52 S. Wagon

able cardinals in general has been shown by Baumgartner who proved the following
theorem by the methods of Kunen-Paris [2].

TuroreM 4.4. If it is consistent that a measurable cardinal exists then it is con-
sistent that there is a measurable cardinal » which bears an atomless »™-saturated
ideal I (I is atomless if for any Ae P (x)—1, IMA4 is not prime).

Sketch of proof. Using Theorem 2.1 of [2], assume M is a model of ZFC such
that, in M, D, and D, are distinct normal ultrafilters on the measurable cardinal .
Choose X € D, — D, such that for all « € X, « is a regular cardinal. For i = 1, 2 let
Jit M — Ult(M, D;) be the canonical embedding and let P be the Easton partial
ordering in M for adding a single generic subset of each o in X, Then j, P = Px O
where Q is x¥-closed and j,P & PxP,x R where R is x*-closed and P, is the
partial ordering for adding a generic subset of » to Ult(M, D,). Now, if G is
Px Qx R-generic over M then arguments as in [2] can be used to show that, in
M[G], Dy extends to a.normal ultrafilter on % and D, extends to the dual of a non-
atomic »"-saturated ideal on x. .
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On Postoikov-true families of complexes
and the Adams completion

by

Aristide Deleanu (Syracuse, N. Y.) and Peter Hilton (Seattle, Wash.)

Abstract. Let G, be the homotopy category of pointed r-connected CW- complexes, let U be
a non-empty collection of objects of Gy, and let S(V) be the family of those morphisms s: X—Y
in G, such that s*: [¥, F]-[X, V] is bijective for every ¥ in U’ In the case where r>>1, it is proved
that the Adams S()-completion exists if, essentially, \¥' has the property that, whenever V'
belongs to U, then so do the Eilenberg-MacLane spaces K(mpV, k), k = n, n+1, n+2; nzr+1.
An extension of the result is obtained in the case where r = 0 and the objects of U’ are assumed
to be nilpotent, by using the characterization of a nilpotent space in terms of the principal refinement
of its Postnikov tower. It is pointed out that this framework is adequate to obtain the Sullivan
p-profinite completion, where p is a prime. Finally, one considers the general non-simply-con-
nected case, where one does not insist that the objects of U’ be nilpotent. Here, non-simple ob-
struction theory is needed, and therefore the Eilenberg-MacLane spaces must be replaced by
certain spaces L(4, k), obtained by a significant modification from the spaces ‘R(A, k) constructed
by C. A. Robinson as representing objects for cohomology with local coefficients. The Sullivan
P-profinite completion is obtained among the applications, where P is an arbitrary family
of primes.

0. Introduction. We consider, for a fixed r, the homotopy category %, of pointed
r-connected CW -complexes, and a non-empty collection #” of objects of 4,. With -
respect to ¥~ we form the family S = S(¥7) of those morphisms s: X' — Y in %,
with respect to which every ¥ in 9" s left-closed, that is, those morphisms s such
that ‘

s* (Y, V]—>[X, V]

is bijective for every ¥ in #". The family & is plainly saturated, a,nd we may ask
whether the (generalized) Adams S-completion [, 3] exists .

We introduce a condition on %7, of a rather natural character, which comes
close to guaranteeing the existence of the Adams completion and which is certainly
verified in the two cases of principal importance — the p-profinite completion and
the P-localization, where p is 2 prime and P is a (possibly empty) family of primes.

() In this case, the Adams completion has been called by Harvey Wolff the U -localization.
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We first discuss, in Section 1, the case r>1. We then say that ¥~ is Postnikov-true
if, whenever ¥ belongs to ¥ then so do the Eilenberg-MacLane spaces
K@, V,k), k=n,n+1,n+2; n2r+1.
(Of course, in actual examples, we would expect to find K(x,V, k) in ¥ for all
k>=r-+1, but only the given values of k¥ actually enter into the argument.) This con-
dition turns out to be sufficient to guarantee that S admits a calculus of left fractions
(provided always that r>>1) and we have only to add a solution set condition to be
able to apply the main result of [1] or [3] to prove the existence of the Adams
S-completion. We also discuss the saturation of ¥~ and apply the ideas of this paper
to the consideration of the Kan extension of a cohomology theory, defined on the full
subcategory of %, generated by ¥, to the whole of %, or to the saturation of ¥.
~ In Sections 2 and 3 we consider the modifications needed in the non-simply-
connected case. In Section 2 we obtain an extension of Theorem 1.4 by insisting that
the objects of ¥ be nilpotent [9] and using the characterization of a nilpotent space
in terms of the principal refinement of its Postnikov tower. However, we meet a real
difficulty in attempting to generalize the last part of Section 1, in which we consider
Kan extensions of cohomology theories, since the category of nilpotent spaces does
not admit mapping cones and is therefore not admissible for a cohomology theory.
On the other hand, the class of nilpotent spaces forms a sort of maximal class of
spaces for which ordinary obstruction theory suffices for maps into spaces belonging
to the class, so that the proof of Theorem 1.4 generalizes easily. It is interesting to
note that, as pointed out in Section 2, this framework is adequate in order to obtain
the Sullivan p-profinite completion.

In Section 3, we consider again the non-simply-connected case, but this time
we do not insist that the objects of 7~ be nilpotent. Consequently we need to use
non-simple obstruction theory, and therefore we must replace the Eilenberg-MacLane
spaces in the definition of the Postnikov-true families by certain spaces L = LA, k),
“where 4 is a given n-module, closely related to the spaces K (A4, k) constructed by
Robinson in [12] as representing objects for cohomology with local coefficients. As
an application we then obtain the Sullivan P-profinite completion. In an appendix
we show how we can make some small technical improvements in our main theorems;
and we use some elementary abstract nonsense to derive further examples of the
Adams S-completion from those already cited in the text.

1. The existence of Adams completions: the simply-connected case. Let %, be
the homotopy category of r-connected (pointed) CW-complexes, 0, and let ¥ be
a collection of objects of %, which we assume to include the singleton; we will feel
free to identify ¥~ with the full subcategory of %, generated by the objects of "//L .
Let § = §(¥) be the family of morphisms s: X — ¥ in %, such that the induced
map

st =15, V]: [Y, V]—[X, V]

On Postnikov-true families of complexes and the Adams completion 55

is bijective for all ¥ in ¥". We are principally interested in the question of when the
(generalized) Adams S-completion of objects of %, exists. However, we begin with

- some very elementary observations.

ProrosITION 1.1. Let X—s> Y—LZ in €, with ts = u. Then if any two of s, t, u
belong to S, so does the third.
~ PROPOSITION 1.2, Let K: ¥ — %, be the full embedding. Then if & is the shape
category bf K with shape functor T: G, — &, S is precisely the family of morphisms
of ¥, rendered invertible by T.
Proof. We need only recall [6] the definitions

y(X’ Y) = Nat([Y1 K’-]’ [X’ K_D s Ts = [S: K_] [Y> K—’]_> [Xa K_] -
PROPOSITION 1.3. Let F: ¥ — @ be a functor and let F: 4,— 9 be the right
Kan extension of F along K. Then F(s) is an equivalence for all s in S.

Proof. According to Theorem 1.4 of [6], the right Kan extension of any functor

on ¥ is shape-invariant. .
We now move towards the principal results of this section. We say that ¥~ is
Postnikov-true if r=1 and, whenever ¥ belongs to ¥7, then the Eilenberg-MacLane

spaces
1.1 K(m, V., k),
also belong to . Notice that ¥~ is Postnikov-true if it is just the family of spaces #~
in @, whose non-zero homotopy groups belong to a given family / of abelian groups.
We prove

THEOREM 1.4. If ¥ is Postnikov-true andif S = S(¥"), then S admits a calculus
of left fractions. '

Proof. We apply the criterion of Theorem 3.1 of [4], and so must prove the
following weak push-out property for S. Namely, we assume given a diagram
in %,

k=n,n+1,n+2;n=r+l

X——>Y
(1.2) l

Z
\

with & in S, and prove that (1.2) may be embedded in a weak push-out diagram in &, ,

L4
X—Y
(1.3) vl l
z - w

with t in S. In fact, we construct(1.3) as the weak push-out in ¥, and then show that W
is in %, and 7 is in S. :
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Thus Iet (1.3) be the weak push-out of (1.2) in %,. Since X, ¥, Ze ¥,, r=1,
it follows that W is simply-connected. Since H,;X = H;Y = H,Z = 0, 1gi<r,
it follows from the Mayer—Vietoris sequence that H;,W = 0, 1<i<r, so that W e ¥,.

It remains to show that 7 is in S. Let n>r+1 and let %, be the collection of
abelian groups m,¥ as V ranges over ¥". Since ¥ is Postnikov-true and o e S it
follows that

o*: [Z,K(G, ] =2 [X,K(G, k)], Ge¥%, k=n,n+l,n+2.

Thus the relative cohomology groups .
Hi(s; G),
vanish; but, by the construction of the weak push-out in %, it follows that

Hie; &) = H(z;6), alli,G.

j=n,n+1, Ge¥,,

Thus,

1.4) H(1;0) =0, j=n,n+l, Ged,.

Now let Ve ¥, and consider *: [W, V]—[Y, V]. Given ye [Y, V], the
ob.structions to the existence and uniqueness of a counterimage of y under ©* lie in
H(t; 7, V), j=mn,n+1;n=r+1,r+2, .. From (14) it is immediately seen that
these cohomology groups vanish, so that 7*: [W, V] [Y, ¥] and te S as
asserted.

THEOREM 1.5. If ¥ is Postnikov-true and if S = S(¥"), then the Adams S~-com-
Dpletion Y of a given object Y of €, exists, provided that there exists a small subset Zy
of the set Sy = {se S|s: Y— Y'} with the property that, for each s €Sy, there
exists ceXy and ue ¥, with us = o. ‘

Proof. By Theorem 1.4, S admits a calculus of left fractions. Now suppose
5;0 X;— Y, lies in.S for each el Then vX;, v Y€, if X;, Yie%,, ieland

Vs VX —> vY;

obviously lies in S. Thus we obtain the result by applying the Theorem in [3] or
Theorem 4.6 in [1].

ExampLE 1. We can take ¥ to be the category of r-connected spaces, rz1
whose homotopy groups belong to a given class of abelian groups. In this c;lse wc;
get an application of Theorem 1.4; but we cannot infer the existence of an Adams
completion in this generality, since we have no reason to suppose that the solution
set.condition (the hypothesis of Theorem 1.5) will be satisfied. We will give an inter-
esting special case where we can draw this inference, but will defer consideration
of this to an appendix, since it will be easier in this case to make the argument depend
on the discussions in Section 3.

ExaMpLE 2. We can take %" to be the category of r-connected spaces, r=1
whose homotopy groups are P-local, where P is a family of primes. Thus the :spz;es,
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of ¥ are P-local in the sense, for example, of [9]. In this case the family S is precisely
the family of P-equivalences in %, [9]. For if s: X — Y is a P-equivalence and ¥ is
P-local then s*: [Y, V] = [X, V] Conversely if s*: [¥, V]« [X,V] for all
P-local V in %,, r=1, then sp: [¥p, V1= [Xp, V], where sp: Xp— Yp is the
P-localization of s. It follows immediately that sp is a (homotopy) equivalence, so
that s is a P-equivalence. But then [4] Yy is just the P-localization Yp of Y.

It is natural to consider the question of which objects of %, are S-complete.
Obviously, a satisfactory situation is one in which all objects of ¥ are S-complete,
but we would expect, in general, to- find S-complete objects outside ¥".

THEOREM 1.6. If ¥ is Postnikov-true and if S = S(¥") then Z € 4, is S-complete
if and only if the induced map s*: [Y,Z]— [X,Z] is bijective for all s in S.

Proof. If Z is S-complete we have, according to the definition of the Adams
S-completion, for each s: X — Y in § a commutative diagram whose horizontal
arrows are bijections,

GIST(Y, Z) = [, Z]
st is*

%IS7'(X,Z2) 2 [X, Z]

But since se S, s is invertible in %,[S™"] and hence s' is bijective; so therefore
is s*.

Conversely, let Z & %, be such that s* is bijective for all s in S. It follows that
if §: Z— U lies in S, then there exists a unique t: U— Z with #s = 1. By Propo-
sition 1.1, # also lies in S. In view of Theorem 1.4 we may apply the criterion of [4] to
infer that 1, is the Adams S-completion of Z.

Remark. Plainly it was only the converse which required Theorem 1.4 and
hence the hypothesis that ¥~ be Postnikov-true. The inference that if Z is S-complete
then s*: [Y, Z]— [X, Z] is bijective for all s in S is a quite general categorical
fact.

COROLLARY 1.7. If 4" is Postnikov-true then all objects of ¥~ are S-complete,
where S = S(¥").

We may rephrase Theorem 1.6 by saying that the collection of S-complete
spaces of %, coincides with the saturation of ¥". To illustrate these ideas let us revert
to Example 2. With the precise definitions of that example it is plain that #” is already
saturated, since the S-complete spaces are precisely the P-local spaces. However
it is obvious that we could replace ¥ by the smaller family 77 consisting of
Eilenberg-MacLane spaces K(G; k) with G P-local and k=r+1; we would then
obtain the same family S and ¥~ would be the saturation of #"o. It would even suffice
to replace #” by ¥ consisting of the spaces K(Zp, k), kzr+1.

Let us now further suppose — examples will be given below — that ¥ is an
admissible category for a cohomology theory ho: ¥~ —» 4b. Then we may form
the Kan extension h,: %, — Ab of h, along the embedding ¥ =¥, and, as pointed
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out in Proposition 1.3, Ay (s) will be an equivalence for all s € S. In particular, if
e: Y — Yg is the S-completion, then

hy(@): hy(Ys) = hy(Y).

Since Yy is S-complete this suggests, in the light of Theorem 1.6, that it would be
interesting to study the Kan extension of 4, along the embedding of ¥ in the full
subcategory of %, generated by the saturation of ¥ :

ExamprE 1. Let ¥ be the full subcategory of %, whose objects have homotopy
groups in some acyclic Serre class C. Then if s;: ¥"— 4b is a cohomology theory
(obtained, for example, by restricting a cohomology theory defined on %,), we may
form the Kan extension /1,: %, — 4b, which will again be'a cohomology theory
(see Example 3.12 of [5]). It follows that /,(s) is an isomorphism for all s € S = $(¥°).

ExampLE 2. Let ¥~ be the full subcategory of %, whose objects are the P-local
complexes for some family of primes P. Since the property of being P-local is
preserved under mapping cones, (weak) pullbacks and passage to the universal cover
of the loop-space, it follows from Corollary 3.9 of [5] that the Kan extension hy of
a cohomology theory /ip: ¥ — Ab is again a cohomology theory. Then ,(s) is an

isomorphism if s e § = S(¥), that is, if 5 is a P-equivalence. It may be shown that
hX = hyXp. )

2. The nilpotent case. The preliminary results (Propositions 1.1, 1.2, 1.3) of the
preceding section were explicitly valid also in the case r = 0, that is, when we were
considering the homotopy category %, of connected (pointed) CW-complexes.
However in order to obtain an analog of Theorem 1.4 in this case we must make
an appropriate definition of a Postnikov-true family ¥ If we wish to use only ordinary
obstruction theory, then we must insist that the objects of ¥ be nilpotent. Recall
that, if Ve %, then n; V acts on m, ¥ and we may form the lower central series of T, V,

@1 n,V =T'nV, MV, ..,

asin [9]. If n = 1, then (2.1) is just the usual lower central series of the group 7, V.
Moreover, V is nilpotent if and only if, for each n3>1, there exists ¢ = ¢(n) such
that I“** 7, V is the trivial subgroup of m, V. Equivalently, ¥ is nilpotent if and only
if, for each n>1, the nth stage of the Postnikov system of V,

2.2) v, 5V,

admits a refinement (or factorization)

9 do-1 4z a1
Vi=U—>U,_{—..— U,—-0U, = Vit

where the fibration ¢;: U;— U,_; is induced by a map

gt Uiy = KU m, VI 10, ¥, 4 1)
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DerNiTioN 2.1, We say that the collection ¥~ of objects of € is Postnikov-
true if, whenever V belongs to ¥, then ¥ is nilpotent and the Eilenberg-MacLane
spaces

2.3) K([Tw, VI in,V, k), k=nn+l,n+2;n>l

«

also belong to ¥, . -

Remark. This definition is quite compatible with that given in Section 1;
for if V is 1-connected then ¥ is nilpotent and I'' m, ¥ = T v,Ir? oy V = {0}, and
so the spaces (2.3) consist of the spaces (1.1), together with the singleton.

With this definition of a Postnikov-true family ¥, Theorem 1.4 — and hence
also Theorem 1.5 — remain valid in the case r = 0. Notice, however, that the argu-
ment of Theorem 1.4 does not permit us to replace %o by A/, th§ cat.egory of nil-
potent spaces, since we do mnot have a weak push-out construction in A"

ExaMpLE 1. We can take ¥ to be the collection of nilpotent spaces whose
homotopy groups belong to a given generalized Serre class of groups in the sense
of [9], p. 43. : ) ,

ExaMpLE 2. We can take 7" to be the collection of spaces whos.e homo.topy
groups are finite p-groups. indeed, these spaces are automatically nilpotent; ex-
plicitly, we have (*). ) .

PROPOSITION 2.1, If V is a connected complex whose homotopy groups are finite
p-groups, then V is nilpotent. . . -

Proof. Certainly n; V, being a finite p-group, is mlpo.tent. Q1ven the actmt;
of 7,V on w,V, form the semi-direct product G,. ’}"hen G, is a finite p- grf)lup ant
bence nilpotent. Thus (Theorem 2.7 of [8]) the action of 7y V on 7, I{’IS ni potf:n L

With this choice of ¥, if Y is of finite type, then Yy exists and is the Sullivan
p-profinite completion of . Y. : ‘

ExAMPLE 3. We can take ¥ to be the collection of .P-Iocal r}llpqtent spaces.
Then the family S consists of those maps s which i.nd}lce an isomorphism in }.101:1101(;gy
with Zp-coefficients, that is, a P-isomorphism in integral homology. This mkllp ies

that Yy is the Bousfield localization [2] of ¥ with respecF t(.) the »homolo}g)ylt e(;ri
Hy(—; Zp). In particular, if Y is itself nilpotent then Yy is just Yp, the P-locali
atmnTl(l)ioilf]l..G and Corollary 1.7 (and the subsequent remarks) again ;xter{d itn
straightforward manner to the non~sin1p1y—conr}ected case. However, a gfhcai
problem arises with respect to the examples ‘Whl?h close Sectl.on. 1. for ehca
egory ¥, consisting of certain nilpotent spaces, will Fot be adrmssxblebor a C(‘)bll;n;;
ology theory since it will not admit, in general, mapping cones. .It may» e poszl oL
circumvent, this difficulty by considering cohomology theories on ‘%, an
restrictions to ¥,

() This proposition is surely well-known, but we give a very simple préof.
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3. The non-nilpotent case. In order to obtain an analog of Theorem 1.4 for %, in
the case where we do not insist that the objects of ¥ be nilpotent, we need to :1se
non-simple obstruction theory. Thus the obstructions to extensions and homotopies
of maps will lie in cohomology groups with Jocal (twisted) coefficients. In order to
carry out this generalization we will have need of Robinson’s construction [12] of
a r.epresenting object for cohomology groups with local coefficients, so we now review
this construction, and introduce a significant modification.

Let -A be an abelian group and AutA its group of automorphisms. Let K(4, k)
be an Bilenberg-MacLane complex which is a topological group on which Au’tA
acts cellularly. Let O = K(Aut4, 1), so that the universal cover 0 is a contractible
complex on w~hich AutA acts freely and cellularly. The diagonal action of AutA
on K(4 g k)x Q is free and cellular, and we denote the quotient space by K (4 k)
The projection K(A, k)x Q — @ induces a fibre map g: R4, k)— Q with ﬁ’xbr(;
K(A4, k) and the inclusion § — K(d4,k)x 0, given by xm (0, x), xe @ induces

a standard section 7: Q — R(4, k) of the bundle map ¢. We identify Q with its

image under I ‘
‘ Let (.W, Y) be a CW-pair such that W, ¥ are connected and fix a base poin‘;
i Y. It is well-known that, for any group G, there is a natural bijection

G.1) [W, K(G, 1)] = Hom(n, W, G) .

Let x: 7, W — Aut4 be a homomorphism defining a local system of groups on W,
and let e = e(y): ' W— K(Aut4, 1) belong to the homotopy. class correspondin ,
to y under the bijection (3.1). Then Robinson shows that, for cohomolo TOU, .
of (W, Y) with coefficients in the local system y, we have a set»bijectigosilg ”

(3.2) H(W,Y;0) 2 W, Y; R(4,5), 0.,

where, on the right, we designate the set of fibrew;
> A > : wise homoto f
Jr W, Y— K(4,k), Q such that qf=e: W— Q. Y classes of maps
Suppose now that 4 is, in fact, 2 m-module and that &: 7 —s Autd describes

the module structure. Then we may choose a map u: K(m, 1) — K(Autd4, 1) in- -

ducing & and use u to obtain an induced fibre map over K(r, 1)
2 3

KA, k) — L "5 K(z, 1)
(33) ! v u
. v
K(4, k—sR (4, k) —> 0
M.oreover, the canonical section I: 00— R4,k induces a canonical section
m: K(n, 1) — L such that vm = lu; we, likewise, use m to embed K(r,1) in L
Let us suppose further that y: n, W— AutA factors as my W—in—: Aut4 and

let « correspond to the homotopy class of d: W
P W—K(rm, 1);
suppose that e = wd. It is then evident from (3.2 that(: i e may, of course

(3.4) HW,Y; ) = [W, Y; L, K(z, 1)],.
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It is this modification of Robinson’s construction which we will exploit in the
sequel. Indeed, if no confusion is to be feared, we will regard 4 as a fixed 7-module
and suppress the symbol & from (3.4), writing

(3.5) Hk(W; Y: DC) = [W3 Y’ L: K(ﬂ:: 1)]:1: N

* where «: 7y W—n and the homotopy class of d: W— K(x, 1) corresponds to

o under (1) (3.1). This will especially be the case when V is a connected space,
A=mnV,n22 and 7 = m V.

We next need two elementary lemmas. : )

LemMaA 3.1. If g: Z— W induces a bijection [W, L] = [Z, L], then it induces
a bijection [W, K(z, )] 2 [Z, K(n, D]

Proof. This follows immediately from the fact that L dominates K(r, 1).

LemMma 3.2. If g: Z— W induces a bijection [W, L] = [Z, L], then it induces
an isomorphism

g*: HY(W; o) = HYZ; aomyg),

Proof. The set [W, L] may be identified (%) with the disjoint union of the sets
[W, L], as d ranges over a set of representatives of the elements of [W, K(=, 1)].
But now Lemma 3.1 tells us that, under the hypotheses of the lemma, dg will then
range over a set of representatives of the elements of [Z, K(x, 1)]. Thus the bijection
[W, L] = [Z, L] breaks down into a collection of bijections [W, L]; & [Z, L4,
and the lemma follows from (3.5).

We are now ready to make the appropriate modification of the concept of
a Postnikov-true family in the case of a collection of non-nilpotent (that is, not
necessarily nilpotent) spaces ¥ For any connected space V, write L(n,V, k) for
the space L of (3.3) with 4 = =V, n22, n =m, V} thus

K, V, k)= L(m V, k) — Kz, V> 1) .

DEFINITION 3.1, We say that the collection ¥ of objects of %, is twisted-
Postnikov-true if, whenever ¥ belongs to %7, so do the (twisted Filenberg-MacLane)

spaces

for every o: n,W—m.

Lt V. k), k=nn+lnt2; n=2.
We now prove the main result of this section — the analog of Theorem 1.4.
THEOREM 3.3. If ¥ is twisted-Postnikov-true, and if S = S(¥"), then S admits
a calculus of left fractions.
Proof. As in the proof of Theorem 1.4 we assume given a diagram in %,

Xv-(f—> Y

g

Z

(Y Note that (3.5) generalizes (3.2), which is the case & = 1.
(® As in the proof of Lemma 1.5 of [12].
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with ¢ in .S, construct the weak push-out in %,

X——i->Y

6o . I

Z-—l;‘>W -

and must show that 7 is in S. We will feel free, where convenient, to assume all the
maps in (3.6) to be (cofibration) inclusions, and to use the abbreviated notations
of the proof of Theorem 1.4 to refer to the cohomology groups of ¢ and .

‘We want to show that, if Ve ¥, then

v W VI [Y, V]

is bijective. Now, the obstructions to the existence and uniqueness of a counter-
image under t* of an element of [ ¥, V] will, with the exception of the lowest dimen-
sions, all be in the cohomology groups of t with (local) coefficients =, V,

H0), k=n,n+1; n=2,

where «: 7y W— n; V is induced by some map W"— ¥ for the existence problem
and some map W— V for the uniqueness problem (see [11] or [10], p. 308). We
now show that

3.7 Y*: H¥7;0) = HYo; a0 ng) .
In view of the independent interest of (3.7), we prefer to state it in appropriate
generality as follows,

PROPOSITION 3.4, Given any weak push-out (3.6) in. %, and a n-module A and
given any homomorphism a: W  defining a local system of groups on W, then s
induces an isomorphism

V¥ HY1;0) = Ho; a0 ).
Proof. By invoking (3.4) we see that we must establish a set bijection
l//*: [W; YaL) .K‘(TE, 1)]4g [Z) X; La K(ﬂl, I)Jdall ’

f;vhereld: W — K(m, 1) is in the class corresponding to . Now (with all maps in (3.6)
inclusions) W is just the union of ¥ and Z with X amalgamated. Given f: Z, X — L,
K(n, 1) with 7f'= d|Z we set h =d|Y: ¥ — K(x, 1), then flX=1rX=dX
= h| X so that we may define g: W—L by g|Y=#h, g|Z = S and thus y* is
surjective.

G1veu 9,9 W, Y=L, K(n, ) with rg = rg’ = zl and a fibrewise homotopy

{Z = g'[Z rel X, we set up a fibrewise homotopy g =~ g'rel ¥ by defining G| ¥

= const, G|Z = H, thus showing: that y* is injective.

Thus (3.7) is established. Now we know that

o*: [Z,L(m,V, Dl = [X,L(n,V,K)], k=n,n+1,n+2; n2.
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Thus we infer from Lemma 3.2 that

(3.8) o*: HYZ; p) = H'(X;fom0), k=mn,n+l,n+2;n=2,

for any f8: m;Z — my V. Appeal to the exact cohomology sequence [12] of o,

o B(Z3 B) 55 O fomy0) = H(os B) = HYHEZ; )55 B HOG Bomy o)
then shows that
(3.9) HYo: ) =0, k=nn+l;nz2.
From (3.7) and (3.9) we infer that
Hz;0) =0, k=n,n+l;nz2,

so that the obstructions, in higher dimensions, to the existence and uniqueness of
a counterimage under t*: [W, V]— [Y, V] of an arbitrary element of {¥, V] all
lie in trivial cohomology groups.

Tt remains to consider the low dimensions. These require a separate discussion.
However, our discussion will show that the low-dimensional obstructions will
vanish without any condition whatsoever on the family ¥". Thus, according to [11],
p. 42, a map h: ¥ — V is extendable to ¥ U W? if and only if there exists a homo~
morphism

0: nW—mnV

such that 67yt ‘= m, h. Now, since ¢ belongs to S, there exists k: Z— ¥ such
that k¢ = he. The maps k and A clearly combine to yield a map W — ¥ inducing
an appropriate §. The subtler point is the following: again according to o1,
p. 42, if two maps kg, ky: W— Vagree on Y, then ho| YU W'~ hy| YU Wirel ¥
if and only if m by = 7y hy. Now since ¢ belongs to S and hgyo = hy o it follows
that hgy =~ hyy. We now apply Van Kampen’s Theorem (see, for instance, [7]
or [10], p. 360) to infer from

73 (ho)my () = ma(ho) = my(hy ) = ma(h) (W)

w3 (ho) 7y (0) = my(hp) = my(hy7) = ACALAGN
that my by = myhy, as required. This completes the proof of Theorem 3.3.

Thbe analogs of Theorem 1.5, 1.6 and Corollary 17 clearly remain valid in
the case r = 0.

ExAMPLE 1. We can take ¥~ to be the collection of connected complexes whose
higher homotopy groups belong to any family of abelian groups. In this case, as in
Bxample 1 of Section 1, we have no guarantee that the solution set condition is
satisfied, but we are able to apply Theorem 3.3. We can modify this example by also
requiring the fundamental group to belong to a given family.

ExAMPLE 2. Let P be a family of primes and let ¥ be the ‘collection of connected
complexes whose homotopy groups (including the fundamental group) are finite
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P-groups. With this choice of #", the Adams S-completion of ¥ exists, provided Y is
of finite type, and is the Sullivan P-profinite completion of Y. This example, in the
case that P is the family of all primes, so that Y is the Sullivan profinite com-
pletion of Y when Y is of finite type, is mentioned without proof by Adams in [1].

4. Appendix: Improvements and further examples.

4.1. Our arguments in Sections 1, 2, 3, to establish the principal theorem
(Theorems 1.4, 3.3), have all been based on the weak push-out diagrams (1.3), (3.6).
Now it is easy to see that the weak push-out always has the property that if
o*: [Z,V]— [X, V] is surjective, so is 7*: [W, V]— [¥, V]. Thus, in reality, the
subtlety of the argument has always been concerned with the injectivity of o*, that
is, with the obstructions to (extending) homotopies. We preferred to lump together
obstructions to extensions and obstructions to homotopies to give a more unified
treatment, since we were not too much concerned with finding best possible con-

* ditions under which our theorems were valid (see the parenthetical remark in the
Introduction). However, by concentrating on the injectivity of t* we are able to
improve our results by eliminating the case k = n+2 in our definition of a (twisted)
Postnikov-true collection of complexes.

4.2. A perhaps more significant improvement may be made by observing that
the argument which concluded the proof of Theorem 3.3, to handle the low-dimen-
sional obstruciions, could just as well have been applied in Section 2. Thus, in
Definition 2.1, we may eliminate the case n = 1 and retain our conclusion — the
validity of the analog of Theorem 1.4 for r = 0 in the case of collections ¥ of nil-
potent complexes.

4.3. Suppose that we are given a homotopy category % and a collection ¥,
giving rise to a family S(#") of morphisms of ¥; and that we are further given a full
subcategory %’ of %, a collection ™, and a corresponding family S'(#”), such that

@1 S =8F)nE.

Suppose finally that ¥ e 4" and admits, as an object of %, an Adams S -completion Yy
which also belongs to %'. It is then plain that, provided S’ admits a caleulus of left
fractions, Yy is also the Adams S’-completion of Y. For, by [4], we have only to
check the existence of e: ¥ — Ygin S’ such that, for any s': Y—2Z'in S, there
exists a unique t': Z'— Yy in S’ with #s’ = e. Now since Y5 is the Adams
S-completion of ¥, we know that there exists e: ¥— ¥y in S such that, for any
§: ¥ — Zin S, there exists a unique #: Z — Ysin $ with &5 = e. But since Y, Ysare
in %’ so is e, so that, by (4.1), eis in §’; and if 5" isin " then, again by (4.1), 5 is
in S, and so there exists a unique #' in S with ¢'s’ = e, However, again by (4.1),
this ¢', and, indeed, any other ¢’ satisfying #'s’ = e, will be in S”, thus -establishing
the criterion for the Adams S’-completion.

This argument enables us to derive further examples from those already given.
In particular, we may take Example 2 of Section 3, so that % = %o, 7" = collection
‘of connected complexes whose homotopy groups are finite P-groups. We then
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take €' = %,, r=1, ¥ = collection of r-connected complexes whose homotopy
groups are finite P-groups. As already observed in Example 1 of Section 1, we may
apply Theorem 1.4 to this case. Moreover if Y is of finite type and in %,, then the
Sullivan P-profinite completion of ¥ is also in #,. Thus to apply our previous re-
mark, we only have to verify .(4.1) in this case. Since ¥”<¥ it is obvious that
SN ¥ <=S'(¥"). Conversely, suppose that g: X— Y is in S'(¥") and let
Ve . Let V' be the r-connected cover of V. Then V' e ¥ and the projection
p: V' — Vinduces py: [Z, V'] ~ [Z, V]forall Zin &'. Since X, Y are in 4’ and g
is in S'(¥"") we may immediately infer that g*: [¥, V] = [X, V], so that g € S(¥")
and (4.1) is verified. We conclude:

ExaMPLE 4.1, Let P be a family of primes and let #” be the collection of
r-connected complexes, >0, whose homotopy groups are finite P-groups. We
consider-¥" as a subclass of %, and construct S = S(¥7). Then the Adams. §-com-
pletion of Y& %, exists, provided Y is of finite type, and is the Sullivan P-profinite
completion of Y. .
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