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Superextensions of metrizable continua are Hilbert cubes
by

Jan van Mill * (Madison, Wisc.)

Abstract. We prove that the superextension AX of X is a Hilbert cube if and only if X is a non-
degenerate metrizable continuum, thus proving a conjecture of de Groot.

0. Introduction. The aim of this paper is to prove the generalized de Groot
conjecture (stated in Verbeek [27]) that the superextension AX of X is a Hilbert
cube if and only if X is a nondegenerate metrizable continuum. In our previous paper
[14] we proved that the superextension of the closed unit interval A7 is a Hilbert cube.
With a similar technique we show here that if X is a finite topological sum of closed
unit segments that the maximal connected superextension xX of X is a Hilbert cube.
Then, by an approximation technique, this result is used to prove that super-
extensions of finite connected graphs are Hilbert cubes. By a similar approximation
technique, using deep results of Curtis and Schori [9], [10], it then follows that AX
is a Hilbert cube for every nondegenerate connected polyhedron. By a result of
van Mill and Van de Vel [20] this fact suffices to prove the generalized de Groot
conjecture.

Throughout this paper joint results of Marcel Van de Vel and the author con-
cerning subbase convexity theory are used extensively. We would like to thank
Marcel Van de Vel for his stimulating enthusiasm and for many helpful comments.

1. The spaces uX. Let & be a subbase for the closed subsets of a topological
space. A subsystem . = & is called a linked system provided that every two of its
members meet., A maximal linked system, or, mls, is a linked system .# =& not
properly contained in another linked system 4" =&. Let A(X, &) denote the collec-
tion of mls’s in &. For each 4= X define 4% ci(X, %) by

At ={#elX, ) IMe tt: McA).

We topologize A(X, &) by taking the collection & = {S¥| Se ¥} is a closed
subbase. With this subbase A(X, &) is called the superextension of X with respect
fo &. The subbase &% has the property that every linked subcollection of it has
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nonempty intersection. Such a subbase is called binary. A(X, &) is Hausdorff
whenever & is normal, i.e. disjoint subbase sets are separated by disjoint comp-
lements of subbase sets. It is easily seen that & is normal iff & is normal. A subbase
& for X is called a T,-subbase if for each x€ X and Se & with x ¢ S there is an
So € & such that xe S, and Sy N S = @. If & is a Ty-subbase then the mapping
it X — A(X, &) defined by i(x): = {Se&| xe S} is an embedding. We will
always identify X and i[X]. If & consists of all the closed subsets of X then
(X, &) is denoted by AX and is called the superextension of X. In this paper we will
prove that AX is homeomorphic to the Hilbert cube if and only if X is a nondegenerate
metrizable continuum, thus proving a conjecture of De Groot. For more information
concerning superextensions, see Verbeek [27] and van Mill [16].”

For the remainder of this section let X be a finite topological sum of nonde-
generate continua. Let 2% be the hyperspace of X. (Recall that for any topological
space X the hyperspace 2* is the space with underlying set the set of all nonvoid
closed subsets of X topologized by taking the collection

] Fe2'} v (KF, X)| Fe2¥}

as a closed subbase, where, for all 4,,.., 4, X the set {A4,,..
defined by

(A, ..

, Ap<2¥ s

LAy = {Fe2*| Fe |J 4; and Fn 4; # @ for all i<n}.

i<n
It is well known that 2% is compact iff X is compact (cf. Michael [13]). This fact
will be used without explicit reference inthe remaining part of this paper. For many
strong results concerning hyperspaces, see [7], [8], [9], [10], [22], [23], [24] and [28]).
Define
T(X): = {4e2¥| 4 is not open}.u {@, X} .

L1. LemmA. 7 (X) is a normal closed T-subbase for X.

Proof. That 7 (X) is a closed subbase is trivial. Also, since X has no isolated
points, (X) is a T;-subbase. Hence it suffices to prove that J7(X) is normal.
To this end, take T,, T, €. (X) such that T, n Ty = @. It is easy to construct
a surjective Urysohn mapping f: X — I such that f[T}] = i (i€ {0, 1}). Then, since
fis surjective, {f7*[0,3], /™' [}, 1} = (X); consequently { f~*[0, 4], /' [}, I1}
is the desired covering of X by elements of 7 (X). B

For simplicity of notation write pX:= A(X, 7 (X ). Notice that.puX = 1X
in case X is connected.

We need the following result (cf. van Mill [16], Theorem 2.5.1).

1.2. TueoreM. Let X be a topological space and let & be a normal closed
T-subbase for X. Then the following properties are equivalent:

(@) AX, &) is connected; '
(i) A(X, &) is connected and locally connected,
(i) for all nonvoid Sy, S;€F: (SoNS, =B = S, US, # X). B
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1.3. COROLLARY. Let X be a finite sum of nondegenerate metrizable continua.
Then uX is an AR.

Proof. (X) clearly satisfies condition (iii) of Theorem 1.2. Consequently
MX, 7 (X)) is connected. In addition 1(X, (X)) is metrizable by a result of
Verbeek [27]. Hence A(X, 7 (X)) is a connected metrizable space with a binary
normal subbase (cf. Lemma 1.1). However such a space is an AR by a result of
van Mill [14]. &

We think of uX as the maximal connected superextension of X. It can be shown
that for every connected superextension A(X, &) of X with respect to a normal
Ty-closed subbase & there is a continuous surjection f: uX— A(X, #) which
extends the identity on X and which in addition respects the canonical convexity
structures of pX and A(X, &) (cf. van Mill and Van de Vel [19]).

In Section 6 we will show that pX is a Hilbert cube if X is a finite sum of non-
degenerate metrizable continua.

2. Convexity preserving mappings. Let X be a space which possesses a binary
normal closed subbase &. A nonempty closed subset CeX is called & -closed
provided there is a subfamily ¥<& such that C = ) 4. Let H(X, &) be the set
of all & - closed subsets of X. We.topologize H(X, &) by regarding it to be a subspace
of the hyperspace 2¥ of X. For each AcX define I,(d)e H(X, &) by

I(d):= N {Se&| A=S}.

The set I,(A) is called the & -closure of 4 and I, is called the convex closure operator.
If 4 is a two point set, say 4 = {x, y}, then we usually write I,(x, ) instead of
I({x, y}). Let L(X, &) denote the subspace of the hyperspace 2% %), consisting
of all nonempty, closed (in H(X, ), and linked systems & < H(X, &). We need
the following results (cf. van Mill and Van de Vel [17]).

2.1. TuEOREM. Let X be a topological space which possesses a binary normal
closed subbase &. Then

() The convex closure operator Iy: 2% — H(X, %) is continuous;

(ii) the mapping p: Xx H(X, %) — X defined by

(PG, 4} = () Ix,0) 0 4
acd

is continuous (p is called the nearest-point mapping of X);

(iil) a closed set A=X is & -closed iff Vx,ye A: Isx, y)=A;

(iv) the intersection- operator (\: L(X,S)— H(X,%) which sends each
L eL(X,%) onto (&, is continuous. B

Notice that for each 4 & (X, &) the restriction of p to X x {4} is a retraction

of X onto A. This is a very useful result and already had a variety of applications
(cf. Van de Vel [26], van Mill and Van de Vel [18], van Mill [15], Szymanski [25]).
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The convex closure operator of pX (resp. A.X) with respect to its canonical binary
normal subbase I (X)* = {T*| Te F(X)} (resp. (2N* = {F*| Fe2*}) will
simply be denoted by I.

Let X and Y be spaces, and let & and J be binary normal subbases for,
respectively, X and Y. A function f: X — Y is called a convexity preserving map
(briefly: a cp map) relative to & and J if for each T'e H(Y, 7) it is true that
YD) e H(X, &%) v {@} (cf. van Mill and Van de Vel [19]). In this case we shall
write

[ (X, #)—= (Y, ).

Notice that a cp mapping is automatically continuous.

If X is a space, then it is easily seen that each .4 € AX regarded as subspace
of 2% is closed in 2%. This suggests a mapping from AX intq 2%* which sends each
A € 2X onto . € 22, This mapping is obviously one to one and it is quite surprising
that for compact Hausdorff X it is also continuous (cf. van Mill and Van de Vel {20]).
Hence for compact Hausdorff X we may regard 1X to be a subspace of 22", Often
it is useful to do so (cf. Section 6 and the following theorem).

2.2. THEOREM. Let X and Y be compact Hausdorff spaces and let F: X — 2¥
be continuous. Fix yeY. Then the function f: AX — LY defined by

fy=p(y, 0 (UF@0)*
Medt
is a cp mapping.

Proof. Let k(AY) be the space H(AY, (2)*). Define a mapping F*: 2¥— 2¥
by F*(4):= {J F[A]. It is easily seen that this mapping is continuous. This mapping
extends to a continuous mapping H: 2**— 22" defined by H(s#):= F*[«/]. Take
M € AX=2*, We claim that H (#) is a linked system. Indeed, since H(.#)
= {U F[M]| Me 4}, thisis a simple consequence of the linkedness of .#. Define
a mapping ¢: 2"~ k(AY) by ¢(4):= AT, It is easily seen that this mapping is an
embedding. This mapping extends to a mapping ¢*: 22:' — 2*4N defined in the
obvious way. We now have the following mappings

x5 02 Bogr % n
where i is the inclusion. Let := ¢* o Hoi Then y[AX]=L(1¥, (2")*) as was

pointed out above (notice that 4 n B % & implies that ¢(d) N @ (B) # O).
Regard y to be a mapping from X to L(1Y, (2*)*). Then consider the composition

¥ 0 v, )
AX ——=L(AY, @")*) ——>k(AY) — > 1Y .

Since the intersection operator is continuous, cf. Theorem 2.1(iv), we conclude that f
being the composition of ¥, n and p(y, ), is continuous (cf. Theorem 2.1(ii)).

Let us prove now that f is cp. Indeed, take T e 2¥ and assume that there are
M, N efTNTF) and P el(#, N) such that &P e I(H, ¥)—Ff~(T+). We will
derive a contradiction; by the binarity of the subbase (2¥)* there are two cases:
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Case 1. There is Pe 2 such that (J F(P))* n T* = @.

Suppose that P¢.# and that P¢ 4. Take Me .# and Ne A such that
PNM =3 =NnP.ThenPn{MuUN) = @andsince PeI(M u N)=(M U N)*
this is a contradiction. Hence we may assume that, without loss of generality, Pe 4.
Then f(.#)e (U F(P))* n T'*, which is impossible.

Case 2. There is an Se2¥ such that

() yeSand S ) F(P) # @ for all Pe 2;

i) SnT=0.

Since f(#)eT* and since S* N T+ = & we can consider two cases:

(@) IMed: UF(M) NS =g;

(b) 3S, €2 such that Sy~ J F(M) # & for all Me.# and yeS, and
moreover S, NS = @,

However case (b) cannot occur since y € S, N S;. Hence we may assume that
there is an M € . such that {) F(M) n S = @. In the same way there is an Ne 4"
such that J F(N) n S = @. Then F(M) u F(N)={|J F(M) u |J F(N)> and con-
sequently M u NeF~ X F(M)u |J F(NY). Since I(#, /)=(M U N)* we
conclude that M U N e 2. Hence

JT@e(UU FEM) v U FIND)* = (U F(M) v U F(N))*

and since Sef(#) this contradicts the linkedness of f(2).

By the continuity of f the set £~ *(T'*) is closed in 1X. By the characterization
of Theorem 2.1(iii) we conclude that I(f~X(T*)) = f~}(T™) for all Te2. This
obviously implies that f is a cp mapping. M :

The proof of the above theorem is unexpectedly difficult. There are other theorems
concerning cp mappings which have a more straightforward proof. For later use let
us mention one (cf. van Mill and Van de Vel [19]).

2.3. THEOREM. Let & and I~ be normal Ty-subbases for the spaces X and Y,
respectively, and let f: X — Y be a mapping such that f~*(T) e & for each Te .
Then there is a canonical cp mapping A(f): (X, &) — A(Y, T°) extending f. More-
over A(f) is the unique cp mapping which extends f. B

That in the above circumstances there is a continuous mapping f: L(X, &)
— A(Y, ) was first proved by G. A. Jensen (see Verbeek [27]). The mapping f
can be described as follows &

{(J#)} = N{T*| Tes and f~X(T)e A} .

The mapping A(f) of Theorem 2.3 is simply Jensen’s f. Hence the only new fact
is that f'is a cp mapping and that it is unique as cp mapping. This is of interest since
simple examples show that there may exist more than one continuous extension.
The mappings A(f) will be called Jensen mappings.

In [14] a normal 7';-subbase & for a topological space X was called supernormal
provided that for all S e & and 4 € 2* with S n 4 = @ there is an S, € & such that
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AcSyand SNSy=0@.1f 7 isa normal T;-subbase for X and if & is a super-
normal subbase for X such that ¥ <Z then the Jensen extension

AGd): MX, T) > MX, L),

which extends the identity on X, can be described very easily. In [14] it was shown
that for each € A(X, T) the set 4 N & is an mls in & and hence determines
a point of A(X, ). Itis straightforward to prove that A(id)(#) = ML 1’01: all
M e A(X, T). This observation will be used several times in the sequel. In addition,
notice that A(id) is onto.

Also notice that if X is a sum of finitely many nondegenerate continua the sub-
base 7 (X) for X defined in Section 1 is supernormal.

Finally we mention another useful fact concerning cp mappings (cf. van Mill
and Van de Vel {19]).

2.4, TugoreMm. Let f: (X, ¥)— (Y, T) be a cp surjection. Then for all
Ade H(X, &) we have that f{Ale H(Y, 7). B

The proof of this theorem heavily relies on the fact that & and J both are
binary normal subbases.

2.5. COROLLARY. Let f: (X, &) — (Y, T) be a cp surjection. Take xe X and
Ae H(X, ). Then f(p(x, A) = p(f(x), f14]).

Proof. Since p(x, 4) € A we have that f(ptx, A)) e f[4]. Suppose now that
fp(x, A) # p(f(x),f[4]). Then I f(),p(f(),f[4])) does not contai'n
f(p(x, 4)). Therefore £ (F (), p(f(x),f[4])) does not contain p(x, A). This
is a contradiction, however, since x & f ™ *Iy(f(x), p(f (). f [4])) e H(X, &) and
dearly /=y (f (), p(FG).fA)) " A # 0. W

2.6. COROLLARY. Let f: (X, %) — (Y, J) be a cp surjection. Then for all
Ac X we have that I (4] = I(f[4)).

Proof. Since f[4]=f[I4(4)], by Theorem 2.4 we conclude that

I (flAD =S [T A)] -

On the other hand, A<f “IIJ( f[A]) and consequently, since f is a cp mapping,
FUAA)]=I(f[4]). This proves equality. B

3. Some remarks concerning AX and uX. This section contains some remarks
which are useful in the sequel.

Th [27] Verbeek proved that if (X, d) is a compact metric 5pace.then there is
a canonical metric d for AX such that i: (X, d)<— (AX, d) is an isometry (here i is
the canonical embedding of X in AX sending x € X onto the mls {4 e 2*| xe 4}).
This is a very useful result. Before describing Verbeek’s [27] etric explicitly, let us
first give some definitions.

If (X, d) is a metric space then for all AcX and £>0 define

B(4) = {xe X| d(x, A)<e},
U d):= {xe X| d(x, A)<s} .
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For any A, Be2¥ the Hausdorff distance dy(A4, B) is defined by
dy(A4, B):= inf{e>0] AcU/(B) and BcU(4)}.

In case X is compact, dy is a metric for 2.

Now assume that (X, 4) is compact. Verbeek [27] has given the following ex-
pressions for d;

~

(1) d(A4,#)= sup min dy(M, N)
Mes New
2 = min{e>0| VMe#: B(M)e N/ and VNe & : B(N)e 4} -
3 = min{e>0] YMe #: B(M)e '}
) = min{e>0] VNe.#": B(N)e #}.

In practical calculations the expressions (3) and (4) are the most useful.
Another very useful result is the following (cf. Verbeek [27]): AX has finitely
many components if and only if X has finitely many components. This is proved

in the following way: let Cy, ..., C, be the collection of components of a space X.
Let ‘

be the decomposition. Let
Amy: AX—1{1,2, .., n}
be the Jensen extension of f (cf. Section 2) defined by
Ay (M) = {A<{1,2, .., 0} n~ (A e H}.
Verbeek [27] proved that the components of AX coincide with the collection
(@M A er{1,2, .., n}}.

Since the space A{l,2,...,n} is finite so is the number of components of 1X.

This has an important corollary. Let f = 1(id): AX — uX be the Jensen mapping
(cf. Section 2). Then the function ¢: AX — uXxA{l,2,..,n} defined by
@ (M) = {f(H), AM(n)(A)) is an embedding. Indeed, it is obvious that ¢ is
continuous and hence it suffices to prove that ¢ is one to one. Take distinct
M, N eAX, There are Me # and Ne A such that MnN=@. If Me T (X)
then there is an element of  (X) disjoint from M and containing N. Hence we may
assume that also NeZ (X). Then f[N*]1nfIM*] = & since J(X) is super-
normal and consequently f(#4) # f(A). If M ¢ F (X) then M is clopen and so N
can be taken to be the complement of M. Then clearly A(n)(A) # A(m)(A).
Hence ¢ is one to one.

We finish this section with a simple but useful result.

3.1. LeMMA. Let X be a sum of finitely many nondegenerate metrizable continua.
Let F = {x,, ..., x,} (i<j<n = x; # Xx;) consisting of at least 3 points. Take a point
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" »
M e pX such that # € ( (Y (F—{x;)")—F. Then for every i<n there is an arc J,=F*
=1

connecting A and x; while in addition i<j<n implies that J; nJ; = {}.

Proof. By Corollary 1.3 uX is an AR and hence a Peano continuum. Let d
be a convex metric for uX (i.e. a metric for which B;(Bs(A)) = By s,(4) for every
Ae 2"%; there is a convex metric on every Peano continuum (cf. Bing [0]). Tt is
easy to show that the function F: 2*¥ x [0, 00) — 2" defined by F({4, tD):= {B,(A)
is continuous (F'is sometimes called an expansion homotopy, cf. Curtis and Scho.n [8]).
Without loss of generality we may assume that d(uX x uX) = [0, 1]. It now is easy
to show that the collection

(B te[0, 1]}=2%

regarded to be a subspace of 2*¥ is homeomorphic to [0, 1]. This implies that the

collection
{I(B(A))| te0, 1]} ck(@uX)

(k(pX) = {dcpX| A # @ and I(4) = A}) is also homeomorphic to [0, 1] since I
preserves inclusions (recall that I is continuous, see Theorem 2.1(i)). Let
P pXxk(uX)—pX
be the nearest point mapping of uX (cf. Theorem 2.1(ii)). For each i<n define
Hy=upX by
H;:= {plx;. I(B(A)))| te [0, 1]}.

It is clear that H; is a Peano continuum being a continuous image of [0, 1]. In ad-
dition it contains both x; and .# since

P(xi, I(Bo(nﬂ))) = p(x;, {/{}) =M
and

p(%es I(By(A))) = p(x;, (X)) = p(x;, pX) = %;.

In addition, since {x;, #}<F" we see that I(x;,.#)cF* and consequently
HicI(x;, #)cF*. Now take i<j<n. We claim that H; n H; = {#}. To the
contrary, assume there exist s, f & {0, 1] such that

plxi, (B ) = plx, I(BLA))-

Since H;<=I(x;, #) and x;¢I(x;, #) (this is easily seen) we conclude that
x; # plx;, I(B(4))) and consequently x;¢I(B(#)). In the same way we find
that x; ¢ I(B(#)). It is clear that not both s and ¢ are 0. Assume that s = 0.
Then ¢ # 0 and

M = p(x;, [(BL{A))).

This is disproved by the following

icm®
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Fact. Suppose that x ¢ C e k(uX). Then p(x, C) ¢int(C).
Indeed, let g:= p(x, C). By the definition of p it is easily seen that

Ix,9)n C = {q}

(in fact this property characterizes q). Since I(x, g) is a retract of the connected space
uX (cf. Theorem 2.1(ii)) it is connected too. So if g € int(C)then I(x, g) N (C~{g}) # @D
which is impossible. ’

We conclude that {s, t}=(0, 1). Since .4 (F—{x;})* and since (F—{x})*
is nowhere dense in pX (this is easily seen since F— {x;} is nowhere dense) there is

apoint & € B(4)—(F— {x:})*. Then x, and % are both not elements of F-{x}*;
consequently

IG5, &) v (F={xD* = &.
Since % & B(M)=IB(M) we see that
Pl I(BLAY) € I(x,, £) .
But {x;, #}<(F—{x})* which implies that
Py, I(BLA)) < 1(xy, M) (F~{x])* .

We conclude that p(x;, I(B,(#4))) # plx;, 1 (B(#))); contradiction. Now for each
i<n let J;< H, be an arc connecting x; and .#,. Then {71, .., 7.} is as desired. W

Remark. It can be shown that the spaces H; (1<i<n) defined in the proof
of the previous lemma are itself all homeomorphic to [0, 1]. Hence there is in fact
no need for taking subspaces J;= H,.

4. Superextensions of finite sums of [0, 1]. In [14] we showed that the super-
extension of the closed unit segment I = [0, 1] is homeomorphic to the Hilbert
cube Q by showing that it is the inverse limit of a sequence of Hilbert cubes with
cellular bonding maps (a continuous surjection f: Q— Q is said to be cellular
if each point inverse has trivial shape, that is, each point inverse is contractible in
each neighborhood of itself; for shape theory we refer to Borsuk [1]). With the same
construction we prove here that uX is a Hilbert cube provided that X is a topological
sum of finitely many copies of I.

Let X:=[0,1] U [2,3] U.. U [m—1, m], Define E:= {~2-34 k = 0,1, 2, e}
and for each n € Elet X be embedded in Ix [0, m], preserving arc-length, as indicated .
in Figure 1.

All angles are 37 except the one at (},0) which is +x. Let

& = {4<[0,1]1x[0,m]| (4 = ng 1[0, x]v A4 = =5 [x, 1] for some

xel0,1]v(4 = ng'[0,x]vA4 = 5 [x, m] for some x &[0, m])}
4 — Fundamenta Mathematicae T. CVII/3 :
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be the canonical binary normal subbase for [0, 1]x [0, m]. With the same technique
as in [14] it follows that A(X, o), where o, = {Sn X| S€ &} (here X refers
to the embedded copy of X in [0, 1]x [0, m]), is canonically homeomorphic to the
convex-hull of X in [0, 1]x [0, m]. Also, using the same technique as in [14], it
follows that (X, | ) can be embedded in [T A(X, #,) as an infinite d1mens1onal

neE nek

compact linearly convex set. Hence A(X, U &£, is a Hilbert cube, by Keller’s [12]
nek . .

theorem.
Now let 7 be a countable closed basis for X which is closed under finite inter-
sections and finite unions. The compactness of X now implies that J separates the

-t [y

{m; 0}

3|
2

i

o/ |

0,9 . 5,0 1,0

Fig. 1
closed subsets of X, i.e. for all disjoint 4,, 4; € 2 there exist disjoint Ty, Ty € 7
such that 4;=T;. Define '
=7 nJTX).

It is straightforward to show that 7' separates 7 (X), which, among othets, shows
that 7' is a closed subbase. Define

F = {(T,, T)| Tp, Ty T’ and Ty n Ty = &}

and let {(T5, T%)| ie N~{1}} be an enumeration of &#. For each ie N~{1} it is
geometrically clear that there is an embedding of X in [0, 1]% [0, m] of the type
sketched in Figure 2 such that there is'a t& [0, 1] with the property that either
(mT8) <10, 1) and (mo(T)= (¥, 1]) or (me(TH <0, ) and (me(TH=(t, 11).
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e 9':1
<0, m»
3
"
I
2 1
0
<0,0> G0 1,00
Fig. 2
-~y
<0, my
=
@0 G0 1,0
Fig. 3

For sake of simplicity we have only indicated such an einbeddlng for the case
m = 3. Define &, := {Sn X| Se S} (here X refers again to the embedded copy
of X in [0, 1]1x[0, m]). As in [14] it is easy to show that A(X, &,) is canonically

homeomorphic to the space indicated in Figure 3.
o~
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Notice that A(X, &,) is connected.
Define &, := |J &, where the &7,’s are as defined above. Using precisely the

nek .
same technique as in [14] Lemma 8, it can be shown that for each n & NV the space

" . .
MX, U &) is a'Q-manifold, i.e. a separable metric space which admits an open
coveri;;g by sets homeomorphic to open subsets of the Hilbert cube Q. In addition,
MX, 6 &) is connected by Theorem 1.2, and has a binary normal subbase since
i=1 n

it is easily seen that {J &, is normal. Therefore A(X, {J &;)is an AR by a theorem
i=1 : i=1

: n i .
of van Mill [14]. This implies that (X, U &) is a Hilbert cube since each compact
i=1

contractible Q-manifold is a Hilbert cube (cf. Chapman [3]).
It now is straightforward to prove that the inverse limit of the inverse sequence

1 g2 -
WX, 25, #) DX, 9
with bonding maps g;: A(X, &i+1) — A(X, &) defined by
gi(M):= HNF;

(cf. Section 2) is homemorphic to uX. (Define for each i e N a mapping ¢;: uX —
— WX, ) by El) = M 0 &;. 1t is easily seen that & = g0 &y forall ie N.
Hence the mapping e: uX — m(A(X, ), g;) defined by e(M); = E(M) is
continuous and onto. In addition e is easily seen to be one to one, showing that e is
a homeomorphism).

In addition the mappings g; are cp mappings by Theorem 2.3. This implies that
each point inverse of g; is an AR, being a retract of A(X, &;.,) (cf. Theorem 2.1(ji)).
Consequently, g; is cellular (even in a strong way). It is a deep result of Chapman
[4], [5] (cf. also Chapman [6]) that each cellular mapping between Hilbert cubes
is a uniform limit of homeomorphisms (a so called near-homeomorphism). Hence
we find that pX is (homeomorphic to) the inverse limit of a sequence of Hilbert
cubes with near-homeomorphisms as bonding maps. Applying results of Brown [2]
(cf. also Mioduszewski [21]) we find that pX is 2 Hilbert cube. This completes the
proof of Theorem 4.1.

4.1. THEOREM. Let X be a finite sum of closed unit segments. Then pX is a Hilbert
cube. B

5. Superextensions of finite graphs are Hilbert cubes. In this section we prove
that if X is a sum of finitely many nondegenerate finite connected graphs the space pX
is a Hilbert cube. This result is used in Section 6 to obtain the main result. in this
paper.

Let us recall the following theorem (cf. van Mill [16], Theorem 2.2.5).
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5.1. THEOREM. Let & be a binary subbase Jor the topological space X. Let Y be
a subspace of X such.that for all S,, S e with Son S, % @ we have that also
SonSinY#@. Then X is homeomorphic to A(Y, LIY), where LY
={SnY Ses} &

The proof of this theorem is very simple; indeed define a function @ X —
= (Y, LIY)by p(x):= {SAY| Se ¥ and xe S§}. It is straightforward to prove
that ¢ is a homeomorphism.

We are now prepared to prove the main result in this section.

5.2. THEOREM. Let X be a sum of finitely many nondegenerate finite connected
graphs. Then uX is a Hilbert cube.

Proof. Let F = {x,..., x,} be a finite subset of X with the property that the
components of X'~ F are either homeomorphic to (0, 1) or to [0, 1). We denote the
collection of components by C,, ..., C,,. We may assume that F does not contain
any endpoint of some component of X. For each i<m let IF(keN)bea sequence
of arcs such that

() k<l = Itcll;

G U IF=c,.
k=1

L]

For each k € N define X, :=

i<m
that {uX;] ke N} with appropriate bonding mappings approximates uX. For each
ke N and i<m let 4f and bf denote the endpoints of I*. Define 1*:= I*—{d}, b}
For all j<n let DY be the component of ¥— U I¥ containing %;. Then D¥ either
ism
is an interval, in case x; is a cutpoint Dif, or is a finite acyclic tree with precisely one
branch point, namely x;. In case D’} is an interval, say with endpoints ¢ and d, it is
obvious that there is an embedding ¢; D} — {c, d}* cuX, such that @(c) = ¢ and
¢(d) = d (notice that uX; ~ Q by Theorem 4.1 and that {¢,d}" is an AR by
Theorem 2.1(ii) and hence that there is an arc in {c, d}* connecting ¢ and d). In
case D’J‘- is not an interval let G D’Jf be the (finite) set of endpoints of D',‘. Then
|G 3. Take a point .# € pX, such that .# e () (G—{g})*. There is such a point
geG

o
If. Clearly - X, is dense in X. We will show
k=1

since {G~{g}| g e G} is linked. Now Lemma 3.2 implies that there is an embedding
: D’;—» G* cpkX, such thaf ¢ restricted to G is the identity.

This procedure shows that for each k € IV there is an embedding y,: X — X
satisfying the following conditions: ‘

(i) W, restricted to X; is the identity;

(i) for all i<n we have that Y, (DY) =(Df n Xt A pX,.

We now define other mappings from X to pX,,. Indeed, fix j<n and consider Dt
and D}**. Without loss of generality we may assume that (D%*! A X;1q) (D5 n X))
= (for all ke ¥ and j<n). Now, define a mapping f: X — uX; by:

Ji(x) = x for all x& Xe»
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. . L ket ko
fi restricted to D§—Di*! is a homeomorphism of Dj—D;™" onto ,[Dj]

~{¥ilx)}
£, maps Di*! onto Yy(x)).

Tt is clear that f, defined in this way is well defined and continuous. In addition,
let &: X,.,— uX, be the restriction of fi to Xy, ;. Then &, restricted to X, is the
identity and consequently: X; =&(Xy+q) = uX;. Define

Fri={T" 0 G Xewpl Te T (X))}

By The(;rem 5.1 we conclude that A(Ek(Xk+1), &) is callonice}lly homeomorphic
to uXy. Also, it is easy to show that ¥, 7" (fk(XkH)) and that it is a super-l}orllnal
subbase. Hence Theorem 2.3 shows that &, can be extended to a cp surjection
u(E) s i1 — AE(Xir 1), &) Let us identify pX, and A(E(Xis1), &%) We
then have the following diagram:

- X\
fk// NJSw+t
Q) / AN

™
uXpe— R— (T

!l(f:u)f
CLAIM. Diagram (x) commutes.
Indeed, take xe X. If xe& X4 then

(&) fi v 1(x) = w(&(x) = &) = fil0),

hence there is no problem. Let us assume that x ¢ X,.,; then xe D’}“ for some
j<n. Then fi (x) € ¥4 (X)) — X+, . Hence, by construction of the embeddings v,
we have that

Jer1(x) & l//k+1(Dl_;+1)c(D’;+l A X)) iy

and consequently, since I(D§*'n X)) = (D5t n X ))*, by Corollary 2.6,

wdfiri(x) e I(ék(D?-l-l [} Xk+1)) = I({‘/’k(xj)}) = {‘/’k(xj)} .

This implies that p(&)fi+ (%) = fi(x)- . .

By a similar construction as above for each k € N we can extend the function
Jui X—uX, to a cp surjection p(f): uX - pX,. Since diagram (x) commutes
it is easy to verify that u(f}) = u(&) o t( firo) for all k € N (this also follows from
Theorem 2.3 since the composition of cp mappings is a cp mapping).

We conclude that the mapping e: uX — [im(uX;, u(&)) defined by e(#),
= u(f)(A) is a continuous surjection. We claim that e is one to one, proving that
it is a homeomorphism between X and lm(uX;, 1(&)). Indeed, take distinct
M, N €puX and take Me # and Ne 4 such that M n N = @. Then (M n F) N
ANNF)=0. let MnF={x,..,x;} and NnF={x,...,x} (f
M U N F then enlarge M with the set F—(M U N), then M still belongs to .# and
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z}lso M does not intersect N). Let U, (i <n) be open subsets of X such that x;e U

and i<j implies that U; n U; = @ while in addition UUicX—Nand | U,
j<i j=it+1

cX—M. Choose ke N such that D¥c U, for all i<n. Then

i
1S e (M n XY o (Xn (J Dh)*
Jj=1

and
HURAE (N A X) U (X, [}1 DY)+,
J=it

and as these sets are disjoint, we conclude that r(f)(A) # p(f)(A). This shows
that pX ~ lim(pX,, #(&,)). By Theorem 4.1 and by the cellularity of the mappings

#(&,) (cf. Theorem 2.3) we conclude, with similar arguments as in Section 4, that
X = Q N

6. Superextensions of metrizable continua are Hilbert cubes. In this final section
we prove that pX is a Hilbert cube provided that X is a finite sum of nondegenerate
metrizable continua. We heavily rely on results of Curtis and Schori [9], [10].

As noted in Section 2 for compact Hausdorff X we may regard AX to be a sub-
space of 22*, Now let (X, d) be a compact metric space-and let dy (resp. dyy) be the
Hausdorff metric for 2% (resp. 22%). Let % (X)<=2%" denote the space of all closed
families of nonvoid closed subsets of X, which are linked (cf. van Mill and Van de Vel
[20]). In van Mill and Van de Vel [20] the following results were established.

6.1. THEOREM. (i) The inclusion (AX, d)— %, dyy) is an isometry (here d is
Verbeek’s [27] metric for AX, see Section 3);

(i) For each x € X the mapping h,.: L(X)— LX defined by h (L) = p(x, (JL*)

Le%
is a contractive retraction (with respect to the metrics dyy and d).

Before proving the main result in this section we mention a highly nontrivial
result of Curtis and Schori [10] (in fact Curtis and Schori proved a stronger assertion
than statéd below, see [10]).

6.2. THEOREM. Let X be a nondegenerate Peano continuum. Then there is collection
Jfinite connected graphs {I') ie N} in X and for each ie N there is a mapping
@50 Tipy— 21 such that

@) I'i— X (in 2%);
(D) iff;: 2T — 20 s the mapping induced by ¢;, i.e. fi(A) = U {¢a)] ae 4},
«© .

then Y dy(f;,id)<o0;
i=1

(i) {fio..ofjl j=i} is an equi-uniformly continuous family for each i;

(iv) each f; is onto. B

Notice that since the f}’s are onto for every y € I'; there is an x € I';, ; such that
ix) = y. .
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Actually, Curtis and Schori, proved Theorem 6.2 in [9] for compact connected
polyhedra and in [10] they proved the general case. In our construction we need
the result for polyhedra only. It must be noticed that the proof of 6.2 for polyhedra
is easier than the proof of the general case.

6.3. PrROPOSITION. Let X be a finite sum of nondegenerate compact connected
polyhedra. Then pX is a Hilbert cube.

Proof. Let Py, ..., P, denote the collection of components of X. For each
i<nlet T} % and @) L(Ge N) be a collection of finite graphs and mappings wnh properties
asin Theorem 6.2. For eachj € Ndefine X;:= | F in addition define @} : X}, ;—2%

1<n

by ¢ ,(x) =@ ,(x) ifxe I" It is clear that the ¢} i deﬁned in this way are conunuous
Let f7: 2%+ — 2% be the mapping induced by ¢ (e fi(4) = UeildD. In
addition, let Fj: 22141 _ 9% pe  the mapping induced by ]‘f (i.e. Fi(s0)
= {/J (A} A e.s&f}) Fix je N. Take o € £(X;,). We claim that FJ(J/)GS’(X

Indeed, lake Ao,Ale&i Then Ay N A # @ implies that <p,[ ol N sz[ REX)
Take Ce ¢; *[do] N gal [4,]. Then & # C<Uo][4ol n U(pl A{]. We conclude
that f7(4o) N f{(4;) # @ and consequently F;(«/)e £(X)). By induction, choose
for every je N a point x; € X; such that (p}‘(xi+ 1) = x;. This can be done (cf. the
remark following Theorem 6.2). Now consider the following infinite ‘diagram.

.

F r Fi
22X1<— 2% 2 23 |
i i i .

J L J L J Ly

LX) L (X)L (Xy) e ..

I Al ]

AX, «—— AX, «— X5 <~—

Sx1 Sxz éra

where L] is the restriction of F} to & (X

7+1) and i always denotes inclusion and A,
is the mapping of Theorem 6.1(i) (i.e. Ay, (A) = p(x;, ﬂ M*)) and &, is the

mapping of Theorem 2.2 (i.e. & (#) = p(x;, ﬂ oy [M])*))

Cram 1. Each &, is onto.

Indeed, take .# € 1X; and consider the collection {¢} '{M]| M e .4}. This
collection, which is a linked system of course, (cf. the remark following Theorem 6.2),
can be extended to a point A" € AX;,,. We claim that &, (#") = 4. Indeed, since
{o* " *[M]| Me.#]=A wehave that 4 <={U o] [N]] Ne ./} and as.# is a maxi-
mal linked system we conclude that .# = {{¢][N] Ne#}. Hence

&) = p(x;, Nﬂ”(U P3IND*) = p(x;, MQJ‘M’L)

= p(x;, (M) = 4
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This proves the claim.
The following claim is more difficult to prove.
CLAm 2. Suppose that k<l. Then

* *
hxkaLk QLk+1 °

* . s
welp_joi= Cxic © éxm-x AT é«‘l—l .

‘We will only prove this for the case k = 1 and / = 3. The proof of the general
case is identical (notice that the case k = 1and [ = 2 is trivial, because of the defi-
nitions of L], h,, and &,,). Indeed, take /# € 1 X5. It is easily verified that LiL(#)
equals the collection {Uoi[U@s[M]ll Me.#}. Let this collection be denoted
by «f. Notice that & <2* is closed. We claim that p(x,, ﬂ A7), which equals -

Ry LYLY(#), is the collection
{Be2| x;eBand Bnd # @ (Vdeo)} u{Be2| Jdess: AcB}.

This follows from the following general lemma which is of independent interest.

6.4. Lemma. Let X be a compact Hausdorff space, let x & X and let of <2* be
a closed (in 2%) and linked system. Then p(x, | A*) equals the collection
Aeodd

{Be2'| xeBand Bnd # @ (VAdes)} u{Be2¥ Adeas: AcB).

Proof. In van Mill [15] Theorem 2.2 it was shown that the above collection

is a pre-mis for p(x, () A4%), that is, a linked subfamily of p(x, [} 4*) which is
Acst deot

contained in precisely one mls, namely p(x, ﬂ A
For each nonvoid collection % <2% deﬁne

C':={Be2¥ 3Ce%: CcB}
and
%*:={Be2¥| YCe%: Cn B+ O)

respectively. In van Mill and Van de Vel [20] ¥* was called the collection of trans-
versal sets of . It is easily seen that ¥* is always closed in 2% and that €1 is closed
provided that % is closed (use the compactness of 2%).

We conclude that the collection

{Be2¥| xeBand BnA# @ forall Ae o} u{Be2¥| de: A=B}

equals .1 U (o7 U {x})" and hence is closed in 2%
Now assume that there is a point Ce p(x, ﬂ ANY— (T U (L U EPD.

Let Uy, ..., U,= X be open such that Cc U U; and Cn U; # @ for all i<n while
in addition {cly(U,), ..., clx(U)> n (1 u(‘ai v =@ If U U, does not
contain a member of (7" U (# U {x})*) we conclude that X— |J U ep(x, ﬂ A"

‘\n
since (&' U (& U{x)Y) is a premls for p(x, ) 4%). This contradicts

Aed
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Cn(X- U Uy =0. Therefore U U, contains an element of &' U (& v hts

consequentiy, since (' v (.sz{ u )t =t v U {x)*, we find that
UdgU)est? (e u{xh*t which is a contradiction since U cly(U))

i<n i€n
€ (ex(Uy), ..., Slx(U)). B
This proves that p(x;, NA™) =" (LU {x})* (the notation is as in the
ded

proof of Lemma 6.4).

We will now calculate &, &.,(#). Define % := {Ue3[M] Me#}. Then,
by Lemma 6.4, &,(#) equals &' U (.@u{xz})'L Clearly {Uo;[Bll Be 4}
equals . In addition, if Ee(#u {x, 1) then, since &, (x,) = x,, we find that
Ue?[E] contains x, and intersects all members from /. Therefore &, & (M) and
plx, ﬂ A™) are both the union of ' and a set consisting of closed sets which all

contam x; and which all meet every member from 7. As &, &.,(4) and p(x, ﬂ A"

are maximal linked systems they are equal. This proves Claim 2.
Cramv 3. {&,,
each i.
It is clear that there is a metric d for X such that { f* 0. off] j=i} is an equi-
uniformly continuous family for each i For this metric we also have that

Lo | i} is an equicuniformly continuous family  for

S dg(f{,id)<co. A straightforward check now shows that {Flo..oF}| j=i}
i1
is an equi-uniformly continuous family for each 7. This implies that {L} o ... o L}| j>i}

is an equi-uniformly continuous family for each 7. By Claim 2 and by the fact that
the h,’s are metric contractions (cf. Theorem 6.1(i1)) it follows that {£,, o ... » &, | 11}
is equi-uniformly continuous for each i.

For each i N the set AX;c2¥" 12", However AX; is not a subspace of 1X,
although it is easy to define a canonical embedding #;: 1X;— AX. Indeed, define
ndM) = {Ae2¥| 4 n X;eM}. Notice that J =n,(). It is easily seen that this
defines an embedding of A.X; into AX which in addition does not change distance, i.e.

du( M, N) = due(ni( M), n(H)) for all #, N €)X;.

The set n;[AX;] will be denoted by A*X;. Define g;: A*X;,.;— A*X; as the com-
position #; o &, oy Since the 5;’s do not change distances Claim 3 implies that
{gio...0g;] j=i} is an equi-uniformly continuous family for each ie N.

CLaM 4. d(g;, id)<dg( S, id) for each i.

Indeed take A €A*X;,, and let & = {M n X,,,| Me.#}. Then by the
definition £, we have that g,(#) contains the family {U¢][4]| 4es}. Let
8= dg(f7, id). Now take M e 4 and let A:= M n X, ;. Then dy(4, U@} [A])<6
which implies that |Je][4]cBy(d)cBs(M). Therefore, since | ¢;[4]e g,(H#)
we conclude that B,(M) e .#. Consequently, d(.#, g(#))<5 by expression 3 of
Section 3. Hence d(g;, id)<dp(f;, id). ‘
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0 (=]
This implies that 3 d(g;, id)< ¥ dy(f7, id)<oo. In addition, since X;— X
i=1 i=1

(in 2%) it is easily seen that A*X;— X (in 2**). We concludethat AX ~ lim(1*X;, g,).
This can be seen as follows; denote lim(A*X;, g;) by Y. For each {(3,);& Y the
o0

sequence {y;»; is Cauchy in AX by the fact that ), d(g;,id)<oo, and hence con-
=1
verges to some point y € AX. The mapping e: ¥ — AX defined by e({>;) = lim y;
i~+o0

is easily seen to be continuous, is one to one since {g;o...o g;| j=i} is an equi-
uniformly continuous family for each #, and is onto since A*X;— AX (i— o0). Of
course this kind of argumentation is known (cf. Brown [2], Mioduszewski [21],
Curtis and Schori [9]). Identify lim(4*X;, g;) and AX and let =;: AX — A*X] be the
natural projection of X onto A*X; (i € V). Identify 1*X; and 1X; (i€ V). For each
ie Nletg;: AX;— pX; be the natural Jensen surjection of 1.X; onto p.X; (cf. Section 2
and in particular Theorem 2.3).

CLAM 5. The function B;: pX;.1— pX; defined by P;:= g;0g;°
defined cp surjection.

Indeed, take .# € uX;,, and assume that §;(.#) contains two distinct points £,
and 2,. Take Ty, Ty € 7 (X, ) such that T;e 2, and T, n Ty = . It is clear that
we may choose the 77’s in such a way that for each component C of X;,; we have
that C is either contained in one of the T;’s or intersects both T, and T7;. Let D be
a component of AX; such that D n o7 Y(T¢") = &. By the remarks in Section 3 we
may assume that there is a finite family of clopen subsets & in X; suchthat D = N E*.

Eeé

By the fact that g, is a cp mapping (cf. Theorem 2.3) and the binarity of {A4*| 4 € 2%}
we may assume that there is a E, € & such that Eq n i Y(T5) = & (notice that the
first “plus” is in AX, while the second is in uX;,,). Hence E,c;[Ey] does not
intersect T,,. Consequently E,< Ty which implies that E,co; '[T7]and by the fact
that g; is a cp mapping we see that Eg = I(Ep)<e; *[T+] This procedure shows
that every component of AX;,, is either contained in one of {g; TS o MITH 1}
or intersects both of [T and ¢; *[T;']. Now, since each component of AX;.,
is mapped by g; in a component of AX; this implies that each component of A X,
is either contained in one of {g; %y [T4 1 gi Yo *[T']} or intersects both
g7 Yo [T ] and g7 oy 1[T1 1. For simplicity of notation write ¥; = g; ‘o *[T}]
(7e{0,1}).

By the binarity of {4¥| A4 €2¥"*} and by the fact that g; = g, is a cp mapping,
there are disjoint 4; e 2¥** (je {0, 1}) such that ¥;c A} If 4, is clopen then so
is AJ and consequently ¥, = Ay since each component of AX;..; either is contained
in one of {V,, V;} or intersects both ¥, and ¥;. Therefore T4 is a proper nonvoid
clopen subset of 1.X;, since g; ° g; is an identification. This contradicts the connected-
ness of uX; (cf. Corollary 1.3). In the same way we have that 4, is not a clopen subset
of X;,. Hence {4y, 4} =T (X;.,). Since (g;° g5~ Y@)cAf (je{0,1})) we see
that A, and 4, must be both elements of .# (cf. Section 2), this contradicts the
linkedness of ..

o is a well
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This proves that f; is well defined. Also, clearly f; is continuous. That B, is
a cp mapping now follows from the fact that ¢+, g; and ¢; are ¢p mappings and
from Theorem 2.4.

One moment one might think that this finishes the proof of the proposition
since it is intuitively clear that the inverse sequence

By B2
pXy = p&y = pXy — ..

approximates xX. We will prove below that this is indeed the case, but since there
is no canonical embedding of uX; in pX we cannot apply similar arguments then
in the AX case above. This causes a few technical problems.

CLAM 6. For each i€ N the projection my: AX — AX; is a cp surjection.

For each j>i let g;;: AX;— AX; be the composition g, ... o g;—. In addition,

let g;; be the identity mapping on 4X;. Notice that we have identified the 1X}’s with

o«
subspaces of .X. Now using the properties of the functions g; (namely )" d(g,, id)< 0
i=1

and the equi-uniform continuity) it is easy to calculate that for each closed set
AcAX; we have that
7 4) = el U 05°())
Jzi

Now let T be a closed subset of X;. For each j>i define E;:= g;*(T*). Notice that
E; = T*. In addition, for each j>i let p; be the nearest point mapping of 1X]
(cf. Theorem 2.1(if)). Now take a point .# € AX—n; '(T'*). Let .#;:= ny(.) and
N ji= p(M;, E;) (notice that the g;;’s are cp mappings). By Corollary 2.5 we have
that {47 j>i} determines a thread in

i+t

AXy A Xy e

and hence a point, say 4/, in AX. By the fact that {g;c...og,| j>i} is an equi-
uniformly continuous family for all j>1 we have that § = inf{d(.#;, #")| j=i}>0.
This implies that d(.#, #")>8. Hence we may take M € .# such that Byo(M) ¢ A
(of. Section 3, Expression 3). Choose k>i such that .#, € B;,(M) for all I>k.
Assume that there exists an />k such that E; n (U‘,/z(M ))+ % . Take a point
ol € E; v (Uyp(M))*. Choose an index o>/ such that m,(of) = o, & (Us(M))*
forall [, >/,. Now consider /o. Wehave that s/, € Ey, N 1 € By, pro( 1y, Er) = Ny,
and d(&y,, M1)<$E6<6 = d(N 'y, A }). This contradicts a theorem in van Mill
and Van de Vel [19]; there it was shown that for each compact metric space (X, d)
the nearest point retraction p: 1X — A4, where 4 is (2¥)* -closed, is a metric nearest
point map, in the sense that d(/, A) = E(M,p(./f/, A)) for all 4 e AX.

We conclude that E; n (Uy,(M))* = @ for all Ik, Therefore we have that
E,c(X~Us;(M))* for all I=k, and consequently,

(T = mp Y(B) = Clzx(lykEz)C(X— Ua/z(M))+ .

@ ©
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For each .# € AX—n; }(T"") we have constructed a closed set B X such that
i }(T*)=B* and 4 ¢ B*. This implies that n7*(T*) is (2%)*-closed. It now
follows that 7; is a cp mapping.

Let i: AX — uX be the Jensen surjection.

CLAM 7. For each i€ N the mapping h;: uX — uX; defined by hy:= g;om;»h™?!
is @ well defined cp surjection.

Since the mappings «; and ; are cp mappings (Claim 5 and Claim 6) this can be

proved using the same technique as in the proof of Claim 5.
We now have the following diagram.

uxy 2 uXy 2 uXs

Since f; 0 Ay = Bro Q1 ° Mwr 2 AT =050 g 0 R N LY
=0;00;°Mr10h™ Y = gyomoh™! = h; for each ie N the mapping e: pX -
— lim(uX;, B;) defined by e(A),:= h{#) is a well defined continuous surjection.
We claim that e is one to one proving that e is a homeomorphism. Indeed, take distinct
My, My € X and take disjoint M, e A, and M, € A,. We may assume, without
loss of generality that for each component C of X we have that C is either contained
in one of the M;’s or intersects both T, and T;. As in the proof of Claim 5 one can
derive that each component of 1X is either contained in one of the h™i(M;TYs or
intersects both A~Y(Mg) and h™'(M{). There is an index /e N such that
mhm (M) o w7t (M) = @. Take two disjoint closed subsets 4o, 4, < X; such
that mh~Y(M;")= A7 (i€ {0, 1}). First suppose that 4, is clopen; then so is Ag
and consequently m,h™{(Mg) = A5 and mh~ (M) = (X;—Ap) (use the same
technique as in the proof of Claim 5). In addition, it is easily seen that also
UMY u h~Y(M ;) = AX. Since & extends the identity on X we have that

(A~ (M) o Xyu (M) 0 X) = (Mg" 0 X)u (M7 0 X)
=M,UuM;=X

which is a contradiction since M, and M, both belong to 7 (X). Therefore, we may
assume that neither 4, nor A, are clopen. Hence 4, and 4, both belong to 7 (X)).
Tt now follows that o,m k™ X(Mg") N gymh~ (My") = @. We conclude that (4 )
# hy(AH ).

Therefore pX = lim(uX;, B;). By Theorem 5.2 the spaces pX; are Hilbert
cubes. Since the mappings f; are cp mappings, they are cellular and applying
Chapman’s [4], [5] result again we conclude that uX ~ 0. B
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6.5. COROLLARY. Let X be a nondegenerate compact connected polyhedron.
Then AX is a Hilbert cube. B

6.6. COROLLARY TO COROLLARY. AX is a Hilbert cube if and only if X is a non-
degenerate metrizable continuum.

Proof. By a result in van Mill and Van de Vel [20], Corollary 6.5 suffices to
prove 6.6. W

We now prove the main result in this paper.

6.7. THEOREM. Let X be a finite sum of nondegenerate metrizable continua.
Then uX is a Hilbert cube.

Proof. Let Cy, ..., C, be the collection of components of X. By Freudenthal’s
[11] expansion theorem, for each i<n there is an inverse sequence

N T
P{«— P, Pjc..
of compact connected nondegenerate polyhedra with onto bonding mappings /35-
(je N) such that im(P}, B9 ~ C,. For each je N let X; be the disjoint topological
sum of the P;’s (i<n). It is now straightforward to prove that
Yexex .,

with bonding mappings defined in the obvious way, approximates X. This implies,
by an obvious argument, that pX =~ lim(uX;, u(gi)), where u(g;) is the Jensen
extension of p;. Using Proposition 6.3 and the cellularity of the u(g;)’s yields
uX = lim(uX;, p(e)) ~ Q. B

For each ne N let A(n) be the cardinality of A{l,2,...,n}. Using the same
technique as in Section 3 one can prove that if X is a sum of n copies of [0, 1] then AX
is homeomorphic to a sum of A(n) copies of Q. Going through the whole process
again, one then gets the following result.

6.8. THEOREM. Let X be a sum of n nondegenerate metrizable continua. Then X
is a sum of A(n) Hilbert cubes. B

Details are left to the reader.

6.9. COROLLARY. Let X be a compact metric space. The following statements
are equivalent:

(i) AX is a Q-manifold,;

(i) X is a sum of finitely many nondegenerate continua. 8

The number A(n) is only known for n<7 (cf. Verbeek [27]). It is an intriguing
combinatorial problem to calculate the numbers 1(n); the only information we can
give is that
2”

2 n .
log ) ~ (rn/21) N
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(cf. Verbeek [27]). Since A(3) =4 and A(4) = 12 (c¢f. Verbeek [27]) there is
no compact metric space X for which 1X is a sum of { Hilbert cubes, where
4<i<]2.

Added in proof. The main resull in this paper that AX ~ Q can also be derived by using
a recent chardcterization of the Hilbert cube due to H. Toruficzyk. This was observed inde-
pendently by C. Bruce Hughes and the author.
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Some combinatorial properties of ultrafilters
by

Jussi Ketonen (Honolulu, Hawai)

Abstract. Three unrelated combinatorial results are proved: (1) A result relating non-regular
ultrafilters to weakly normal ultrafilters; (2) A partitioning property for indecomposable ultra-
filters over singular cardinals and (3) A large cardinal-type result for inaccessible cardinals carrying
indecomposable ultrafilters. '

0. Introduction. Our notation and terminology follows that of the more recent
set-theoretic literature. In particular o, f, 9, ... are variables for ordinals while
%, A, i, ... are reserved for cardinals. The notation |x| refers to the cardinality of the
set x and so on. An ultrafilter over a cardinal is always assumed to be uniform.

0.1. DEFINITION. An ultrafilter D over » is (4, y)-regular if J<u and there
is a set S=D of power u such that

TsS and Ii<|T|—-NT=0.

D is p-regular if it is (w, y)-regular. D is regular if it is x-regular.

This concept is due to Keisler. It measures the “width” of an ultrafilter. It is
diametrically opposite to the notion of completeness of ultrafilters. It is a well-
known fact that the existence of suitably complete ultrafilters implies the existence
of normal ultrafilters. In the case of simply non-regular ultrafilters we have to replace
the condition of normality by a weaker one:

0.2. DEFINITION. An ultrafilter D over » is weakly normal if every pressing
down function is bounded by a constant <, i.e. if f: % — % s.t. f<id(mod D), then
there is a £<x s.t. f<E(mod D).

Kanamori [3] was the first to show that suitably non-regular ultrafilters have
weakly normal ultrafilters below them in the Rudin-Keisler order.

0.3. DeErNITION. Given two ultrafilters D, U over x say D<gg U if there is
a function f: % — x s.t. f4(U) = D; i.e. for all xcx:

xeD o fTYx)e U

Givenf, g: x — x say f<zg g (mod D) if there is a function ¢: % — % 8.t.f = pog
5 — Fundamenta Mathematicae T. CVII/3
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