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Properties of the covering type and a factorization theorem
by
W. Kulpa (Katowice)
®

Abstract. The paper contains a factorization theorem implying the possibility of factorizing

a map f: X — M, where M is a metric space such that f is equal to a composition x3 M"—» M,
Lt

where h: X5 M’ satisfies some additional conditions for hhx, x € X, and a metric space M’

preserves a prescribed countable number of properties of the space X. As corollaries, some results
concerning p-paracompact spaces can be obtained.

1. Preliminaries. The maps considered in this paper are assumed to be (uniformly)
continuous. We use the notion of uniformity in the covering sense. A family which
satisfies all the axioms of uniformity except the axiom of separation is called a pseudo-
uniformity. Symbols P> O, Pi—Q mean, respectively, that P is a refinement or a star-
refinement of Q. Some symbols and notations are taken from [5).

If X'is a completely regular space, then by %% we denote the greatest uniformity
inducing the topology of the space X. Each pseudouniformity % =#% is said to be
compatible with the topology of the space X.

There exists a functor / (see [5]) from the category of pseudouniform spaces
onto the category of uniform spaces such that for each pseudouniform space (X, %)
there exists a uniform map A: (X, %) — (hX, hU) satisfying two conditions:

() h™'hlt =, where h™'hu = (h™1Q: Qe ¥},

(b) for each uniform map f: (X, %) — (¥, ¥") into a uniform space, there
exists a unique uniform map g: (hX, h%)— (¥, ¥°) such that f = gi.

The functor /1 can be obtained in the following way: for each pseudouniform
space (X, %) the set 71X is obtained by a decomposition of the set X onto layers
Ixly = () {st(x, P): Ped}, hX = {[x]y: xe X}, h: x i~ [x]y and the uniformity
h = {P*: Ped}, where P* = {h*u: ue P}, h*u = hX—h(X—u). Proofs of the
above remarks are given in [5].

A uniform feathering of a space X in a space Y= X is a countable family &
of coverings of X consisting of open sets in ¥ such that #|Xc#% and [x1s
= () {st(x,P): Pe PcX, for each xe X.

2. Properties of a covering type. Let o7 be a countable family of relations defined
on %%. A pseudouniformity % = %% is said to be an & - pseudouniformity iff for each
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aeo/ and each Pe % there exists a P’ € % such that (P',P)ea and (P',P)ea
implies P’i?.

A topological property 4 of a space X is said to be of the covering-countable type
(shortly, of type A) iff there exists a countable family o of relations defined on %%
such that

(a) the greatest uniformity %5 is the s -uniformity,

(b) for each - pseudouniformity # %% with a countable base, the space hX
with the topology induced by the uniformity 4 has the property A.

Let X be a subspace of a space Y. For each psecudouniformity % <#% denote
by exty % the set of all the extensions, open in Y, of open coverings belonging to %.
Let # be a countable family @f relations defined on the family exty %%,

A pseudouniformity # <% is said to be a #B-pseudouniformity iff for each
be % and P e exty% there exists a P’ e exty% such that (P', P)e b and (P',P)eb
implies P’ IX)-P]X and clyP'>P.

We say that a topological property B is transferred onto small layers around
the space X form Y iff there exists a countable set & of relations defined on exty %%
such that %% is a #-uniformity and for each #-pseudouniformity % <% a set
[Xlexiper = ) {st(x, P): Peexty¥}, xe X, has the property B. If, in addition,
for each xe€ X, [x]ewya =X, then we say that the property B is transferred onto-
small layers from Y.

A mapf: X —M is said 10 be a B-map iff, for eachy e M,f ™'y has the property B.

3. A factorization theorem.

THEOREM. Given:

1. spaces X, Yy, Y;,i=1,2,.

a uniform feathering in ¥;, i =1, 2

2. a countable family of propernes A of the covermg—countab/e type w/nch has
the space X, -

3. a countable family of properties B, which are transferred from Y, around the
space X onto small layers, i = 1,2, ...

Then for each map f: X— M into a metric space M there exist spaces Xo, M' and
maps fo: Xo — M (where M:Mls the completion of M), h: X, = M,g:M—M
such that

a) the space X,> X is a Gy subspace in Y,

b) the space M’ is metric and the subspace h(X)cM " has all the properties A4;,
i=1,2,.

c) f0 is rhe extension of the map f and fy = gh,

d) his a By-map for each i = 1,2,... and h is a perfect map whenever Y, is
compact for some i.

Proof. Let f: X — F be a map into the complete metric space M, which is the
completion of the metric space M. Then f: (X, U)— (M, ¥") is a uniform map,
where ¥ is a uniformity induced by the metric on M. Let ¥ 0¥ be a countable

.. such that X< Yy« Y3, cly X = Y, and Y, has

icm

Properties of the covering type and a factorization theorem 163

base for 7. Put /™19 = {Q,:n =1,2,..) G® = | {v:ve 8.}, where 0, is once
for all a fixed extension, open in ¥, of the covering Q,. Let G be once for all a fixed
extension, openin Y;, of G2,i= 1,2, .. Let o, 1> #; mean countable sets of relations

connected with the properties 4;, B;. Put R; = 2, U {{G;} n=1,2,..}, where &,
is a feathering of the space ¥, in the space ;.
Define by induction countable sets #',c=%, i= 0,1, .. Let %, = f~ 1%,

and let us fix once for all for each 7 and for each Pe #", an extension P(i), open
in Y;, of the covering P such that P(o) is the greatest extension of P open in Yj.
Suppose that the countable families %, <%, k<n, are given and suppose that
extensions P(f), open in Y;, of coverings Pe %, k<n, are fixed. Now, we shall
define a countable family %", =%%. For each pair P,, P, e {J {#Hpk=1,.,n
let us choose a countable family ¥ (P,, P)) =%y such that:

1. for each relation ae#/;, i = 1,2, ... there exists a covering P € %' (P, P,)
such that (P, P, AP,)ea, )

2. for each relation b e #; and for each Re Ry, i,j=1,2,.., there exists
a covering P e #" (P, P,) having an extension P(j) open in Y;, P(j)>R, (here,
we fix the extension P(j) of P) and such that (P(j),Pl(j)/\Pz(j))eb,

3. there exists a Pi'PlAPZs Pe 4% such that each centred family Q<P is
finite (the existence of P follows from 2 result of Dowker [2]). Put

Wosr = U{# (P, P): P, PreU (Wi k=1,..,n}}.

Moreover, for each P& #,,; and for each i = 0, 1, ... let us fix once for all an
extension P(f), open in Y;, of P (for the case where the extension has not yet been
fixed) such that P(o) is the greatest extension 'of P open in Y.

Put # =) {#,: n=0,1,..}. A countable family % is a base for some
pseudouniformity % < %% and for each i = 1,2, ... % is an o ~ and a 4;-pseudo-
uniformity. Y )

Put X, = ) {U P(0): Pe #}. Notice that for P,P' e # if P"i-P and, for
each centred family Q< P’, Q is finite, then P'(0) i—P(a) (because P’(0), P (o) have
been chosen as the greatest extensions open in ¥, and X is dense in ¥,). Hence
a family # (o) = {P(0)|X,: Pe#} is a base for some pseudouniformity % (o)
compatible with the topology on X, and % (0)|X = #. For each i = 1, 2, ... % (o)
is an &/ and a %i-pseudouﬁifo‘rmity. Since cly, X = X, and 1% < %,|X, it is
possible to define a map fy: X,— M which is a an extension of the map f. We put
Joy = N {cg f (U X): Uis a neighbourhood in X, of ye X}. It can be verified
that fy: (Xo, %(0)) — (¥, ¥) is a uniform map.

Let M'=hX, be a space with a metric induced by the uniformity A% (o). Define
amap g: M'— M; g[xlyq, = fox. Since for each i = 1, 2, ... and for each x& X,
we have [¥]yq) = N {st(x, P(i)): Pe %} (because [x]z, = Yo), the map 4: X B
is a Bymap, i = 1,2, ..

Notice that for each i=1,2, ... a family %' (i) = {P())| X,: Pe #} is a feath-
ering of the space X, in the space Y;. For this reason, if one of the spaces Y; is
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compact, then a family {st(x,P): Pe % (o)} is a base of neighbourhood of the
compact set [x]ye- This implies that st X,— M’ is a perfect map..

4. Examples of properties of the covering type.

PROPOSITION 1. If X is a completely regular space, then dim X = n is a property
of the covering-countable type.

Proof. Define a set &/ = {a,, a,} of relations on #%:

1. P, Pea iff P’:P and ordP'<n-+1,

2. (P',P)ea,iff P’-§P and there is no covering P'' e
and P">P'.

Since the uniformity %% has a base consisting of all the locally finite and
functionally open coverings of X, we have dim%% = n iff dimX = n (see e.g. [4]).
Thus %% is an sZ-uniformity. Now, we shall verify the condition (b) of the definition
of a property of the covering-countable type. From the construction of the functor A
it follows that dim% = dim#A#% (see the property (a) of the functor /). But, if the
uniformity 4% has a countable base, then dimhX = dim/%, where the topology
of the space hX is induced by A% (Nagata [6]).

In a paper of Bokstejn [1] there was introduced a coefficient of cyclicity of
a space X in a coefficient group G, ng(X) = sup{n: H'(X; G) # 0}, where H*
means the Cech cohomology functor.

ProrosiTION 2. If G is a countable generated group, then ng(X) = n, n< 0,
is a property of the covering-countable type for compact spaces X.

Proof. From the theorem on universal coefficients it follows that, for each
covering P which has a finite subcovering, the group H*(P; G) is countable generated.
For each covering Pe %% let us enumerate generators g,, ¢g,, ... of the group
H¥*P; G). Denote by iﬁ,,P homomorphism of groups H*(P; G) — H*(P'; G) induced
a star refinement P’iP. Let us consider the relations:

1. (P',P)ed:, iff P'>=P and 5 p (@) = 0, g, € HYP; G),

2. (P',Pyed" iff P’ >P and there exists a g € H*(P'; G) such that for each
P">p', P e%x is tpu,,,,(g) # 0.

Put of = {a,,,. m=1,..,k>n} U {d*: k<n}. Notice that ne(X) = n is equiv-
alent to %% is an & -uniformlty On the other hand, for each & -pseudouniformity
%<y, the property (2) of the functor h, ¥ = h™'h%, implies that A% is an
o/ -uniformity on the set 4X. The topology of the space 21X induced by the uniformity
h% is compact. Since a compact space has only a unique uniformity inducing the
topology, the condition that /% is an .27 -uniformity is equivalent to 5s(hX) = n.

% such that ord P <n

A space X is cohomologically locally connected in a dimension not greater
than n, n<co, and in a group of coefficients G, (written; X e cleb), iff for each
neighbourhood U of a point x there exists a neighbourhood ¥'< U of x such that the
homomorphism of reduced cohomology - Alexander—Cech groups. HXU; G)
= H¥V; ) induced by the embedding V< U is trivial.
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PROPOSITION 3. For each paracompact p-space, X eclcl, and HYX; G) = A
for k<n is a property of the covering-countable type.

Proof. Let # = n=1,2,..} be a feathermg of the space X in the
Cech-Stone compactxﬁca‘uon BX. Deﬁne relations * on A% (P!, P)e d- iff P’ iP
c]ﬁXP >P,, AP (where P means the greatest extension, open in fX, of Pe %%) and
for each u’ € P’ there exists a u € P such that ¥’ <u and the homomorphism H*u; G)
— H*W'; G) is tmlal

Put o = {d5: k<, m<c}. Notice that %% is an «/-uniformity. Now, let
YUy be an - -pseudouniformity with a countable base. The condition
clyxP'>P, AP, P'>P, ensure that a family Lst(\’ P): Pe#} is a base of neigh-
bourhoods of the set [x], <X, because

¥l = () {st(x,P): Ped} =) {clgxst(x, P: Pe®}

and BX is a compact space. This implies that for each neighbourhood U[x] of the
set [x] there exists a neighbourhood ¥ [x]< Ulx] of [x] such that the homomorphism
HYU[x]; G)— H*V[x]; G) is trivial. Hence, for each x e X and k<n we obtain
HY[x]; G) = 0 (see, Spanier [7], Theorem 6.6.2).

Now let us corsider the space X with the topology induced by the uniformity
h%. Since a family {st(x, P): Pe} is a base of neighbourhoods of the set [x]s,
the map h: X — hX is perfectand B*(k~'hx; G) = 0, x € X, k<n. From the Vietoris-
Begle Theorem (see, Spanier [7], Theorem 6.9.15) the map / induces the isomorphism
HYhX; G)— H*X; G), k<n. From this we immediately obtain i#X eclcg and
H¥hX; G) = HYX) = A,, k<n.

A set AcX is said to be approximatively n-comnected in X (written n-PCy)
iff for each neighbourhood U of 4 in X there is a neighbourhood V< U of 4 in X
such that each map f: $"— V is homotopic to a constant map in U. The set 4 is
PC" iff it is k-PCy for all 0<k<n, n<oo. The notion reduces to X e LC™ iff for
each point xe X the set {x} is PC"

PrOPOSITION 4. For each paracompact p-space X, X e LCy and n(X) =
Jor k<n is a property of the covering-countable type.

Proof. Let # = {P,: n= 1,2, ...} be a feathering of a space in BX. Define
relations af, on %%: (P', P) e d' iff P Pl P ">P,, A P (where P means the greatest
extension of P open in fX and for each u' € P’ there exists a u € P such that each
map f: §*— ' is homotopic in u to a constant map. Let o = {d%: k<n, m<oo}.
The uniformity %% is an & -uniformity. In the same way as in the previous example
it can be verified that the family {st(x, P): Pe %} is a base of the set [x], for each
of -pseudouniformity % c%%, and the set [x], is PCy and the map h: X — hX
onto a metrizable space 21X is perfect. From the Dugundji-Vietoris Theorem ([3],
Theorem 5.4) we infer that the homomorphism m,(X) — m,(hX), k<n, is an iso-
morphism. This implies that AX e LC" and m,(hX) = 4,, k-en.

Now, we shall give two examples of properties of type B.
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ProrosiTION 5. If a paracompact space X has a feathering in a locally compact
and locally connected space Y, then compactness and connectness is transferred into X
onto small layers.

ProrositioN 6. If a paracompact space X has a feathering in a paracompact
p-space Y e clck, then the property H¥(Z; G) = 0 is a property transferred onto small
layers.

Proof. The space X has feathering # = {P,: n = 1,2,..} in BY. Define
relations B, on extgy¥%: (P’, P)e b, iff P’]XiP]X, clyyP'>P AP, and for each
u' € P’ there exists a u € P, u’' cu, such that the induced homomorphism H*(u n Y; G)
— H*W' nY; G) is trivial. Let B = {b: k<n, m<co}. The uniformity %% is
2 % -uniformity. We shall verify that for each #-pseudouniformity # c %% we have
H4[x]y; @) = 0, k<n, x € X. Notice that for each & -pseudouniformity # a family
{st(x, P): Peexty) is a base of neighbourhoods of [x], = [¥lexiy %, x € X.
Hence a family {st(x,P|Y): Peextyy%} is also a neighbourhood base of [x],.
Now, from the definition of the relations &% it follows that for each neighbourhood
uePeextyy¥ of [x], there exists a neighbourhood v’ € P’ e extyy ¥, (P, P) e bk,
such that #'mnYcunY and the induced homomorphism H%unY; G)
— H*u' 0 Y; G)istrivial. By Theorem 6.6.2 from [7] it follows that B*([x]y; G) = 0.
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The category of abelian Hopf algebras
by

Andrzej Skowronski (Torufi)

Abstract. By abelian Hopf algebra we mean a commutative, cocommutative, connected,
graded Hopf algebra over a field. In this paper we investigate the category J€ of all abelian Hopf
algebras and the full subcategory £ of J€ consisting of all primitively generated Hopf algebras.
In particular we give a complete description of injective objects in categories £ and J€ and we
prove that gl. dimL =1 and gl.dimJC = 2.

Introduction. Let K be an arbitrary field. A graded Hopf K-algebra which is
commutative, cocommutative and connected will be called an abelian Hopf algebra
(see [10], [18]). Denote by # the category of all abelian Hopf algebras. Recall
that J# is a locally noetherian Grothendieck category and an object H in 3 is noe-
therian if and only if H is finitely generated as a K-algebra (see [7], [10]). The tensor
product ® over X is the coproduct in #. Let p be the characteristic of K. If p = 0
then gl.dims# =0 (see [10]). Assume p>2. In [10] Schoeller showed that
H = A" xH#* where # is the full subcategory of # consisting of all Hopf
algebras generated by elements of odd degrees and #°* consists all Hopf algebras
which are zero in odd degrees. Furthermore, gl.dim#~ = 0 and # is a product
of countably many < categories each of which is equivalent to the full subcategory
#y of #* consisting of all Hopf algebras generated by elements of degrees 2p°
where i =0,1,2, ...

Let H be an object in # and 4 the comultiplication of H. An element x of H
will be called primitive if 4(x) = x®1+1®x. From Theorem 6.3 in [7] it follows
that each subobject of a primitively generated abelian Hopf algebra is also primitively
generated. Denote by % (resp. &7, £ %, #,) the full subcategory of 3# (resp. #~,
H*, o) consisting of all primitively generated Hopf algebras. Then . is a locally
noetherian Grothendieck category, & = %~ x %™ and £ is aproduct of countably
many categories each of which is equivalent to the category %,.

Let #"-GrMod denote the category of graded K-modules and let

P: # — K-GrMod

be the functor which assigns to each H from s, the graded K-module P(H) of all
primitive elements of H. Moreover, let

Q: #,;— K-GrMod
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