

Properties of the covering type and a factorization theorem

by

W. Kulpa (Katowice)

Abstract. The paper contains a factorization theorem implying the possibility of factorizing a map $f\colon X\to M$, where M is a metric space such that f is equal to a composition $X\overset{h}\to M'\to M$, where $h\colon X\overset{\text{onto}}\to M'$ satisfies some additional conditions for $h^{-1}hx$, $x\in X$, and a metric space M' preserves a prescribed countable number of properties of the space X. As corollaries, some results concerning p-paracompact spaces can be obtained.

1. Preliminaries. The maps considered in this paper are assumed to be (uniformly) continuous. We use the notion of uniformity in the covering sense. A family which satisfies all the axioms of uniformity except the axiom of separation is called a *pseudo-uniformity*. Symbols $P \succ Q$, $P \underset{*}{\succ} Q$ mean, respectively, that P is a refinement or a starrefinement of Q. Some symbols and notations are taken from [5].

If X is a completely regular space, then by \mathscr{U}_X^* we denote the greatest uniformity inducing the topology of the space X. Each pseudouniformity $\mathscr{U} \subset \mathscr{U}_X^*$ is said to be compatible with the topology of the space X.

There exists a functor h (see [5]) from the category of pseudouniform spaces onto the category of uniform spaces such that for each pseudouniform space (X, \mathcal{U}) there exists a uniform map $h: (X, \mathcal{U}) \to (hX, h\mathcal{U})$ satisfying two conditions:

- (a) $h^{-1}h\mathcal{U} = \mathcal{U}$, where $h^{-1}h\mathcal{U} = \{h^{-1}Q: Q \in h\mathcal{U}\}$,
- (b) for each uniform map $f: (X, \mathcal{U}) \to (Y, \mathcal{V})$ into a uniform space, there exists a unique uniform map $g: (hX, h\mathcal{U}) \to (Y, \mathcal{V})$ such that f = gh.

The functor h can be obtained in the following way: for each pseudouniform space (X, \mathcal{U}) the set hX is obtained by a decomposition of the set X onto layers $[x]_{\mathcal{U}} = \bigcap \{ \operatorname{st}(x, P) \colon P \in \mathcal{U} \}, \ hX = \{ [x]_{\mathcal{U}} \colon x \in X \}, \ h \colon x \mapsto [x]_{\mathcal{U}} \text{ and the uniformity } h\mathcal{U} = \{ P^* \colon P \in \mathcal{U} \}, \text{ where } P^* = \{ h^*u \colon u \in P \}, \ h^*u = hX - h(X - u). \text{ Proofs of the above remarks are given in [5].}$

A uniform feathering of a space X in a space $Y\supset X$ is a countable family $\mathscr P$ of coverings of X consisting of open sets in Y such that $\mathscr P|X\subset\mathscr U_X^*$ and $[x]_{\mathscr P}=\bigcap \{\operatorname{st}(x,P)\colon P\in\mathscr P\subset X, \text{ for each }x\in X.$

2. Properties of a covering type. Let $\mathscr A$ be a countable family of relations defined on $\mathscr U_X^*$. A pseudouniformity $\mathscr U \subset \mathscr U_X^*$ is said to be an $\mathscr A$ -pseudouniformity iff for each 1—Fundamenta Mathematicae T. CVIII3

 $a \in \mathcal{A}$ and each $P \in \mathcal{U}$ there exists a $P' \in \mathcal{U}$ such that $(P', P) \in a$ and $(P', P) \in a$ implies $P' \succeq_a P$.

A topological property A of a space X is said to be of the *covering-countable type* (shortly, of type A) iff there exists a countable family $\mathscr A$ of relations defined on $\mathscr U_X^*$ such that

- (a) the greatest uniformity \mathcal{U}_X^* is the \mathscr{A} -uniformity,
- (b) for each \mathcal{A} -pseudouniformity $\mathcal{U} \subset \mathcal{U}_X^*$ with a countable base, the space hX with the topology induced by the uniformity h has the property A.

Let X be a subspace of a space Y. For each pseudouniformity $\mathscr{U} \subset \mathscr{U}_X^*$ denote by $\operatorname{ext}_Y \mathscr{U}$ the set of all the extensions, open in Y, of open coverings belonging to \mathscr{U} . Let \mathscr{B} be a countable family \P relations defined on the family $\operatorname{ext}_Y \mathscr{U}_X^*$.

A pseudouniformity $\mathscr{U} \subset \mathscr{U}_X^*$ is said to be a \mathscr{B} -pseudouniformity iff for each $b \in \mathscr{B}$ and $P \in \operatorname{ext}_Y \mathscr{U}$ there exists a $P' \in \operatorname{ext}_Y \mathscr{U}$ such that $(P',P) \in b$ and $(P',P) \in b$ implies $P'|X \searrow P|X$ and $\operatorname{cl}_Y P' > P$.

We say that a topological property B is transferred onto small layers around the space X form Y iff there exists a countable set \mathcal{B} of relations defined on $\operatorname{ext}_Y \mathcal{U}_X^*$ such that \mathcal{U}_X^* is a \mathcal{B} -uniformity and for each \mathcal{B} -pseudouniformity $\mathcal{U} \subset \mathcal{U}_X^*$ a set $[x]_{\operatorname{ext}_Y \mathcal{U}} = \bigcap \{\operatorname{st}(x, P) \colon P \in \operatorname{ext}_Y \mathcal{U}\}, \ x \in X, \ \text{has the property } B. If, in addition, for each <math>x \in X$, $[x]_{\operatorname{ext}_Y \mathcal{U}} \subset X$, then we say that the property B is transferred onto small layers from Y.

A map $f: X \to M$ is said to be a B-map iff, for each $y \in M$, $f^{-1}y$ has the property B.

3. A factorization theorem.

THEOREM. Given:

- 1. spaces X, Y_0 , Y_i , i=1,2,... such that $X \subset Y_0 \subset Y_i$, $\operatorname{cl}_{Y_0} X = Y_0$ and Y_0 has a uniform feathering in Y_i , i=1,2,...,
- 2. a countable family of properties A_i of the covering-countable type which has the space X,
- 3. a countable family of properties B_i which are transferred from Y_i around the space X onto small layers, i = 1, 2, ...

Then for each map $f\colon X\to M$ into a metric space M there exist spaces X_0 , M' and maps $f_0\colon X_0\to \widetilde{M}$ (where $\widetilde{M}\supset M$ is the completion of M), $h\colon X_0\overset{\text{onto}}{\to} M'$, $g\colon M'\to \widetilde{M}$ such that

- a) the space $X_0 \supset X$ is a G_δ subspace in Y_0 ,
- b) the space M' is metric and the subspace $h(X) \subset M'$ has all the properties A_i , i = 1, 2, ...,
 - c) f_0 is the extension of the map f and $f_0 = gh$,
- d) h is a B_i -map for each i=1,2,... and h is a perfect map whenever Y_i is compact for some i.

Proof. Let $f: X \to \widetilde{M}$ be a map into the complete metric space \widetilde{M} , which is the completion of the metric space M. Then $f: (X, \mathcal{U}) \to (\widetilde{M}, \mathscr{V})$ is a uniform map, where \mathscr{V} is a uniformity induced by the metric on \widetilde{M} . Let $\mathscr{V}_0 \subset \mathscr{V}$ be a countable

Define by induction countable sets $\mathscr{W}_i \subset \mathscr{U}_X^*$, $i=0,1,\dots$ Let $\mathscr{W}_0 = f^{-1}\mathscr{V}_0$ and let us fix once for all for each i and for each $P \in \mathscr{W}_0$ an extension P(i), open in Y_i , of the covering P such that P(o) is the greatest extension of P open in Y_0 . Suppose that the countable families $\mathscr{W}_k \subset \mathscr{U}_X^*$, $k \leq n$, are given and suppose that extensions P(i), open in Y_i , of coverings $P \in \mathscr{W}_k$, $k \leq n$, are fixed. Now, we shall define a countable family $\mathscr{W}_{n+1} \subset \mathscr{U}_X^*$. For each pair $P_1, P_2 \in \bigcup \{\mathscr{W}_k : k=1,\dots,n\}$ let us choose a countable family $\mathscr{W}(P_1,P_2) \subset \mathscr{U}_X^*$ such that:

- 1. for each relation $a\in \mathcal{A}_i,\ i=1,2,...$ there exists a covering $P\in \mathcal{W}(P_1,P_2)$ such that $(P,P_1\wedge P_2)\in a,$
- 2. for each relation $b \in \mathcal{B}_i$ and for each $R \in R_j$, i, j = 1, 2, ..., there exists a covering $P \in \mathcal{W}(P_1, P_2)$ having an extension P(j) open in Y_j , P(j) > R, (here, we fix the extension P(j) of P) and such that $(P(j), P_1(j) \wedge P_2(j)) \in b$,
- 3. there exists a $P \geq P_1 \wedge P_2$, $P \in \mathcal{U}_X^*$ such that each centred family $Q \subset P$ is finite (the existence of P follows from a result of Dowker [2]). Put

$$\mathcal{W}_{n+1} = \bigcup \left\{ \mathcal{W}(P_1, P_2) : P_1, P_2 \in \bigcup \left\{ \mathcal{W}_k : k = 1, ..., n \right\} \right\}.$$

Moreover, for each $P \in \mathcal{W}_{n+1}$ and for each i = 0, 1, ... let us fix once for all an extension P(i), open in Y_i , of P (for the case where the extension has not yet been fixed) such that P(o) is the greatest extension of P open in Y_0 .

Put $\mathscr{W} = \bigcup \ \{\mathscr{W}_n \colon n = 0, 1, ...\}$. A countable family \mathscr{W} is a base for some pseudouniformity $\mathscr{U} \subset \mathscr{U}_X^*$ and for each $i = 1, 2, ... \mathscr{U}$ is an \mathscr{A}_i - and a \mathscr{B}_i -pseudouniformity.

Put $X_0 = \bigcap \{\bigcup P(o) \colon P \in \mathscr{W}\}$. Notice that for $P, P' \in \mathscr{W}$ if $P' \succeq P$ and, for each centred family $Q \subset P'$, Q is finite, then $P'(o) \succeq P(o)$ (because P'(o), P(o) have been chosen as the greatest extensions open in Y_0 and X is dense in Y_0). Hence a family $\mathscr{W}(o) = \{P(o)|X_0 \colon P \in \mathscr{W}\}$ is a base for some pseudouniformity $\mathscr{U}(o)$ compatible with the topology on X_0 and $\mathscr{U}(o)|X = \mathscr{U}$. For each $i = 1, 2, ... \mathscr{U}(o)$ is an \mathscr{A}_{i^-} and a \mathscr{B}_{i^-} pseudouniformity. Since $\operatorname{cl}_{X_0} X = X_0$ and $f^{-1}\mathscr{V}_0 \subset \mathscr{U}_0|X$, it is possible to define a map $f_0 \colon X_0 \to \widetilde{M}$ which is a an extension of the map f. We put $f_0 y = \bigcap \{\operatorname{cl}_{\widetilde{M}} f(U \cap X) \colon U \text{ is a neighbourhood in } X_0 \text{ of } y \in X\}$. It can be verified that $f_0 \colon (X_0, \mathscr{U}(o)) \to (\widetilde{M}, \mathscr{V})$ is a uniform map.

Let $M' = hX_0$ be a space with a metric induced by the uniformity $h\mathscr{U}(o)$. Define a map $g : M' \to \widetilde{M}$; $g[x]_{\mathscr{U}(o)} = f_0x$. Since for each i = 1, 2, ... and for each $x \in X_0$ we have $[x]_{\mathscr{U}(0)} = \bigcap \{st(x, P(i)) \colon P \in \mathscr{U}\}$ (because $[x]_{\mathscr{U}_i} \subset Y_0$), the map $h \colon X_0 \to \widetilde{M}$ is a B_i -map, i = 1, 2, ...

Notice that for each i=1,2,... a family $\mathscr{W}(i)=\{P(i)|X_0\colon P\in\mathscr{W}\}$ is a feathering of the space X_0 in the space Y_i . For this reason, if one of the spaces Y_i is

compact, then a family $\{\operatorname{st}(x,P)\colon P\in\mathscr{U}(o)\}$ is a base of neighbourhood of the compact set $[x]_{\mathscr{U}(0)}$. This implies that $h\colon X_0\to M'$ is a perfect map.

4. Examples of properties of the covering type.

PROPOSITION 1. If X is a completely regular space, then $\dim X = n$ is a property of the covering-countable type.

Proof. Define a set $\mathscr{A} = \{a_1, a_2\}$ of relations on \mathscr{U}_x^* :

- 1. $P', P \in a_1$ iff $P' \succeq P$ and $ord P' \leq n+1$,
- 2. $(P', P) \in a_2$ iff $P' \underset{*}{\overset{*}{\swarrow}} P$ and there is no covering $P'' \in \mathcal{U}_X^*$ such that $\operatorname{ord} P'' < n$ and P'' > P'.

Since the uniformity \mathscr{U}_X^* has a base consisting of all the locally finite and functionally open coverings of X, we have $\dim \mathscr{U}_X^* = n$ iff $\dim X = n$ (see e.g. [4]). Thus \mathscr{U}_X^* is an \mathscr{A} -uniformity. Now, we shall verify the condition (b) of the definition of a property of the covering-countable type. From the construction of the functor h it follows that $\dim \mathscr{U} = \dim h\mathscr{U}$ (see the property (a) of the functor h). But, if the uniformity $h\mathscr{U}$ has a countable base, then $\dim hX = \dim h\mathscr{U}$, where the topology of the space hX is induced by $h\mathscr{U}$ (Nagata [6]).

In a paper of Bokštejn [1] there was introduced a coefficient of cyclicity of a space X in a coefficient group G, $\eta_G(X) = \sup\{n: H^n(X; G) \neq 0\}$, where H^* means the Čech cohomology functor.

PROPOSITION 2. If G is a countable generated group, then $\eta_G(X) = n$, $n \leq \infty$, is a property of the covering-countable type for compact spaces X.

Proof. From the theorem on universal coefficients it follows that, for each covering P which has a finite subcovering, the group $H^*(P;G)$ is countable generated. For each covering $P \in \mathscr{U}_X^*$ let us enumerate generators g_1, g_2, \ldots of the group $H^k(P;G)$. Denote by $i_{P,P}^k$ homomorphism of groups $H^k(P;G) \to H^k(P';G)$ induced a star refinement $P' \searrow P$. Let us consider the relations:

- 1. $(P', P) \in a_m^k$ iff P' > P and $i_{P', P}^k(g_m) = 0$, $g_m \in H^k(P; G)$,
- 2. $(P', P) \in a^k$ iff $P' \stackrel{\cdot}{\succ} P$ and there exists a $g \in H^k(P'; G)$ such that for each P'' > P', $P'' \in \mathscr{U}_X^*$ is $i_{P'',P'}^k(g) \neq 0$.

Put $\mathscr{A}=\{a_m^k\colon m=1,...,k>n\}\cup \{a^k\colon k\leqslant n\}$. Notice that $\eta_G(X)=n$ is equivalent to \mathscr{U}_X^* is an \mathscr{A} -uniformity. On the other hand, for each \mathscr{A} -pseudouniformity $\mathscr{U}\subset \mathscr{U}_X^*$, the property (a) of the functor $h,\,\mathscr{U}=h^{-1}h\mathscr{U}$, implies that $h\mathscr{U}$ is an \mathscr{A} -uniformity on the set hX. The topology of the space hX induced by the uniformity $h\mathscr{U}$ is compact. Since a compact space has only a unique uniformity inducing the topology, the condition that $h\mathscr{U}$ is an \mathscr{A} -uniformity is equivalent to $\eta_G(hX)=n$.

A space X is cohomologically locally connected in a dimension not greater than $n, n \leq \infty$, and in a group of coefficients G, (written; $X \in \operatorname{cl} c_G^n$), iff for each neighbourhood U of a point x there exists a neighbourhood $V \subset U$ of x such that the homomorphism of reduced cohomology Alexander-Čech groups $\tilde{H}^k(U; G) \to \tilde{H}^k(V; G)$ induced by the embedding $V \subset U$ is trivial.

Proof. Let $\mathscr{D} = \{P_n \colon n = 1, 2, ...\}$ be a feathering of the space X in the Čech–Stone compactification βX . Define relations α_n^k on $\mathscr{U}_X^* \colon (P', P) \in \alpha_m^k$ iff $P' \searrow P$, $\operatorname{cl}_{\beta X} \widetilde{P}' > P_m \wedge \widetilde{P}$ (where \widetilde{P} means the greatest extension, open in βX , of $P \in \mathscr{U}_X^k$) and for each $u' \in P'$ there exists a $u \in P$ such that $u' \subset u$ and the homomorphism $H^k(u; G) \to H^k(u'; G)$ is trivial.

Put $\mathscr{A}=\{a_m^k\colon k\leqslant n,\ m<\infty\}$. Notice that \mathscr{U}_X^* is an \mathscr{A} -uniformity. Now, let $\mathscr{U}\subset \mathscr{U}_X^*$ be an \mathscr{A} -pseudouniformity with a countable base. The condition $\mathrm{cl}_{\beta X}\tilde{P}'\succ P_m\wedge \tilde{P},\ P'\succ P$, ensure that a family $\{\mathrm{st}(x,P)\colon P\in\mathscr{U}\}$ is a base of neighbourhoods of the set $[x]_{\mathscr{U}}\subset X$, because

$$[x]_{\mathscr{U}} = \bigcap \left\{ \operatorname{st}(x, P) \colon P \in \mathscr{U} \right\} = \bigcap \left\{ \operatorname{cl}_{\beta X} \operatorname{st}(x, P) \colon P \in \mathscr{U} \right\}$$

and βX is a compact space. This implies that for each neighbourhood U[x] of the set [x] there exists a neighbourhood $V[x] \subset U[x]$ of [x] such that the homomorphism $H^k(U[x];G) \to \tilde{H}^k(V[x];G)$ is trivial. Hence, for each $x \in X$ and $k \leq n$ we obtain $\tilde{H}^k([x];G) = 0$ (see, Spanier [7], Theorem 6.6.2).

Now let us consider the space hX with the topology induced by the uniformity $h\mathscr{U}$. Since a family $\{\operatorname{st}(x,P)\colon P\in\mathscr{U}\}$ is a base of neighbourhoods of the set $[x]_{\mathscr{U}}$, the map $h\colon X\to hX$ is perfect and $\tilde{H}^k(k^{-1}hx;G)=0$, $x\in X, k\leqslant n$. From the Vietoris-Begle Theorem (see, Spanier [7], Theorem 6.9.15) the map h induces the isomorphism $H^k(hX;G)\to H^k(X;G)$, $k\leqslant n$. From this we immediately obtain $hX\in\operatorname{cl} c_G^n$ and $H^k(hX;G)=H^k(X)=A_k$, $k\leqslant n$.

A set $A \subset X$ is said to be approximatively n-connected in X (written $n\text{-PC}_X$) iff for each neighbourhood U of A in X there is a neighbourhood $V \subset U$ of A in X such that each map $f \colon S^n \to V$ is homotopic to a constant map in U. The set A is PC^n iff it is $k\text{-PC}_X$ for all $0 \leqslant k \leqslant n$, $n \leqslant \infty$. The notion reduces to $X \in LC^n$ iff for each point $x \in X$ the set $\{x\}$ is PC^n .

PROPOSITION 4. For each paracompact p-space X, $X \in LC_X^n$ and $\pi_k(X) = A_k$ for $k \le n$ is a property of the covering-countable type.

Proof. Let $\mathscr{P}=\{P_n\colon n=1,2,\ldots\}$ be a feathering of a space in βX . Define relations a_m^k on $\mathscr{U}_X^*\colon (P',P)\in a_m^k$ iff $P'\underset{*}{\searrow}P$, $\operatorname{cl}_{\beta X}\widetilde{P}'\mathrel{\searrow}P_m\wedge\widetilde{P}$ (where \widetilde{P} means the greatest extension of P open in βX and for each $u'\in P'$ there exists a $u\in P$ such that each map $f\colon S^k\to u'$ is homotopic in u to a constant map. Let $\mathscr{A}=\{a_m^k\colon k\leqslant n,\ m<\infty\}$. The uniformity \mathscr{U}_X^* is an \mathscr{A} -uniformity. In the same way as in the previous example it can be verified that the family $\{\operatorname{st}(x,P)\colon P\in\mathscr{U}\}$ is a base of the set $[x]_{\mathscr{U}}$ for each \mathscr{A} -pseudouniformity $\mathscr{U}\subset\mathscr{U}_X^*$, and the set $[x]_{\mathscr{U}}$ is PC_X^n and the map $h\colon X\to hX$ onto a metrizable space hX is perfect. From the Dugundji-Vietoris Theorem ([3], Theorem 5.4) we infer that the homomorphism $\pi_k(X)\to\pi_k(hX),\ k\leqslant n$, is an isomorphism. This implies that $hX\in LC^n$ and $\pi_k(hX)=A_k,\ k\in n$.

Now, we shall give two examples of properties of type B.

166

Proposition 5. If a paracompact space X has a feathering in a locally compact and locally connected space Y, then compactness and connectness is transferred into X onto small lavers.

Proposition 6. If a paracompact space X has a feathering in a paracompact p-space $Y \in \operatorname{cl} c_G^n$, then the property $H^k(Z; G) = 0$ is a property transferred onto small

Proof. The space X has feathering $\mathscr{P} = \{P_n : n = 1, 2, ...\}$ in βY . Define relations b_m^k on $\operatorname{ext}_{\beta Y} \mathcal{U}_X^*$: $(P', P) \in b_m^k$ iff P'|X > P|X, $\operatorname{cl}_{\beta Y} P' > P \wedge P_m$ and for each $u' \in P'$ there exists a $u \in P$, $u' \subset u$, such that the induced homomorphism $H^k(u \cap Y; G)$ $\to H^k(u' \cap Y; G)$ is trivial. Let $\mathscr{B} = \{b_m^k : k \leq n, m < \infty\}$. The uniformity \mathscr{U}_Y^* is a \mathscr{B} -uniformity. We shall verify that for each \mathscr{B} -pseudouniformity $\mathscr{U} \subset \mathscr{U}_X^*$ we have $\tilde{H}^k([x]_{\mathfrak{A}};G)=0, k \leq n, x \in X$. Notice that for each \mathscr{B} -pseudouniformity \mathscr{U} a family $\{\operatorname{st}(x,P)\colon P\in\operatorname{ext}_{\beta Y}\mathscr{U}\}\$ is a base of neighbourhoods of $[x]_{\mathscr{U}}=[x]_{\operatorname{ext}_{\beta Y}}\mathscr{U},\ x\in X.$ Hence a family $\{st(x, P|Y): P \in ext_{BY}\mathcal{U}\}\$ is also a neighbourhood base of $[x]_{\mathcal{U}}$. Now, from the definition of the relations b_m^k it follows that for each neighbourhood $u \in P \in \text{ext}_{BY} \mathcal{U}$ of $[x]_{\mathcal{U}}$ there exists a neighbourhood $u' \in P' \in \text{ext}_{BY} \mathcal{U}$, $(P', P) \in b_m^k$, such that $u' \cap Y \subset u \cap Y$ and the induced homomorphism $H^k(u \cap Y; G)$ $\to H^k(u' \cap Y; G)$ is trivial. By Theorem 6.6.2 from [7] it follows that $\widetilde{H}^k([x]_{\mathscr{X}}; G) = 0$.

References

- [1] М. Ф. Бокштейн, Гомологические инварианты топологических пространств, Труды Моск. Общ. 5 (1956), рр. 3 - 80.
- [2] C. H. Dowker, Mapping theorems for non-compact spaces, Amer. J. Math. 69 (1947). pp. 200-242.
- [3] J. Dugundji, Modified Vietoris theorems for homotopy, Fund. Math. 66 (1970), pp. 223-235.
- [4] R. Engelking, Outline of General Topology, Warszawa 1966.
- [5] W. Kulpa, Factorization and inverse expansion theorems, Colloq. Math. 21 (1970), pp. 217-227.
- [6] J. Nagata, Modern Dimension Theory, Amsterdam 1965.
- [7] E. H. Spanier, Algebraic Topology, New York 1966.

UNIWERSYTET ŚLĄSKI, INSTYTUT MATEMATYKI

Accepté par la Rédaction le 5, 9, 1977

The category of abelian Hopf algebras

Andrzej Skowroński (Toruń)

Abstract. By abelian Hopf algebra we mean a commutative, cocommutative, connected, graded Hopf algebra over a field. In this paper we investigate the category K of all abelian Hopf algebras and the full subcategory L of H consisting of all primitively generated Hopf algebras. In particular we give a complete description of injective objects in categories £ and H and we prove that gl. dim $\mathcal{L} = 1$ and gl. dim $\mathcal{K} = 2$.

Introduction. Let K be an arbitrary field. A graded Hopf K-algebra which is commutative, cocommutative and connected will be called an abelian Hopf algebra (see [10], [18]). Denote by \mathcal{H} the category of all abelian Hopf algebras. Recall that \mathcal{H} is a locally noetherian Grothendieck category and an object H in \mathcal{H} is noetherian if and only if H is finitely generated as a K-algebra (see [7], [10]). The tensor product \otimes over K is the coproduct in \mathcal{H} . Let p be the characteristic of K. If p=0then gl.dim $\mathcal{H} = 0$ (see [10]). Assume $p \ge 2$. In [10] Schoeller showed that $\mathcal{H} = \mathcal{H}^- \times \mathcal{H}^+$ where \mathcal{H}^- is the full subcategory of \mathcal{H} consisting of all Hopf algebras generated by elements of odd degrees and \mathcal{H}^+ consists all Hopf algebras which are zero in odd degrees. Furthermore, gl.dim $\mathcal{H}^- = 0$ and \mathcal{H}^+ is a product of countably many < categories each of which is equivalent to the full subcategory \mathcal{H}_1 of \mathcal{H}^+ consisting of all Hopf algebras generated by elements of degrees $2p^i$ where i = 0, 1, 2, ...

Let H be an object in \mathcal{H} and Δ the comultiplication of H. An element x of H will be called *primitive* if $\Delta(x) = x \otimes 1 + 1 \otimes x$. From Theorem 6.3 in [7] it follows that each subobject of a primitively generated abelian Hopf algebra is also primitively generated. Denote by \mathcal{L} (resp. \mathcal{L}^- , \mathcal{L}^+ , \mathcal{L}_1) the full subcategory of \mathcal{H} (resp. \mathcal{H}^- , $\mathcal{H}^+, \mathcal{H}_1$) consisting of all primitively generated Hopf algebras. Then \mathcal{L} is a locally noetherian Grothendieck category, $\mathcal{L} = \mathcal{L}^- \times \mathcal{L}^+$ and \mathcal{L}^+ is a product of countably many categories each of which is equivalent to the category \mathcal{L}_1 .

Let \mathcal{K} -GrMod denote the category of graded K-modules and let

$$P: \mathcal{H} \to K\text{-}\mathrm{GrMod}$$

be the functor which assigns to each H from \mathcal{H}_1 the graded K-module P(H) of all primitive elements of H. Moreover, let

$$O: \mathcal{H}_1 \to K\text{-}GrMod$$