from a planar continuum X onto Y such that $f^{-1}(y)$ is decomposable for each $y \in Y$. Must Y be (hereditarily) locally connected?

One can prove that Y is hereditarily decomposable. It would be interesting to know what is a characterization of the continua Y in terms of intrinsic properties.

Added in proof. The answer to the problem is affirmative: E. Dyer, Continuous collections of decomposable continua, Proc. Amer. Math. Soc. 6 (1955), pp. 351-360. Moreover, one can prove that Y must be regular.

References

- R. D. Anderson, Open mappings of compact continua, Proc. Nat. Acad. Sci. USA 42 (1956), pp. 347-349.
- [2] E. G. Begle, The Vietoris mapping theorem for bicompact spaces, Ann. Math. 51 (1950), pp. 534-543.
- [3] R. H. Bing, Snake-like continua, Duke Math. J. 18 (1951), pp. 653-663.
- [4] and F. B. Jones, Another homogeneous plane continuum, Trans. Amer. Math. Soc. 90 (1959), pp. 171-192.
- [5] E. L. Bethel, A note on a reducible continuum, Proc. Amer. Math. Soc. 16 (1965), pp. 1331– 1333.
- [6] J. H. Case and R. E. Chamberlin, Chracterizations of tree-like continua, Pacific J. Math. 10 (1960), pp. 73-84.
- [7] H. Cook, Tree-likeness of dendroids and λ-dendroids, Fund. Math. 68 (1970), pp. 18-22.
- [8] E. Dyer, Irreducibility of the sum of the elements of a continuous collection of continua, Duke Math. J. 20 (1953), pp. 589-592.
- [9] Certain transformations which lower dimension, Ann. Math. 63 (1956), pp. 15-19.
- [10] M. E. Hamstrom, Concerning continuous collections of continuous curves, Bull. Amer. Math. Soc. 58 (1952), p. 204.
- [11] J. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), pp. 22-36.
- [12] B. Knaster, Un continu irréductible à décomposition continue en tranches, Fund. Math. 25 (1935), pp. 568-577.
- [13] J. Krasinkiewicz and P. Minc, Continua and their open subsets with connected complements, Fund. Math. 102 (1979), pp. 129-136.
- [14] K. Kuratowski, Sur le problème des curbes gauches en Topologie, Fund. Math. 15 (1930), pp. 271-283.
- [15] Topology, Vol. 2, New York-London-Warszawa 1968.
- [16] S. Mazurkiewicz, Sur Pexistence des continus indécomposables, Fund. Math. 25 (1935), pp. 327-328.
- [17] E. Moise, A theorem on monotone interior transformations, Bull. Amer. Math. Soc. 55 (1949), pp. 810-811.
- [18] G. T. Whyburn, Topological characterization of the Sierpiński curve, Fund. Math. 45 (1958), pp. 320-324.
- [19] D. C. Wilson, Open mappings of the universal curve onto continuous curves, Trans. Amer. Math. Soc. 168 (1972), pp. 497-515.

Accepté par la Rédaction le 21. 9. 1977

$F_{\sigma\delta}$ -sections of Borel sets

by

J. Bourgain (*) (Brussel)

Abstract. It is shown that if E, F are compact metric spaces and A is a Borel subset of $E \times F$, then $\{x \in E: A(x) \text{ is } F_{\sigma\delta} \text{ in } F\}$ is coanalytic in E.

Introduction. Throughout this paper, E and F are compact metric spaces. If A is a subset of $E \times F$ and $x \in E$, let $A(x) = \{y \in F; (x, y) \in A\}$, which is called a section of A. It is already known that if A is Borel in $E \times F$, then $\{x \in E; A(x) \text{ is closed in } F\}$ and $\{x \in E; A(x) \text{ is } F_{\sigma} \text{ in } F\}$ are coanalytic. I refer for instance to [1] and [4]. It follows from a result in my recent paper [2] that the set $\{x \in E; A(x) \text{ is } F_{\sigma\delta} \text{ in } F\}$ is a universally measurable subset of E. We will obtain here the following refinement:

Theorem 1. If A is Borel in $E \times F$, then $\{x \in E; A(x) \text{ is } F_{\sigma\delta} \text{ in } F\}$ is coanalytic in E.

The main point in the proof of this result is a useful description of the fact that a set in F is $F_{\alpha\delta}$.

If L is a compact metric space, then $\underline{\underline{K}}(L)$ consists of all closed subsets of L and is equipped with the exponential or Vietoris topology. This topology is compact metrizable. I recall the following result (see [4]).

LEMMA 2. Let P be a Polish subspace of the compact metric space L. Then the subspace F(P) of K(L) consisting of those compact sets K in L such that $K = K \cap P$, is Polish.

We denote by \mathscr{R} the set of all finite complexes c in $\bigcup_k N^k$, where $N^0 = \{\emptyset\}$.

PROPOSITION 3. Let A be Borel in F and $B = F \setminus A$. There is a compact metric space G and a G_{δ} subset H of $F \times G$ so that $A = \pi(H)$, if $\pi \colon F \times G \to F$ is the projection. Let $B = \bigcup_{\mathbf{v}} \bigcap_{\mathbf{k}} B_{\mathbf{v}|\mathbf{k}}$ be an analytical representation of B, where the $B_{\mathbf{v}|\mathbf{k}}$ are closed in F and $B_{\mathbf{v}|\mathbf{k}+1} \subset B_{\mathbf{v}|\mathbf{k}}$. Take a countable base $(U_n)_n$ for the topology of $F \times G$. Then A is not $F_{\sigma\delta}$ in F if and only if there exists $(P_c, K_c)_{ce\#}$ in $\prod_{\mathbf{k}} (N \times F(H))$

satisfying:

^(*) Aspirant, N. F. W. O., Belgium.

- 1. $K_{\omega} \neq \emptyset$,
- 2. $\forall c \in \mathcal{R}$. $\forall n \in \mathbb{N}$: $\pi(K_{cn}) \subset \pi(K_c \cap \overline{U}_n)$,
- 3. $\forall c \in \mathcal{R}, \ \forall n \in \mathbb{N}: \ U_n \cap K_c \neq \emptyset \Rightarrow B_{p_m, \dots, p_c, p_{cn}} \cap \pi(K_{cn}) \neq \emptyset$.

The proof of this proposition is rather technical. Let us first show how to derive Theorem 1.

Proof of Theorem 1. It is clear that E can be assumed o-dimensional. Let A be Borel in $E \times F$ and $B = (E \times F) \setminus A$. There is a compact metric space G and a G_A subset H of $E \times F \times G$ so that $A = \pi(H)$, if $\pi: E \times F \times G \to E \times F$ is the projection. Let $B = \bigcup \bigcap B_{\nu|k}$ be an analytic representation of B, where the $B_{\nu|k}$ are closed in $E \times F$ and $B_{v|k+1} \subset B_{v|k}$. Since E is o-dimensional, there is a countable base $(U_n)_n$ for the topology of $E \times F \times G$ such that $\overline{U}_n(x) = \overline{U_n(x)}$ whenever $x \in E$. If $x \in E$, then it follows from Proposition 3 that A(x) is not $F_{\sigma\delta}$ in F if and only if there exists $(p_c, K_c)_{c \in \mathcal{R}}$ in $\prod_{c \in \mathcal{Q}} (N \times \underline{\underline{F}}(H))$ verifying the following conditions:

- 1. $\forall c \in \mathcal{R}: K_c \subset \{x\} \times F \times G$
- 2. $K_{\omega} \neq \emptyset$,
- 3. $\forall c \in \mathcal{R}, \ \forall n \in \mathbb{N}: \ \pi(K_{cn}) \subset \pi(K_c \cap \overline{U}_n),$
- 4. $\forall c \in \mathcal{R}, \ \forall n \in \mathbb{N}: \ U_n \cap K_c \neq \emptyset \Rightarrow B_{p_\alpha, \dots, p_c, p_{cn}}(x) \cap \pi(K_{cn})(x) \neq \emptyset.$

Remark that $\Omega = \prod (N \times F(H))$ is Polish.

To obtain that $\{x \in E; A(x) \text{ is not } F_{\sigma\delta}\}$ is analytic in E, it is enough to prove that the subset of $E \times \Omega$ consisting of those elements $(x, (p_c, K_c)_c)$ satisfying conditions (1), (2), (3), (4) above is analytic in $E \times \Omega$. The reader will easily verify that this set is in fact closed. So the proof is complete.

Thus it remains to prove Proposition 3. We introduce some notations. If $c \in \mathbb{N}^k$, let $B(c) = \bigcup \bigcap B_{v|k}$. Suppose $c \in \mathcal{R}$ and X closed in H, then [c, X] will mean that there is no $F_{\sigma \delta}$ -set P satisfying $\pi(\overline{X}) \cap A \subset P$ and $B(c) \cap P = \emptyset$. The following lemma is straightforward.

LEMMA 4. If $c \in \mathcal{R}$ and X closed in H satisfy [c, X], then there exists $p \in N$ such that [(c, p), X].

We also need the following:

LEMMA 5. Let $c \in \mathcal{R}$ and X closed in H with [c, X]. Then there exists a nonempty closed subset Y of H with $\pi(Y) \subset \pi(\overline{X})$, so that $[c, Y \cap \overline{U}]$ whenever U is open and $U \cap Y \neq \emptyset$.

Proof. If the claim is untrue, then for every nonempty closed subset Y of $H \cap \pi^{-1}(\pi(\overline{X}))$ there is an open set U of $F \times G$ such that $U \cap Y \neq \emptyset$ and $[c, Y \cap \overline{U}]$ does not hold. A standard construction yields us then a countable closed covering $(Y_n)_n$ of $H \cap \pi^{-1}(\pi(\overline{X}))$ so that $[c, Y_n]$ does not hold for each n. Hence there is a sequence $(P_n)_n$ of $F_{n\delta}$ -subsets of F such that $\pi(\overline{Y}_n) \cap A \subset P_n$ and $B(c) \cap P_n = \emptyset$. Clearly the set

$$P = \bigcup_{n} \pi(\overline{Y}_{n}) \cap \bigcap_{n} (\pi(\overline{Y}_{n})^{c} \cup P_{n})$$

is still $F_{\sigma\delta}$ in F. Furthermore $B(c) \cap P = \emptyset$ and $\pi(\overline{X}) \cap A \subset \bigcup \pi(\overline{Y}_n) \cap A \subset P$, which contradicts [c, X].

LEMMA 6. Assume A not F_{ab} . Then for each $c \in \mathcal{R}$ we can define $P_c \in N$ and $K_c \in \underline{F}(H)$, verifying:

- 1. $K_{\alpha} \neq \emptyset$,
- 2. $\pi(K_{cn}) \subset \pi(K_c \cap \overline{U}_n)$,
- 3. $U_n \cap K_c \neq \emptyset \Rightarrow K_{cn} \neq \emptyset$
- 4. $U_n \cap K_n \neq \emptyset \Rightarrow [(p_n, ..., p_n), K_n \cap \overline{U}_n \cap H].$

Proof. The construction will be made by induction on the length of c.

Since A is not $F_{\sigma\delta}$, we have $[\emptyset, H]$. By successive application of Lemma 4 and Lemma 5 we find some $p_{\varphi} \in N$ and a nonempty closed subset Y of H, so that $[p_{\varphi}, Y \cap \overline{U}]$ if U is open and $U \cap Y \neq \emptyset$. Take $K_{\varphi} = \overline{Y} \in \underline{F}(H)$. If $U_n \cap K_{\varphi} \neq \emptyset$, then also $U_n \cap Y \neq \emptyset$ and thus $[P_{\omega}, K_{\omega} \cap H \cap \overline{U}_n]$.

Assume now $p_c \in N$ and $K_c \in F(H)$ obtained for all $c \in \mathcal{R}$ with length at most k. Let $c \in N^k$ and $n \in N$ fixed. If $U_n \cap K_c = \emptyset$, take $p_{cn} \in N$ arbitrarily and $K_{cn} = \emptyset$. If $U_n \cap K_c \neq \emptyset$, then $[(p_{\omega}, ..., p_c), K_c \cap \overline{U}_n \cap H]$ holds.

Again by successive application of Lemmas 4 and 5 we find some $p_{cn} \in N$ and a nonempty closed subset Y of H with $\pi(Y) \subset \pi(K_c \cap \overline{U}_n)$, so that $[(p_{\omega}, ..., p_c, p_{cn}),$ $Y \cap \overline{U}$] whenever U is open and $U \cap Y \neq \emptyset$. Take $K_{cn} = \overline{Y} \in \underline{F}(H)$. If $U_r \cap K_{cn} \neq \emptyset$, then $U_r \cap Y \neq \emptyset$ and thus $[(p_{\varphi}, ..., p_c, p_{cn}), K_{cn} \cap H \cap \overline{U_r}]$. This completes the construction.

We are now able to prove the first part of Proposition 3. Assume A is not $F_{\sigma\delta}$ and let $(p_c, K_c)_c$ be as in Lemma 6. We only have to verify condition 3. If $U_n \cap K_c \neq \emptyset$, then $K_{cn} \neq \emptyset$ and therefore there is some $r \in N$ with $U_r \cap K_{cn} \neq \emptyset$. Hence $[(p_{\varphi},\ldots,p_{c},p_{cn}),K_{cn}\cap\overline{U}_{r}\cap H]$. In particular, we have that $B_{p_{\varphi},\ldots,p_{c},p_{cn}}\cap\pi(K_{cn})\neq\emptyset$.

Finally, we pass to the proof of the second part of Proposition 3. Assume $A = \bigcap \bigcup F_{kl}$ with each F_{kl} closed in F. We will show that the assumption of the existence of $(p_c, K_c)_c$ in $\prod_{c} (N \times \underline{\underline{F}}(H))$ satisfying 1, 2, 3 leads to a contradiction.

By induction we define sequences $(l_k)_k$ and $(n_k)_k$, verifying following properties:

- 1. $K_{n_1,\ldots,n_k}\neq\emptyset$,
- 2. $U_{m} \cap K_{m} \neq \emptyset$,
- 3. $U_{n_{k+1}} \cap K_{n_1,\ldots,n_k} \neq \emptyset$, 5. $U_{n_{k+1}} \cap K_{n_1, \dots, n_k} \neq \emptyset$, 4. $\pi(K_{\varphi} \cap \overline{U}_{n_1}) \subset F_{11_{\varphi}}$,
- 5. $\pi(K_{n_1,\ldots,n_k}\cap \overline{U}_{n_{k+1}})\subset F_{k+1,l_{k+1}}$.

Since $A \subset \bigcup_{l} F_{1l}$, we have $K_{\varphi} \cap H = \bigcup_{l} (K_{\varphi} \cap H \cap \pi^{-1}(F_{1l}))$. Because $K_{\varphi} \cap H$ is a nonempty G_{δ} subset of $F \times G$, there exist $l_{1} \in N$, $n_{1} \in N$ and U open with $\overline{U}_{n_{1}} \subset U$, $K_{\varphi} \cap H \cap U_{n_{1}} \neq \emptyset$ and $K_{\varphi} \cap H \cap U \subset \pi^{-1}(F_{1l_{1}})$.

Since $K_{\varphi} \cap U_{n_1} \neq \emptyset$, we have $K_{n_1} \neq \emptyset$. Clearly $K_{\varphi} \cap U \subset \pi^{-1}(F_{1l_1})$ and thus $K_{\varphi} \cap \overline{U}_{n_1} \subset \pi^{-1}(F_{1l_1})$.

Assume $l_1, n_1, ..., l_k, n_k$ obtained. Since $A \subset \bigcup_{l} F_{k+1,l}$, we have $K_{n_1, ..., n_k} \cap H = \bigcup_{l} (K_{n_1, ..., n_k} \cap H \cap \pi^{-1}(F_{k+1,l}))$. Again $K_{n_1, ..., n_k} \cap H$ is a nonempty G_{δ} in $F \times G$ and therefore there exist $l_{k+1} \in N$, $n_{k+1} \in N$ and U open, such that

$$\overline{U}_{n_{k+1}} \subset U, K_{n_1, \dots, n_k} \cap H \cap U_{n_{k+1}} \neq \emptyset$$

and

$$K_{n_1,...,n_k} \cap H \cap U \subset \pi^{-1}(F_{k+1,l_{k+1}})$$
.

Because $K_{n_1, \dots, n_k} \cap U_{n_{k+1}} \neq \emptyset$, we have $K_{n_1, \dots, n_k, n_{k+1}} \neq \emptyset$. Furthermore

$$K_{n_1,...,n_k} \cap U \subset \pi^{-1}(F_{k+1,l_{k+1}})$$

and hence

$$K_{n_1,...,n_k} \cap \overline{U}_{n_{k+1}} \subset \pi^{-1}(F_{k+1,l_{k+1}}).$$

This completes the construction.

Take $v = (n_k)_k$. Since $\pi(K_{v|k+1}) \subset \pi(K_{v|k} \cap \overline{U}_{n_{k+1}})$, we have that $\pi(K_{v|k+1}) \subset F_{k+1,l_{k+1}}$. Because $U_{n_{k+1}} \cap K_{v|k} \neq \emptyset$, it follows that $B_{p_{\varphi},...,p_{v|k},p_{v|k+1}} \cap \pi(K_{v|k+1}) \neq \emptyset$. Therefore we obtain for each k that

$$\begin{split} F_{1l_{1}} & \cap \ldots \cap F_{k+1,l_{k+1}} \cap B_{p_{\varphi},\ldots,p_{\nu|k},p_{\nu|k+1}} \\ & \supset \pi(K_{\nu|1}) \cap \ldots \cap \pi(K_{\nu|k+1}) \cap B_{p_{\varphi},\ldots,p_{\nu|k},p_{\nu|k+1}} \\ & = \pi(K_{\nu|k+1}) \cap B_{p,\ldots,p_{\nu|k},p_{\nu|k+1}} \neq \emptyset \; . \end{split}$$

By the compactness of F, we conclude that $\bigcap\limits_k F_{kl_k} \cap \bigcap\limits_k B_{p_{\nu|0},\dots,p_{\nu|k}} \neq \emptyset$. But $\bigcap\limits_k F_{kl_k} \subset A$ and $\bigcap\limits_l B_{p_{\nu|0},\dots,p_{\nu|k}} \subset B$, contradicting the fact that $B = F \setminus A$.

Thus Proposition 3 is established.

References

- V. Ja. Arsenin, A. A. Liapunov and E. A. Cegolkov, Arbeiten zur deskriptiven Mengenlehre, Mathematische Forschungsberichte, Berlin 1955.
- [2] J. Bourgain, Decompositions in the product of a measure space and a Polish space, Fund. Math. 105 (1979), pp. 61-71.
- [3] J. P. R. Christensen, Borel structures, Notes in Math. 10 (1974).

- [4] C. Dellacherte. Ensembles analytiques: Théorèmes de séparation et applications, Séminaire de Probabilités IX, Berlin-Heidelberg-New York 1975.
- [5] F. Hausdorff, Set Theory, New York 1962.
- [6] K. Kuratowski, Topology, Vol. I, New York-London-Warszawa 1966.
- [7] W. Sierpiński, Les ensembles projectifs et analytiques, Mémorial des Sciences Mathématiques, fasc. 112. Paris 1950.

VRIJE UNIVERSITEIT BRUSSEL

Accepté par la Rédaction le 22, 9, 1977