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A characterization of unicoherence in terms
of separating open sets

by

J.H.V, Hunt * (México)

Abstract. We show that in a connected locally connected space some separation properties
that are well-known to characterize unicoherence when phrased in terms of closed sets also
characterize unicoherence when phrased in terms of open sets.

1. Introduction. In [4] this question was raised.

QUESTION. Arethe following properties equivalent in a connected locally connected
space X

() X is unicoherent,

() if L is a set which separates points p, q, then some component of L separates
P 49,

(i) if L is a set which separates X, then some component of L separates X?

It is well known that the answer to this question is affirmative when L is a closed
set. This is partially proved in Theorem 1 of [7], and the part that is missing can
easily be supplied using standard arguments on connected locally connected spaces.
In this paper we answer the question affirmatively when L is an open set(*). This
result was announced in [3]. It is similar to Stone’s theorem on “open-unicoherence”
in, [7] in that properties that are well-known to characterize unicoherence in terms
of closed sets are also shown to characterize unicoherence in terms of open sets.

In § 2 we prove the theorem, placing parts of the argument in two lemmas.
In Lemma ] a construction is given which is valid in any connected locally connected
space. The main part of the argument appears in the principal lemma, which is of
independent interest, as it is used in [4] as well. The proof of the theorem itself is
then reduced to standard arguments on connected locally connected spaces. We
conclude the paper in § 3 with some remarks on the question mentioned above.

* The author is supported by the Multinational Program of Mathematics of the O. A.S.
(%) If the space js in addition normal, then this result follows from the previous special case
for closed sets. However, the hypotheses of the question do not allow any separation axioms on
the space.
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The author would like to thank Dr. A. Garcia-Mdynez and the referee for
suggesting several improvements to the proof, and J. Alarcén for pointing out that
the original proof of Lemma 1 was incorrect.

2. The proof. Capital letters and small letters refer to subsets and points, re-
spectively, of a topological space X. We take U, n to have precedence over —;
e.g., L—M U N means L—(M U N).

The sets P, Q are separated if PN 0 =@ = P~ Q. In this case we shall
sometimes say that P is separated from Q. A set L separates points p, q if there are
separated sets P, Q containing p, ¢ respectively, such that X—L = P u Q. A set L
separates X if its complement is not connected.

The case of the following construction in which Uis an open set and 4 = [ p, ¢}
is a two-point set will be used in the proof of the principal lemma.

LemMmaA 1. Let U be a proper subset of a connected locally connected space X,
and let {U,}, be the collection of all the components of U. Let A be a non-empty subset
of X—U and, for each i, let V, be the union of U, and all the components of X—U,
which do not meet A. Then for any pair of sets V,, V, at least one of the following

hree relations holds:

VioVe, ViV, V,aV,=0.

Proof. Consider two distinct components U,, U, of U. Let S be the union
of all the components of X— U, u U, which are separated from U,, and let T be the
union of all the components of X— U, u U, which are separated from U,. Notice
that it is a consequence of the connectedness and local connectedness of X that no
component of X—U, u U, is separated from both U, and U,, and this implies
that S, Tare disjoint and that X — U, u S, X— U, U Tare connected. Now we consider
three possibilities.

Firstly suppose that X—¥, < S. In this case XV, ¥~U, U T, as SN T= @
implies that ScX—U, v T. Since X—U, uT is a connected subset of X—U,
which contains 4 (because 4= X—V)), it is contained in a component of X— V-
Consequently X—FV,cX—V,, and so V,oV,.

Secondly, the supposition that X'—V,<T leads by similar reasoning to the
conclusion that ¥, o V.

Thirdly suppose that X—V,&S, X—V,&T. Since X—V, &S, X—U, U S is
a connecled subset of X— U, which meets X~ ¥, and so it is contained in some
component of X—U, lying in X—V,; i.e.,, X—U, u ScX—V,. Consequently
U, v S=>V,. Similarly, X— V), & T implies that U, U To Vy. Since U, u S, U, 0T
are disjoint, ¥, n ¥, = @. This proves the lemma.

A connected space X is unicoherent if for each pair of connected closed sets M, N
such that X = MU N, M n N is connected.

A set L in a connected space X is simple if it is connected and does not
separate X. This terminology is taken from [7]. Observe that in a connected space
every complementary component of a connected set is simple (e. g., see p. 140 of [6]).
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The frontier of a set L is denoted by FrZ, i.e.,, FrL = Ln X—L. The main
part of the argument is in the following lemma.

PRINCIPAL LEMMA. Let U be an open set which Separates two points p, g in a con-
nected locally comnected unicoherent space X, and let P, O be disjoint closed sets
containing p, g, respectively, such that X—U = P U Q. Let {U,}, be the collection
of all the components of U and, for. each 1, let P;, Q; be the components of X—U,
that contain p, q, respectively. Then, Jor some 1, either

FrP,cP, FrQ,cQ

&r

FrP,cQ, FrQ,cP.

Proof. We adopt the above notation, and suppose that the lemma is false.
To see what this means, notice that P,, @, are simple sets (see the observation above).
Thus, by the unicoherence of X and Theorem 1 (if) of [7], FrP;, FrQ, are non-
empty connected subsets of FrU,. However, since the components of U are open,
FrU, is a subset of P U Q. It follows that each one of FrP;, FrQ, is a subset of
either P or Q. Thus the negation of the lemma means that, for each A, either
FrP, v FrQ;cP or FrP, uFrQ,= 0.

Let V; = X~P;, U Q,, for each 1. Then ¥V, is a non-empty open set whose
complement contains p, ¢, and so Fr¥, is a non-empty subset of FrP, U FrQ,;.
Thus the negation of the lemma means that, for each ., either Fr ¥, <P or Fr V,=0Q.

Now let W, = {J {V,| ¥,=¥,}, for each 1. Then W, is a non-empty open
set whose complement contains p, g, and so Fr W, # @&. We claim that, for each 4,
either Fr W,<P or FrW,cQ.

For suppose that Fr W, P. Select a point x € Fr W,— P, and let N be a connected
open set containing x which does not meet P. Then N n ¥, # &, for some V,> V.
Thus, whenever V,>V,, N n V, # @ and xe N—V,; consequently N n Fr¥V, # @.
This implies by the second last paragraph that Fr V,=Q, for each ¥V, > V,. However
W, = U{¥, V,>V,}, because {¥,] ¥,o¥,} is totally ordered by inclusion, by
Lemma 1. Thus FrW,={J {Fr¥,| ¥,oV,}, by Theorem 1, p. 236 of [6]. It follows
that Fr W, <= Q, which proves the claim(?).

We terminate the proof by showing that X is not connected. For this purpose
let P’ = P—{) W;, Q' = Q—U W,. Then P’, Q' are disjoint closed sets containing

2 )

D. g, respectively. We have remarked that each family {V.l V,=V,}istotally ordered
by inclusion, from which it follows that {,}, is a collection of disjoint sets. Thus
each Fr W, besides being a subset of either P or Q, is also a subset of either P’ or Q'.
Now let P’ be the union of P and all the sets W, whose frontiers lie in P, and let Q"

(*) In Example 10, p. 835 of [1] the topological limit of a partially ordered collection of sub-
sets of a topological space is defined. In these terms Fr W; is the topological limit of the chain
{Fr ¥l V> V), the order being induced by the inclusion relation on {V,1 ¥, V;}. We have
not made use of this definition for reasons of economy.
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be the union of Q' and all the sets W, whose frontiers lie in Q'. Then P", Q"' are
disjoint non-empty sets whose union is X. Furthermore, since P’, Q' are closed, it
follows from Theorem 1, p. 236 of [6] that FrP"” <P, Fr Q"< Q'. Thus P, Q'" are
closed. This contradiction to the connectedness of X completes the proof.

Now we prove the result claimed in § 1.

THEOREM. In a connected locally connected space X the following properties are
equivalent:

(i) X is unicoherent,

(i) if U is an open set which separates points p, q, then some component of U
separates p, d, :

(i) if U is an open set which separates X, then some component of U separates X.

Proof. In order to prove that (i) implies (i), let X be a connected locally
connected unicoherent space, and let U be an open set which separates two given
points p, g. Let X—U = P u @, where P, Q are disjoint closed sets containing p, ¢,
respectively. By the principal lemma, there is a component U, of U such that the
components P,, 0, of X~ U, containing p, g, respectively, satisfy either FrP,cP,
FrQ,=Q or FrP,cQ, FrQ,c=P.

We show that U, separates p, g. Notice that the frontier of each component
of X— U, is a non-empty subset of either P or O (the reasoning is the same as in the
first paragraph of the proof of the principal lemma, where the special cascs of FrP,,
FrQ; were considered). Thus let P’ be the union of all the components of X—U,
whose frontiers are contained in P, and let Q' be the union of all the components
of X— U, whose frontiers are contained in Q. Then X—U, = P’ u @', and P', 0’
are disjoint sets one of which contains 2, and the other of which contains Q,; i.e., one
of which contains p and the other of which contains g. Also, by Theorem 1, p. 236
of [6], FrP'cP, Fr Q' < Q, and so FrP’, Fr Q' are disjoint. Since P’, Q' are disjoint,
it now follows that their closures are disjoint. This implies that P’, Q' are closed,
because the complement of their union is open. Consequently U, separates p, ¢.

Since (ii) implies (iii) trivially, we turn to proving that (iif) implies (i). Thus
suppose that (iii) holds, but that X is a connected locally connected space which
is not unicoherent. Then there are connected closed sets M, Nsuchthat X = M U N
and M n N = AU B, where 4, B are disjoint non-empty closed sets. We assert
that there is a component C of X—N such that 4 " ¥rC # @ # B n FrC. For
suppose that this is not the case. Then it follows from the connectedness and local
connectedness of X that the frontier of each component of X—N is a non-empty
subset of either 4 or B. Thus let A’ be the union of 4 and all the components of X — N
whose frontiers are contained in 4, and let B’ be the union of B and all the components
of X— N whose frontiers are contained in B. Then A’, B’ are disjoint non-empty
sets whose union is M. Further, since 4, B are closed, it follows from Theorem I,
p. 236 of [6] that Fr 4’ = 4, Fr B’ = B. Thus A’, B’ are closed. However this contradicts
the connectedness of M and so proVves our assertion. So now select a component C
of X—N whose frontier meets both 4 and B, and put U = C u (X—C). Then it
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follows from the connectedness and local connectedness of X that no component
of U separates X. Yet X— U = FrC, which is not connected. This contradicts (iii)
and completes the proof. :

We remark that, just as it is an easy matter to prove that (iii) implies (i) in the
above theorem, so it is also easy to prove that (i) implies (iii). That is, the direct
proof that (i), (iii) are equivalent is straightforward.

3. Remarks on the question. We return to the question mentioned in § 1. As we
remarked there, it is well-known that the answer to this question is affirmative
when L is a closed set. From this one deduces an affirmative answer to the question
if the space X is in addition completely normal. Thus it is really being asked whether
complete normality can be dropped from this last result.

The question was originally raised in [4] because it follows from the Phragmen-
Brouwer theorem .of that paper (which was announced as Theorem 1 in [3]) that
a connected locally connected unicoherent space X has properties (ii), (iii) for any
set L with a finite number of components. Dr. A. Garcia-Mdynez points out that
such a space also has properties (ii), (iii) for any set L whose complement has a finite
number of components (property (ii) is (b) of Theorem (3.3) of [2] and property (iii)
follows from Lemma (3.2) of [2] and the Phragmen-Brouwer theorem of [4D.

An affirmative answer to the question would not only subsume the Phragmen-
Brouwer theorem of [4]; it would also enable us to prove the main theorem of [5]
without any separation axioms on the space at all.
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