices that if ¥, v %, denotes the smallest TS class containing both %, and %,
then €'y v %, is the TS class associated with 7, N ,.

THEOREM 6. Let f: X — Y be a function from a space X into a space Y. Then

1) fis continuous if and only if for each transfinite sequence {x,} in X that clusters
to some point pe X, {f(x)} clusters to f(p).

2) If 1 is onto, f is open if and only if for each transfinite sequence { y;} = Y that
clusters to some pe Y and for each qef*(p) there is a transfinite sequence
{xde UL (v} that clusters to q.

3) fis closed if and only if whenever a transfinite sequence { y,l B<n}< Y clusters
to some pe Y, each transfinite sequence {x,| f<n} with xzef~(ys) clusters to
I

4) Iffis onto, f is pseudo-open if and only if for each transfinite sequence {y)= Y
clustering to p e Y there is.a transfinite sequence {x,}=\{f™(yp)} clustering to q
Sor some qef(p).

5) fis « quotient mapping if and only if for each transfinite sequence {yg}<=Y
clustering to some pe Y there is a transfinite sequence {x,}<\) {f'(yp)} that is
frequently in each open inverse image of an open set in Y that contains f~(p).

All parts of Theorem 6 rely on the lemma to Theorem 3. Part 1) has the simplest
proof however, it is still representative of the proofs of 2) through 5) so we will
only indicate its proof here.

Proof of 1). Assume f is continuous and suppose {x,}<X clusters to p. Let
Uc Y be a neighborhood of f(p) and ¥V a neighborhood of p with f(V)cU.
Then {x,} frequently in ¥ implies {f(x,)} is frequently in f(V)=U, so { JieA)
clusters 1o f'(p).

Conversely suppose f is not continuous. Then there is 2 pe X and a neigh-
borhood U of f(p) such that f (V) is not contained in U for each neighborhood ¥
of p. By Theorem 3 there exists a well ordered neighborhood base {V,| a<n} fc?r P
such that the well ordering is compatible with the partial ordering of set inclusion.
For cach o pick x, & V, such that f(x,) ¢ U. Then {x,} clusters to p but {f(x)}
does not cluster to f(p). B

Convergence of transfinite sequences. A. V. Arhangel'skil [2] i‘ntroduced the
concept of a Frechét space as one that whenever p e CI(F), there is a countable
sequence {x,} < F that converges to p. He characterized Frechét spaces as'pscudo.-
open images of first countable spaces. We will call a space Transfinite Frechét (TF) if
whenever p e CI(F) there is a transfinite sequence {x,}cF thaic?nverges to p.

S. P. Franklin [4] investigated a-slight variation of Arhangel’.sku’s Ldt?a. He called
a space sequential if each countable sequence converging to a point of U is eventually
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in U implies U is open. Tt is easy to se¢ that Frechét spaces are sequential and pseudo-
open mappings are quotients by definition. Therefore Franklin arrived at the follow-
ing: sequential spaces are quotients of first countable spaces. We will call a space
Transfinite sequential (TS) if each transfinite sequence converging to a point of U is
eventually in U implies U is open. Furthermore, our transfinitc generalization of
a first countable space will be a chain local base (CLB) space which is defined as
a space in which each point has a local base well ordered by set inclusion.

It is fairly easy to show directly that CLB — TF — TS but we will not do so
here because this implication diagram will follow as a corollary to Theorem 7. An

*
example of a TF space that is not CLB is the space X defined as follows. Let

*

X = {o| a<w,} and let X have the discrete topology. Let X be the one point com-

pactification of X. It can be shown that the point at infinity has no chain local base
*

yet X is TF.

THEOREM 7. 1) A space is TF if and only if it is the continuous pseudo-open image
of a CLB space.

2) A space is TS if and only if it is the quotient of a CLB space.

The proof of 1) is representative of the proof of both parts of Theorem 7, so
we will only include it here.

The proof of Theorem 7, was givenin [11]. However, it has recently been pointed
out to the author that there exists an carlier proof of part 2) in [6]. In any event,
Theorem 7, is a straight forward generalization of the earlier work of Arhangel’skiY [2]
who is responsible for the central idea. The proof of part 1) uses the following two
lemmas, the first of which is a slight improvement of Theorem 6 part 4).

LeMMA. A4 function f: X — Y is pseudo-open if and only if for each transfinite
sequence {ys| B<n}=Y with y<2I"! clustering to some pe Y, there is a transfinite
sequence {x,}=\) {f™*(yp)} clustering to q for some qef~(p).

Lemma. A function f: X — Y where X is a CLB space is continuous if and only
if whenever {x,} <X converges to some pe X, {f(x,)} converges to f(p).

Proof. We will only indicate a proof of the necessity which represents the main
part of the proof. Assume Y is TF and construct X as follows; for each y € ¥ and each
‘transfinite sequence x = {x,| a<7} with 7 <21 converging to y let y(x) = {x,} U {y}
where each point of y(x) is considered distinct and y(x) is considered to be well
ordered by the ordering induced from x with y considered to be the last point.
Topologize y(x) by letting each point of y(x) be discrete with the exception of y and
let y have a local base consisting of sets of the form R(x,) = {x, € y(x)| a<y}.
Then let X' be the disjoint topological sum of all the p(x)’s.

Let o(x, ) denote the member of ¥ which comes from the ath element of the
transfinite sequence x and if x converges to p, consider o(x, p) = p. Then define
Jf: Z—= Y by f(o(x, ®) = x, and f(a(x, p)) = p. The intuitive idea is that f maps
each ¢ € 2 back onto the element of ¥ which generated it. Clearly f'is onto and % is
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a CLB space. That /" is continuous follows from the previous lemma. Next we
show f is pseudo-open using the other lemma above.

Let pe Y and suppose x = {x,} clusters to p. Then p € . Then there is a trans-
finite sequence y = -{J',,}c:.\' that converges to p since Y is TF so p(»)<Z. Then
p(ef X, Let it y— y be the identity transfinite sequence. Then i converges
top,icf “1(x) and p e /™ }(p). Hence for each transfinite sequence x< Y that clusters
to some pe ¥, there is a transfinite sequence y= £7%(x) such that y clusters to g
for some ¢ ef~'(p). Therefore f is pseudo-open. B

Another type of characterization of TS spaces and sequential spaces can be
obtained in terms of mappings. A function f: X — Y is said to be sequentially
continuous if for each sequence {x,} =X with {x,} converging to p in X, {f(x,)}
converges to f(p). Similarly, fis called TS continuous if for each transfinite sequence
{x,} =X converging to p, {f(x,} converges to f(p). ’

PrOPOSITION 4. Given a space X,

1) X is TS if and only if each TS continuous function on X is continuous,

2) (R. Chandler) X is sequential if and only if each sequentially continuous function
on X is continuous. .

Chandler [18] also proved the following proposition where a space is defined
to be accumulution complete if each countable sequence that clusters to a point p
has a subsequence that converges to p.

PROFOSITION 5. A sequential space is Frechét if and only if it is accumulation
complete.

Extension of the accumulation complete property to the transfinite case in the
obvious way does not lead to a transfinite generalization of Proposition 5 as the
following proposition shows:

PROPOSITION 6. If a space X is Ty, and whenever a transfinite sequence clusters
to a point it has a subsequence that converges to the point then X is discrete.

Proof. The proof is based on the fact that for each p € X it is possible to con-
struct a transfinite scquence = X—{p} the cofinality of whose domain is greater
than the cardinality of the space and which repeats each point in X— {p} cofinally
many times. Then, unless p is isolated, i clusters to p. Each subsequence of Y must
repeat some point in X —{p} cofinally many times. Since X is 7} it is possible to
pick a neighborhood N of p that does not contain this point and hence the subse-
quence is frequently outside of N so that it cannot converge to p.
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Banach-Euclidean four-point properties
by

J. E. Valentine (San Antonio, Tex.)

Abstract. A metric space has the Banach-Euclidean four-point property at a point p provided
for each triple of its points ¢, r, and s, if my, my, ms, m, are respective midpoints of p and ¢, g
and », r and s, and s and p then mymy = mgm, and mym, = mym, and the quadruple m,, m,,
ny, my is congruent to a quadruple of points of the euclidean plane. The main result of the paper
is that a complete, convex, externally convex, metric space is a real inner-product space if and only
if it has the Banach-Euclidean four-point property at some point.

Let S denote a space which satisfies the axioms of Hilbert’s groups I, II, IIT
and V; namely, the axioms of connection, order, congruence, and continuity.
Young [6] proved S is cuclidean, hyperbolic, or elliptic, respectively, if and only if
there is one triangle such that the length of the line joining the middle points of two
sides is (1) equal to, (2) less than, or (3) greater than the third side, respectively.

Andalafte and Blumenthal [1] extended the notion of (1) above to metric spaces
in the following way.

The Young postulate. If p, ¢, and r» are points of a metric space M, and if g.
and r’ are the midpoints of p and g, and of p and r, respectively, then ¢'r’ = }gr

They proved a complete, convex, externally convex, metric space with the two-
triple property is a Banach space if and only if it satisfies the Young Postulate.

A direct analogue of Young’s result is: a complete, convex, externally convex,
metric space M is a euclidean (inner-product) space if and only if M contains one
triple of points which satisfies the Young condition. This is of course false, for every
rotund Banach space satisfies the Young Postulate. To make matters worse, there is
a complete, convex, externally convex, metric space which satisfies the Young
Postulate at one point, but is not a Banach space, see [4].

We focus our attention on an immediate consequence of the Young postulate.

The quadrilateral midpoint property. If p, ¢, r, and s are points of a metric space M,
and if my, m,, ms, m, are respective midpoints of p and ¢, g and 7, r and s, and s
and p, then ‘

mym, = mymy, and  m Mg = myms.
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