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On function spaces of compact subspaces
of X-products of the real line

by

K. Alster and R. Pol (Warszawa)
7

Abstract. The main result of this paper is that if X is a compact subspace of the Z-product
of m copies of the real line for a cardinal mt and M is a metrizable separable space, then the function
space C(K, M) endowed with the pointwise topology is a Lindeldf space. This extends a recent
theorem of Talagrand concerning Eberlein compacts.

1. Introduction. A general question is for which compact spaces X the function
space C(K, M) endowed with the pointwise topology is a Lindelsf space, when M
is an arbitrary metrizable separable space, or simply the real line R. This problem
was first deeply investigated by Corson [6] (see also Corson and Lindenstrauss [8],
where the “dual” question about C(M, K) was considered). )

Recently, Talagrand [19] proved that C(X, R) is Lindeldf for every Eberlein
compact K (*), answering an old question of Corson (cf. [6] and [11], Problem 6");
in fact Talagrand showed even that C(K, R) is K-analytic which yields that C(K, R)
is Lindeldf.

The main goal of this paper is to show that C(K, M) is Lindelsf, when K is
a compact subspace of the X-product of m copies of the real line for a cardinal m
and M is metrizable and separable. This extends the Talagrand result, as the class
of compact spaces we consider is essential wider than the class of Eberlein comﬁacts
(see Sec. 2). However, in our case the function space C(K, R) need not be K-analytic
(see Sec. 7).

2. Terminology and notation. Our topological terminology follows [9]; we
refer to [16] and [11] for the notions related to functional analysis and to [5] for the
notion of K-analycity. The symbol (4] stands for the cardinality of a set 4.

Given two spaces X and Y we denote by C(X, Y) the space of continuous
functions from X to Y endowed with the pointwise topology. The symbol R stands
for the real line, N is the set of natural numbers and D = {0, 1} is the two-point

(*) More precisely, Talagrand proved a much more general theorem that WCG Banach
spaces are K-analytic in the weak topology. ' : ‘ i
4 '
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discrete space. We consider D as the ring and thus we can consider also every function
space C(X, D) as the ring with the continuous pointwise operations.

The X-product of m copies of R is the subspace

Z(m) = {xe RS: |{s: x(s) # 0} <%}

of the product RS, where S is a set of cardinality m [7]. Since X (m) contains the space
¢o(m) of real sequences “of length m” tending to 0, every Eberlein compact is a sub-
space of £(m) for some 1, by a theorem of Amir and Lindenstrauss [2]; however
there exist compact subspaces of Z (%,) which are not Eberlein (Talagrand, Theoreme 8
in [20]; see also [4], [1], [21] and Sec. 7). .

Let L(m) stand for the Lindeldf space of cardinality m with the unique non~
isolated point p. Notice that Z(m) is naturally homeomorphic to C(L(m), R) ([7];
cf. also 8.2, Lemma A).

A space X is concentrated around a set A= X if the complement of any neigh-
borhood of A in X is at most countable ([10], § 40, VII); observe that any space
concentrated around a point is a continuous image of some L(m).

3. Main result.

THEOREM. If K is a compact subspace of the Z-product of m copies of the real
line for a cardinal m and M is a metrizable separable space, then the function space
C(K, M) is Lindelof in the pointwise topology.

Notice that there exists a compact X such that C(X, R) is Lindelof but X can
ot be embedded in any Z(m) [14] ().

We split the proof of Theorem into two parts. The first one (Sec. 4) contains
a result about the space L(m)™, which is necessary to apply some general reasoning
about function spaces, given in the second part (Sec. 5); in Section 6 we summarize
these facts, obtaining the proof.

4. The space L(m)™°. The aim of this section is to prove the following

ProPoSITION 1. For an arbitrary metrizable separable space M and every
caidinal m the product Mx L(m)™ is a Lindelof space (%). ’

Let us fix an infinite cardinal m, put X = L(m) and let p be the unique non-
isolated point of X; let M be a separable metrizable space. Given x = (15 ens %)
or x = (x;, Xz, ...), and i<n we write x|i = (x, ..., ;). Finally, we put £, = M,
E,=MxX", E= MxX~ and p,: E— E, is the projection.

We begin with the following observation

(1) every open family % in E has an open point-countable refinement ¥ with
U =4U4%.

(® It would be interesting to explain whether the space C(X, M) is Lindelof for every metriz-
able, separable M (cf. 8.1); we conjecture that this is the case.

(®) Notice that for the proof that C(X, R) is Lindeléf we need only to verify that (L(m))“"
is Lindelsf. The last fact is simple, and it is a particular case of a Noble’s result (see [21], Corol-
lary "42); we wish to thank to T. Przymusifiski for this reference.
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At first prove (1) with E, instead of E; this follows easily by induction, as E,,,

= E,x(X\{p}) U E,x{p}, the space X\{p} is discrete and the set E,x{p} is

a retraf:t of E, .. Now, given an open family % in E, we can assume that % consists

of basic open sets and ‘so we can write % = {J %, where ZUy={p, " (U): U=E}.
n

Using for. each %, the property of E, we have just proved, we conclude (1).
By virtue of (1) it is now sufficient to prove that

() every ?lncountdble AcE has an accumulation point in E, as it is well known
that given an open cover % of a space S one can choose a discrete in S set A
with

S=U{Ue%: Und+@a}.

So let 4 be an uncountable subset of E.

If‘ there exists # &€ M such that pg*(f) N 4 is uncountable, then it is enough
to verify that every uncountable subset of X¥ has an accumulation point in X¥
and this can be proved by means of some standard reasoning (see [14], Lemma 2
for a somewhat more general fact).

It remains to prove (2) in the case when p, restricted to A is countable-to-one;
this is in fact the key point of our proof. Without loss of generality we can assume
that p, restricted to A is one-to-one and onto M, i.e. we have

@By A={(t.a) teM, ae X" and a, # a, for t # s.

For every ne N and x e X" define

X if i>nor x()=p @
@ Wi= and W,= Pw!
{x(®)} in the opposite case, =t
and put
() A.={te M: a,e W, and (t, ) € E, is an accumulation point of the set p,(A)}.

Observe that
©

if isn<m, xeX", yeX",
x() = y(0),

as in the opposite case we would have W, n W, = @ and so 4, n 4, = @, by (3).
We prove that

Ain Ay # @ and x(i)#p # y(i) then

@

if T< M is uncountable and n e N, then there exists x & X" with A, T # @.

Let H = {ajn: te T} X"

At first consider the case when |H|<®,. Then there exists an uncountable set
ScT and a point x € X" with ajn = x for teS. It is easy to verify that the un-
countable set of accumulation points of the space S is contained in A, N T.

Now assume that H is uncountable. As we have observed, the space X" is
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Lindelsf and therefore there exists an -accumulation point x € X" of the set H.
Put S = {teT: a,e W,} and for every neighbourhood U of the point x in. X"
define Sy = ({treS: alne U} n 8. Every Sy is a closed nonempty subset of &
and, since every countable intersection of neighbourhoods of x is again a neighbour-
hood of x, the family. {Sy}y has the countable intersection property; thus there
exists 1€ ﬂ Sy. It is easy to see that teA nT.

_ Since (7) means that for every ne N the complement M\U {de xe X"} is at
most countable and since M is uncountable, there exists e ﬂ (U {4,: xe xm).
So we have

(B) ted,nA,n .., where x,e X" forn=1,2,..

Applying (6) we can choose for every i = 1, 2, ... a point ¢; € X such that for every

neN
() if i<n then either x,(i) = p or x,(i) = ¢;.
The space

1) c= {p, e} x{p, e} x .y XV is compact

Letting X,(i) = x,(i) for i<n and x,,(t) = p for i>n we dehne the point X, such that
(cf. O)

(11) %,eC and Zn = x,.

By (10) and (11) there exists ¢ &€ such that

(12) ¢ is an accumulation point of the sequence (X)nwy.

We claim that

(13)  a=(t,c) is an accumulation point of the set A.

Indeed, take a neighbourhood U of the point a; we can assume that U is basic,
i.e. for some i € N we can write U = p, *(U,), where U, = p,(U) and n>i. By (12)
there exists n>i with (7, X,) e U, by (11) (¢, x,) € U, and by (8) and (5) the set
U, n p,(A) is infinite. Thus.the set U N A is infinite and this completes the proof
of Proposition 1.

5. Auxlllary results on function spaces. The following proposition slightly
improves Lemmas 1 and 3 in [14].

PrOPOSITION 2. Let K be a zero-dimensional space and let E be a subspace
of C(K, D) which separates the points of K. Then the function space C(K R) is
a continuous image of a closed subspace of the product EN x NV (*).

(*) It is not necessary that Ec C(X, D); the general case can be reduced to this case by means
of the Stone-Weierstrass theorem. In the case of X not zero-dimensional one can prove, exploiting
the idea of Talagrand [19], that C(X, R)'is a continuous image of a closed subspace of EN x N¥ % J™
with m = 1K1, .
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Proof. One can consider only jnfinite X and one can assume that the unity

element of C(K, D) belongs to E. The reasoning given in [14], the proof of Lemma 1,
shows that

(1)  C(X,R) is a continuous image of a closed subspace of C(K, D)¥.

It remains to verify that

() C(X, D) is a continuous image of the space @ (E"x N).
n=1

To th1s+ en}d define for every oeN", where neld, the continuous mapping
@q1 E7T T — C(K, D) by the formula

n
. 1€ig
¢t oh<iSo= L e fia
&

and observe that the mapping ¢ = @(p, @E”‘* “*or_ C(K, D) is onto, as E

generates algebraically the ring C(K, D) (this becomes evident if we recall that the
ring C(K, D) can be identified with the Boolean ring of clopen subsets of K,
see [17]), § 17). )

Lemma 1. Let K be a compact zero-dimensional space. If for every metrizable
separable space Y the product Yx C(K, R) is"Lindeliif, then the space C(K, M)
is Lindel0f for every metrizable separable M.

Proof. We can assume that McRN. Let # (M) be the space of compact
subsets of M endowed with the Vietoris topology; the space # (M) is metrizable
and ‘separable. The product

(@) A X C(K, RY) is Lindelif.

Indeed, since DV cR and C(K, D) = C(X, D), theproduct A (M) x N¥x C(K -D¥

is Lindeldf by the assumption, and (3) follows by Proposmon 2 as C(K R")
= C(K, R)".

Put

@ ={(Z, f)Ef(M)XC(K RY): f(K)=Z} .

Standard arguments show (cf. [10], § 44, II) that F is closed in the space 4" (M Y%
x C(K, RY) and hence it is a Lindelof space, by (3). It is enough now to notice that
the projection onto the second axis maps F onto the space C(K, M).

6. Proof of Theorem. Let S be an mﬁmte set of cardmahty m and ]ct K be
a.compact subspace of the space Z(m)cR® (see Sec. 2). .
At first assume in addition that

@ K< DS,
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Let py(x) = x(s) for x € K and se §, let p be the null element of the ring C(K, D)
and put

E={p;:seS}u{plcC(k, D).
Since E separates the points of K we infer from Proposition 2 that
() C(X, R) is a continuous image of a closed subspace of EVx NV,
Observe that the space E is concentrated arcund the poit p. Indeed, if

U= {feCK, B: |f (<, i<n},

n
where x;€ K, is a basic neighbourhood of f and S, = {J {s: x/(s) # 0}, then
=1

ENUc{p,: se&So} (asfor s ¢ S, we have p,(x)) = x,(s) = 0), but |Sy| < %o. Thus E is
a continuous image of the space L(m) and hence by (2) the space C(K, R) is a con-
tinuous image of a closed subspace of the product L(m)™. The desired conclusion
follows now from Proposition 1 and Lemma 1.

The general case of compact XX (m) can be easily reduced to the case just
considered as follows. Let us take a continuotis mapping ¢: D% — RS such that
(D)X and ¢ HZm)cI(m), put K=o YX) and S(f) =fo ¢ for
J&€C(X, M). Now K satisfies (1) and @ embeds C(X, M) into C(K, M) as a closed
subspace.

7. Example. There exists a compact subspace K of Z(r 1) Such that the fuiiction
space C(K, R) is not K-analytic,

To obtain such compact K we shall apply a general construction due to Talagrand
[20] and [21].

Let T'be a set of reals of cardinality. »,, let < be the usual order of reals and
let'< be a well order of the type @, on T. Défine a family & of subsets of the set T
letting: 4 e o iff both order < and < coincide on 4. Now put (cf. [21] observe
that o7 is “adequate” in the terminology of Talagrand)

K ={xeD": x"Y(1) e o}

and give the set T* = T'u {p} (p ¢ T) the topology consisting of all subsets of 7"
and of all complements of finite unions of members of ..

It is well known that & consists of at most countable ssts and therefore
KcZ(xy).

By [20], the space T* embeds in C(K, R) as a closed subspace and so it
is enough to verify that T* is not K-analytic. We shall show that given sets
Ay ., =T*, where (iy, ..., ;) tuns over finite sequences of natural numbers, such
that T* = li,)Ax- and A4;, ;. = (iJA(,m,-ki, on¢ can choos¢ a sequence (5,)e N¥
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and distinct points 1, € 4;, ; such that the set {ts, 15, ...} is discrete in T*; this will
complete the proof (see [15], Lemma B).

We shall proceed by induction. At first choose an uncountable set A;, and a point
1, € 4;, such that the set By = {te 4, : ¢, <t} is uncountable, Then choose i, such
that By n A4;,;, is uncountable and take ¢, € B, N Ay, y, such that £,<#, and the
set By = {te By n Ay,y,: 1,<t} is uncountable. Continuing this process we obtain
the points #; € 4, ;, such that #; <#,<... and #,;<1, ... The set {t,,,,..} belongs
to &/ and thus it is discrete in T*Z

8. Comments.

8.1. By Proposition 1, if X is a regular space concentrated around a point
and M is metrizable and separable, then the product M x X¥ is Lindelsf, whereas,
as was shown by Michael [12] under CH, a product of a regular space concentrated
around a countable set with a metrizable separable space need not be Lindelof.

It seems interesting in this context to explain how one can extend the result
of Section 4; for example, is it still true if L(m) is replaced by a regular space X of
cardinality x; with the property that if 4= X is uncountable, then there exists an
uncountable C=4 concentrated around a point ce X (see [14], the question is
related to footnote (*)). -

8.2, The zero-dimensional Eberlein compacts are exactly the zero-dimens@ohal
compacts K with C(K, D) o-compact, whereas from a result of Talagrand [20}
it follows that Eberlein compacts K (even zero-dimensional) can not be ‘charac-
terized by any topological property of the function space C(K, R) which is closed
hereditary and a continuous invariant.

In the case of the class of compact subspaces of Z (i) the situation seems to be
fairly unclear. The following is a result in this direction.

PROPOSITION. For a compact zero-dimensional space K the following conditions
are equivalent: )

(a) K can be embedded in Z(x,),
(b) C(K, D) is a continuous image of a closed subspace of the space e_ajL(sl)".
(©) C(K, D) is a continuous image of the space L(s)™.

Notice that the property of C(K, D) formulated in (b) is closed hereditary and
a continuous invariant. : i .
The main facts on which the proof of Proposition bases are the following.
The implication (a) — (b) (with arbitrary m instead of x,) follows easily by the
reasonings of Section 6. . o
The implication (¢) — (a) (again with arbitrary m instead of %;) follows frop
LeMMA A. If K is a compact subipace of the function space C(L(m)™; R), where
m is a cardinal, then K can be embedded in £(m). '
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We do not know, whether L(m)™ can be replaced here by its arbitrary closed
subspace, even in the case of m = x; (cf. (%), ().

Finally, the implication (b) — (¢) follows from

LemMA B. Every closed subset of L(n;)" is a retract of L(8,)" for arbitrary
neN(®).

8.3. As we have mentioned in (') Talagrand [19] showed that for every Eberlein
compact K the function space C(K) is Lindeldf under the weak topology. Combining
the Talagrand’s reasoning (cf. (*)) with our approach one can show that it is consistent
with the usual axioms of set theory that this is true for every compact K< X ().
The additional axioms for set theory are needed to show that every compact K < (n)
has the following property (M), every Radon measure on K has a separable support
it follows immediately from a result of Arhangel’skif [3] that there is a model of set
theory such that every sequential compact with the Souslin property is separable (7).

Added in proof. The result stated in Theorem 1 was obtained independently by S. P.
Gulko, On properties of subsets of Z-products, DAN SSR 237 (3) (1977). More precisely
Gulko proved (by the methods different from ours) that C(X, M) is Lindelsf under the point-
wise " topology, when X is a closed subset of a X-product of metrizable separable spaces
and M is metrizable and separable; - however, our approach - yields that if X is in addition
compact, their C(X, M)XL is Lindelof for each hereditarily Lindeléf L and we do not know
whether this is also true in the case of non-compact X.

In the paper On properties: of some function spaces, DAN SSR 243 (4) (1978), Gulko
developed ari extremely interesting general approach which yields many results about Z-pro-
ducts and its function spaces. It follows in particular from the results of Gulko that L{m)N°
in Lemma A in Section 8 can be replaced by its arbitrary closed subset; this means that the
characterization of compact subspaces of X-products conjectured in footnote (°) is true.

A recent example of R. Hadon, On dual L*-spaces and injective bidual Banach spaces,
Israel J. Math. shows, by the results of Sapirowskil [18], that the statements considered in
Section 8.3 are from the usual set theory.

The first of the authors obtained in the paper, 4 class of spaces whose Cartesian product
with every hereditarily Lindelsf space is Lindeldf, Fund, Math, (to appear) a far-reaching ex-
tension of Proposition 1 from Section 4.

‘
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