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we have 98 = h(x); in other words h(x) is homologous to zero. Thus
hy(p«(H,(Q))) = 0. Since the diagram

Hy(Q)—2 Hzl( Y)
Py S

Hy(Q) —=> Hy(¥)

and gy is an isomorphism, f induces the trivial morphism on the two-dimensional
homology group of Y. Since Y has the same homologies as the two-dimensional
sphere, the Lefschetz number 4 (f) = 1, then by 3.3, f hasa fixed point, which com-
pletes the proof. ~

is commutative
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On the decidability of the theory of linear orderings
with generalized quantifiers

by

H. P. Tuschik (Berlin)

Abstract. LO(Qy, Qs ..., Om) be the theory of linear orderings with the additional quantifiers
Qg, ., Om. Under various hypotheses on set theory it is proved that LO(Qy, ..., Om) is always
decidable. This generalizes the result of the author for LO(Q,). The proof uses methods from
Leonhard and Lauchli. The theorems can be generalized to arbitrary finite sets of regular cardinality
quantifiers.

A. Ehrenfeucht proved in [1] that the elementary theory LO of linear orderings
is decidable. In [4] H. Léuchli and J. Leonhard established the same result using
games. Let us extend the elementary language of linear order by adding the generalized
quantifiers Qg, Qy, <., O, to it.

We interpret the quantifier Q, as: “there exist at least w,-many”. Generalized
quantifiers were introduced by A. Mostowski [6].

Let LO(Qy, ..., Q,) be the theory of linear orderings with these additional
quantifiers. Then we will prove that LO(Q,, Qy, ..., O, is decidable. This generalizes
the result of H. P. Tuschik [9] for LO(Q,). As a corollary we infer that LO(Q;: i<w)
is decidable. ‘

§ 1. Let L be the first order language with identity and one binary predicate <.
L™(Q) arises from L by adding the quantifiers Qy, ..., Q. LO is the following theory:

) "ix<x,

(2) x<yAy<z o x<z,

@B) x=ypvx<yvy<x.

‘We use some definitions from [4] and [9]: x <y(mod .4) denotes the order rela-
tion of an ordered set 4,|4| denoted the field of 4. B is said to be a segment of A
if B is a substructure of A4 and if x<y(modB) and x<z<y(mod.4) implies z& B,
Some special segments are the open interval (x,y) = {z€|d|: x<z<y(mod4)},
the left-open and right closed interval (x,y] = {z € |4|: x<z<y(mod4)}, the
left-closed and right-open interval [x, y) = {z e |4]: x<z<y(mod4)} and the closed
interval [x, y] = {z e |4]: x<z<y(mod 4)}. 4 map f: A — B of an ordered set 4
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into an ordered set B is called monotonic if for all x, y e A: x<y implies f(x)<f(»).
An ordered set 90 is said to be a splitting of 4 if || is a set of (non-empty) segments
of A which partitions 4, and if B<C(mod 20) iff x<y(mod A) for all x e |B| and
yelC|.

The elements of 9 are called the parts of the splitting. Suppose U is a splitting
of A; then the canonical map f: A4 — 2 is monotonic and onto.

Suppose f: A~ B is monotonic and onto, then {f~(b): be|B|} is a splitting
of 4. For i<w, w; and o} denote the order type of the ordinals smaller than w;
and the inverse ordering of ;, respectively. +, - denote the sum and product of
ordered sets (order types).

Our general set theory will be ZFC. However, then there are sentences H of
L™(Q) which are independent of ZFC; more exactly: we may assume that the
sentence H has a model or does not have a model; both hypotheses are consistent
with ZFC. Therefore we will extend ZFC. S, and H(i,j) denote, respectively,
the following sentences of set theory: “k is the least natural number such that there
is a dense ordered field K of cardinality w;, which has at least c,,-many l-types over K”
and “There is a dense ordered field K of cardinality e; such that the set of 1-types
over K has cardinality o;”. Suppose fis a map from {0, 1, ..., k} into {0,-1, ..., m}
with f (k) = m, then let Ti,(f) be Sp, AN\ H(i, f()) A7 H(i, f()+1). If S is the

i<k

successor-function, S(i) = i+1, then clearly ZFC+GCH F T4, «(S). Assume
ZFC+Ty,(f) is consistent. From now on we will work in ZFC+ T, (f)-

For all i<k there are dense ordered fields K; of cardinality e; such that there
are o ;-many 1-types over K;. Clearly, there are also @,-many l-types over the
interval (0, 1) of K;. Let N, be an elementary extension of K; which realizes all
1-types of K; over (0, 1). Let X;= N, be such that every 1-type over (0, 1) has a re-
alization in X; and any two different elements of X realize different types. The subring
of N, generated by K; U (X; n (0, 1)) is denoted by P;. Then X is dense in P;. Now
regard P; as an ordered vector space over K; and let B; be a basis of P;. The axiom
T(f) implies that there are one-to-one mappings oz, 05t ©pqy — B From o,
we get the sets a,,(j,n) = {x € P;: there exists some limit ordinal o <w; such that
x—0,(0;_1+a+n) € K}, where i<j<f() and n<o, w. =0. As subsets of P;
the sets o,,(j, n) are ordered sets. Assume F = {Fy, ..., Frayy and for i<j<f(i)
let F; = (F}, .., F! > be a sequence of ordered sets (order types).

Then substitute in the ordered set () U oi(j, n) for every xeo; (Js )

I<j<f() n<ny
the ordered set (order type) FJ. The resulting ordered set (order type) is o; ().

The operation o;(#) enables us to form ordered sets of cardinality w which
have for all i<j</(i) dense subsets of cardinality w;. o, is a generalization of the
usual shuffling operation on ordered sets. '

"Now, for every natural number 7, v’slre shall define the equivalence relations
A ~ B between ordered sets and {4, @) ~ (B, by where 4 and B are ordered sets
and ac A, be B. We say that XS4 is the set of realizations of (B, b), in 4,
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(1) every ae 4 such that {4,a) s {B, b) is an element of X,
() for all xe X {4,x) ~ (B,b).

. We call the equivalence classes (B, b), of ~ types and say that (B, b}, occurs
in A iff (B, b),(4) is non-empty. {B, b), occurs w;many in 4 iff (B, b),(4) has
cardinality w;. We define ~ by induction. )

DerNiTIoN 1. (1) For every two ordered sets 4, B (possibly empty) and any
elements ae 4 and be B . :
AAB and (4,a) ~(B,by.
@4 "' B ff for every (X, x),
() <X, oA # B I (X, x)(B) # O,
(i) for every j<m card{X, x),(4) = o; iff card{X, x),(B) = w;,
(iii) card{X, x),(d)=w,, iff card{X, x},(B)=w,.
(3) {4,ay "~ (B, b) iff
(@) 4%"%' B, and
(i) 47"~ B, ~
where C<° = {x€|C|: x<c} and C”° = {xe|C|: x>c}.
The equivalence relation ~ corresponds to the game for the generalized quan-
tifiers @y, ..., @ in case of orderings. For the connection between generalized quan-
tifiers and games we refer to [5] and [10].

Lemma 1. () AL'?EQ)B (elementary equivalence with respect to L™(Q)) iff for

n+1
~

every n<w A ~ B.

(i) 4 ~ B implies that for all sentences H of L™(Q) which contain at-most n
quantifiers A H iff BE H.

Proof. This is proved by induction as in the elementary case [2] and [4].

LEMMA 2. For each n there are only finitely many equivalence classes of X,

Proof. This follows easily from the definition.

LEMMA 3. If ordered sets A, B admit isomorphic splittings such that corresponding
parts are L-equivalent, then A ~ B.

Proof. The lemma is trivial for n = 0. Assume then that it is true for j and that
we are given isomorphic splittings %, Bof 4, B with corresponding parts 'i-equiv-
alent. Let g A; then ae Ce %, and let D be the image of C by the isomorphism.
of 9% = B, and be D such that <C, @ L (D, by. 4% and B have isomorphic
splittings which are 2 -equivalent, by the induction hypothesis 4 2 B<®, Similarly
we get 4A7° L B>?: hence <4, a) L ¢B, by. This implies that some type (X, x;
occurs in A iff it occurs in B. If some type <X, x); occurs o-many times, i<,
in A4, then one part of the splitting contains w;-many realizations of (X, x); or there
are @many parts of the splitting which have at least one realization of (X X35
In both cases the same holds for B; thus 4B by definition.” Q.E.D. B
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COROLLARY 4. If ordered sets, A, B admit order-isomorphic splittings such that
corresponding parts are elementarily equivalent in L™(Q), then A L';':'—EQ)B

COROLLARY 5. The relations L:’:;Q) and, for every n, X are compatible with the

operations A+B, 4-0, A-0*, A-0, and A-ofF, where i<m.

LeMMA 6. If ordered sets A, B admit L-eqm‘valent splittings A, B such that
XX Y foral XeX and Y e B, then A ~ B.

The proof for Lemma 6 is analogous to the proof of Lemma 3.

Let 4 be an ordered set and U a splitting of 4, Then for an ordered set B we say
that the n-type of B occurs w;-densely in o if for all ¥,Ze %, ¥Y<Z, there are
at least w,-many X e % such that Y<X<Z and B ~ X,

Lemma 7. If ordered sets A, B admit splittings U, B, respectively, such that

(1) A and B have no least and no greatest element,

(2) if some n-type X occurs in U or B, then the n-type of X occurs wq-densely
in U and B,

(3) for all i<m and for every ordered set X: if the n-type of X occurs at least
o many times in W or in B, then the n-type of X occurs w;-densely in U and in B,

then A ~ B.

Proof. By induction. Clearly, the lemma holds for n = 0, Assume then that
the lemma is true for j and let 4, B be two ordered sets which have splittings 2, B,
respectively, such that the conditions (1)-(3) of the lemma are satisfied for j+1.
For a € 4 let X be the part of U which contains g, a € X. Choose Y& B such
that XX ¥ and some b e ¥ with <X, > Z (Y, b). A¥and B form splittings
of 4<¥* = {xed:xeC<X, CeW}and B°Y = {xe B: xe C< Y, C e B}, respect-
ively, which satisfy.the conditions (1)-(3) of the lemma for j. By the induction
bypothesis (ii) 4<¥ ~ B*Y. 4*¥ and X ° partition 4% and similarly B <¥ and ¥
partition B<?.

By (i), (i) and Corollary 5 we get 4=* L B** and in the same way also
A 31 B ie (4,d) 2 {B, b). If there are at least w,-many, i<m, realizations
of the j-type (X, x); in ¥, then w-many realizations belong to one part of the
splitting or at least w;-many parts contain at least one realization of <X, x);. It is
easy to see that from the assumptions about the splittings 2, B it follow that the same
holds for 8. Thus 4°~" B.

§ 2. Let M, be the smallest class of ordered sets which contains 1 and is closed
under o+ f, o' @; and a- o} for j<m, and o;(F) where i<k and & =_<Fi, wor By
and Fj, ..., Fyy are finite sequences of elements of M, (not all of F;, ..., Fy,
are the empty sequence). 1 is the unique ordered set with the universe {0}. An ordered
set A is said to be n-good if it is ~ -equivalent to a certain o e My,,.

icm
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LeMMA 8. For every n<w, for every i<k, and for every j<m, the class of n-good
oo, and 6;(F).

Proof. By Corollary 5 and Lemma 3. )

B is a bounded segment of an ordered set 4 if B is a segment of some closed
interval [x, y] of 4. A subset X< 4 is called n-homogeneous if, for all a, b, ¢, de X,
a<b and c¢<d imply (a, B) ~ (¢, d).

LemMa 9. Let A be an ordered set with a least element. Assume A has a- cofinal
subset of type w,, i<m. Then for every natural number n there exists a subset X, <A
which is n-homogeneous and has order type ;.

Proof. Thelemma follows from the Ramsey Theorem for additive colourings [8].
We give Shelah’s proof here.

Let X< A be cofinal and of order type w;. Define: For x, y& X, x~ if there
isaze X, x, y<z, such that (x, 2) ~ (y, 2); clearly this implies that for any z’ € X,
z<?, (x, ') ~ (¥, 2') (by Corollary 5). It is easy to verify that ~ is an equivalence
relation with finitely many equivalence classes. So there is at least one equivalence
class I, which is an unbounded subset of X. Let x; be the first element of 1. Further-
more, define an equivalence relation & on I: x ~ y iff (x5, X) = (x05 ¥). There are
only finitely many equivalence classes of ~ on I So there is at least one equivalence
class J=I which is unbounded. Then we define X,<J, X, = {x,: «<w,}, by induc-
tion:

(1) x, is already defined,

(2) x, is the least element x of J such that (xo, x) ~ (g, %) for all f<u.

Since J and J are well-orderings of type w;, X, is well defined and has order
type ;. Now X, is the desired set, because, for every x,, Xz € X, a< B, (s Xp)
~ (g, Xx5) by the definition of x; and (%0, X1) X (o5 Xp), since X; & x;; hence X, is
n-homogeneous.

Levma 10. Let n be a natural number and let A, B be ordered sets. Assume there
are n-homogeneous subsets X<.A and Y< B such that .

(1) X and Y have order type w;, where i<m, and are cofinal in A and B,
respectively,

(2) the least element of X is the least element of A and the least element of Yis the
least element of B,

(3) (xo, X1} ~ (o, y1) Where x, is the least element of X and x, is the successor
of xo in X and the same properties. hold for yo,y, and Y.

Then A ~ B. .

Proof. The lemma is true for n = 0. Assume then that it is true for j and that
we have two ordered sets 4 and B and subsets XS 4 and Y< B such that the hy-

potheses of the lemma are satisfied for j+1. Assume that X = {x,: o<} -\aﬁd{
Y = {y,: a<w;} and that both sets are enumerated in their natural ordering. Let
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ae 4, then we will show that {A, ay; is realized in B. There is an x, with a<x,.
Suppose x,<a; then clearly there is a b e (y,, y4] such that (x,, a) 4 (74, b) and
(@, %;) 2 (B, ;) since the conditions (2) and (3) imply (x,, %;) '~ (ye»¥p) for
all a, f<w;. By the induction hypothesis it follows that 4> L pooe ; hence
{4,a i {B,b). If (4, a); occurs at least w,-many times in 4, /<m, then either
there is an x, such that w,-many realizations of {4, a); are smaller than x, or the

set of realizations is cofinal. By similar considerations as above we infer, that {4, a);
has at least w,~many realizations also in B. Q.E.D.

Suppose A4 is an ordered set and X is a cofinal n-homogeneous subset of 4 with
order type @;, j<m. For every ordinal a<w; we define 4, = {xe 4: x<x, and
for all f<a x;<x} and 47 is A, without the greatest element. Clearly, {4,: a<a;}
defines a splitting on 4 of orde; type w; and in every part A there exists a greatest
element, namely x,. Then let B(4) be an ordered set with the properties:

(1) there is a splitting on B(4) of order type w; {B,: a<w;},

@ 4, ~ By, :

(3) every part B, has a greatest element y,, ¥ = {y,: a<w;},

(4) for every O<a<w;: if o is a successor ordinal, then B ~ Af; if o isa
limit ordinal, then B, admits a splitting of order type w* {B,;: i<w} and each part of
the splitting has a greatest element, and each Bj; is l"v-equivalent to A5,

Lemma 11. If A and B(A) have the properties described above;.then . |

) for all a<f<w; (Vo ¥p) ~ (¥u> Xp) and

(i) 4 < B(A).

Proof. By induction on n. The lemma is trivial for n = 0. Assume then that

it is true for » and that there are sets 4, B(4), X and Y such that the properties are
satisfied for n-+ 1. .

We prove (i) by induction on §, f = a+6, §>0.

1. Case. & = y+1. Then (¥u, Yors) = (Vus Yar )+ {Vary} + Gatys Yot y+1) and
the lemma follows immediately from Lemma 3, the (n+1)-homogeneity of X and
the induction hypothesis on 7.

2. Case. ¢ is a limit ordinal. Let b e (¥,, Yuis)

21. b i (Pas Yary) for a certain y<d. By the induction hypothesis on y

n
(Vs Yary) ~ (Xa Xg4,y). Then choose an ae (x,, X,4,) such that (y,, b) ~ (X5 @)
n . . .
and (B, p,4,) ~ (@, Xz4,). By the induction hypothesis on n we have (Fatys Vard)
~ (xn:+7x x¢+J); hence (bs ya+6) "”’ (a: Xet 6)’ i.e. arealizes the ﬂ'WPC <(yas Yot 6)3 b>u
in (xg, Xg4 5)-

22.b€B,15, b # y,1;. Then from the construction of B(4) it follows that b &

€B,44,1,i<w, and by the induction hypothesis on i<3: B, st Bois  +Bis o

n+1 .
~ (Xet5: Xzt 540 (X is (n-+1)-homogeneous). Then choose a ¢ & (¥, 5, Xuus41)

icm®
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noosph . A \ R
such that (x,4s. ¢} ~ Bits: and (¢, Xgese1) ~ Biis,s. Since {Buy: k<w} has
order type w*, we infer from the induction hypothesis on n that

n
U es Yar DV U Barsx ~ (Ko Xgrs) »
A<s k>i

nt+l

Now, as above, ¢ and b realize the same n-type. Since (X, Xars) ~ (Kas Xgrssis
we can find an a € (Xz, Xa+s) which realizes the n-type of ¢ and b. . ‘

Thus we have proved that every n-type, which is realized in (¥,, Yo+ a) I8 rt?a11z¢?d
also in (X, X,+5). In the same way we prove that every n-type which is realized in
(Xgs Xu+s) 18 realized in (4, Yarts)- o

) F;om the proof above it easily follows that some n-type (X, x), is 1ea1'xzed gt

least w-many times, i<m, in (x,, X4 ) iff it is realized at least w;-many times in
(Vg» Yt o), ence (i) is valid for n+1. o

(i) implies that Y is also (n-+1)-homogeneous; thus (ii) is a consequence of
Lemma 10. Q.E.D.

Levma 12. Let n be a natural number and let A be an ordered set of cardinality w;,
j<m. If every bounded segment of A is n-good, then A is n-good.

Proof. We may assume that 4 has a least element (the proof is similar in the
other cases: if A has a greatest element, then we use an analogue of Lemma 9 fox.' jche
inverse ordering; if 4 has no least and no greatest element, then V.ve partition
A = B+C+ D, where B has a greatest and D has a least elen.nent, Cis tfounded),

Clearly, there is a corinal well-ordering A'= 4. If A’ is finite, then 4 is n- good

by Lemma 3. s ‘ N
We can assume that A’ has order type @;, I<J. By Lemma 9 there is an #-homo-

geneous subset X< A of order type w;. Let B be an-ordered set with the properties:
(1) there is a splitting of order type w; on B {B,: a<w},
(2) 4o = Bo, . - ' -
(3) for every 0<a<w;: if o is a successor ordinal, then B, is isomorphic to 4;;
if o is a limit ordinal, then B, admits a splitting of order type * {By: k<w}and each
part By is isomorphic to Ay
Then B satisfies the conditions about B(A) in Lemma 11. Thus we can conqlude
that 4 ~ B. It is immediately seen that B admits a splitting of order t}"pe
1+ -+ (* +w)- o, with every part different from the least isomorphic to 4, i.e.
A~ Ayt o+ Ay (0*+0) o, where A, and 4 are bounded and n-good. Then 4
is n-good by Lemma 8. Q.E.D. . ’
Levma 13. Let n be a fixed natural number, then every ordered set is n-good.
Proof. By the Léwenheim~-Skolem theorem for L™(Q) we may assume that 4 is
an ordered set of cardinality @;, j<m (Lemma 1(a) imEhes that el‘?men;ary sub-
structures are ~-equivalent). . )
We define an equivalence relation ~

x a v iff every segment of the closed interval [x, ¥] is n-good.

on 4: ‘

© bty


GUEST


28 H.P. Tuschik

1. = is an equivalence relation with the splitting property.

Proof. By the definition of ~ and Lemma 8.

2. Every equivalence class C has the property that each segment of C is n-good.

Proof. By Lemma 12.

3. Let U be the splitting determined by ~. U has order type 1, | = {4}.

Proof. Assume that 2 has at least two elements C, D and C< D. Between any
two elements C, D e || there is an element Ee ||, C<E<D.

(Proof. Suppose there is no element between C and D. Let xe C and ye D
and let G be a segment of [x, y]. If G belongs to C or D, then G is n-good by 2.
In the other case C and D form a splitting for G, the parts G n C and G n D of the
splitting are n-good; by Lemma 8 G is n-good. Thus x = y, which contradicts
xeC, ye D and C<D.)

Let .F*'(C’ D) =<{(F}, ..., F,‘;) be a sequence of ordered sets such that every
n-type Fy occurs at least w;-many times between C and D and every n-type which
occurs at least w;-many times between C and D is L-cquivalent to a certain Fj.
Assume that we have chosen C and D so that ny, ..., n; are minimal. Let x € C and
y e D. Consider a segment B of the closed interval [x, y] of 4. We prove that B is
n-good. This is true if B is a segment of a certain E e ||, Otherwise B is of the form
B,+{) B+ B,, where B is some segment of (C, D) mod % and By, B, are (possibly
empty) segments of some classes Cj, D} e ||

U @ denotes the corresponding segment of 4. By the minimality of Ros ey M
.F,'(C’, D)y = F{(C, D) for all C', D" € |B| with C’ <D’ mod % and i< . By 2, ev;r;l
F,f, i<jand 0<<I<ny, is L-equivalent to some element of M, ; thus we can assume
F e My,;.

Now let 7 be the greatest natural number such that there is some n-type E which
occurs o-many times in B, but not w;, ;-many times. Then B has a dense subset
of car"dina.lity ;. Assume B has no least or greatest element. Then by Lemma 7
UB ~ 0;(F), F =<F(C, D), ..., Fs;)(C, D)y; hence B is n-good. If B has
a least or greatest element, then omit the endpoints of ¥ and argue as before (the
segment without endpoints has no least or greatest element, since in 2 no element
has an immediate successor or predecessor). We used also the fact that “7 s
compatible with the relation ~ (Lemma. 8), We have proved that every segment
c(J:f th; closed interval [x, y]is n-good. Hence x =~ y which contradicts the assumption

<D.

Thus there is only one equivalence clas: ich is ~-equi
cloment of My, by z). q s A which is equivalent to some

THEOREM 1. Every sentence H e L™(Q) which has an ordered set as a model
has a model in My,

Proof. Let A be an ordered set which is a model of A, and let n be the number
Zf;: q;a'umﬁers in H. By Lemma 13, 4 ~ o for a certain « € M,, s> and by Lemma 1(b)

icm®
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§ 3. In proving the decidability of certain classes of orderings in L"(Q) some
additional difficulties arise, since the logic of L™(Q) is not axiomatizable. Thus we will
prove decidability results by methods which differ from those used in [4] and [9].
In § 1 we proved the existence of mappings o;,. It is clear that we can choose o,
so that certain parts of o, are effectively calculable. Though we do not want to specify
this part of o;; (e.g. o;(w) should be effectively calculable), it will be clear from the
proof how this has to be done. Greek letters o, 8, ... will denote terms which represent
the elements of M,,r. f< -o denotes that a is one of the terms B+y, v+ B, B-oy,
B-w¥, i<m, or o, (F) with F = (Fy, ..., Fy(;y) and for a certain / § € |F}|. The set
{B: p<-a} is finite for each o € Mj,,;. An element a € o is called effectively calculable
if it is given in a constructive manner, i.e. there is an effective procedure which
produces a. All constants used in the following should be effectively calculable. The

equivalence relation ~ (Definition 1) is expressible in the language L™(Q). From this
we get the following lemma:

LemMa 14. There is a unary recursive function g (n) such that for all 4, all a € 4,
and for all n<w:

(i) there is some sentence H e L"(Q) such that for all B: A X Biff Bk H,and H
has at most g(n) quantifiers, )

(i) there is some formula H,(x)e L™(Q) with at most g(n)-many quantifiers
such that for all B and all be B: {4, a> ~ (B, b iff BE Hy(b).

TueorEM 2. (i) For every term o€ My, and every senfence H(ay, ..., ap),
H(xy, ... x) e L™(Q), there is an effective  decision procedure which decides
“ak H(ay, ..., a;)".

(i) If o B AxH(x, ay, ..., a;), then there is an effective procedure which prodices
a certain b e o such that a ¥ H(b, ay, ..., a;)-

Proof. By induction on «. If & = 1, the theorem follows at once. Let o be
given. Then we prove the theorem by induction on H. If His atomic, then the theorem
follows immediately. In case H has the form Hy A H,, Hy v Hy, or T Hjy, Theorem (i)
is a consequence of the induction hypothesis on H; and H,.

1. Case H(ay, ..., ;) = AxH'(x, ay, ..., a;).

1.1. @ = B+7. Suppose H’ has n quantifiers. We assume 4, ..., ; are ordered
as follows: a; <a,<...<a;. Let 4 be the interval (a;, 4;44) in B. By Lemma 14(ii)
there are finitely many H{(x), ..., Hyx), so thatforevery ae 4 AF Hj(a) for a cer~
tain H/(x), [<r<s, and for every Hi(x) 4 F JxH.(x); moreover, condition (i) .of
Lemma 14 is satisfied and H.(x), ..., H(x) are obtained constructively. If a, be 4
and 4 k H/(d) and A F H!(b), then by Lemma 14(ii), Lemma 3 and Lemma 1(ii)
a and b satisfy exactly the same formulae with at most » quantifiers and the constants
dy, .., @ in «. By the induction hypothesis on § there are effective procedures which
produce b,, 1<r<s, such that 4k H/(,). In this way we get for every interval
(a;, a;4,) effectively calculable elements B, and similarly for p=* and y7% there
are effectively calculable elements p° ‘and b1, respectively. Now, the set
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{bl: 0<i<j+1, 1<r<s;} is finite and for every bl there is (by the induction hy-
pothesis) a decision procedure for “g k H'(BL, ay, ..., a;)" From the construction it
follows that: if o & AxH'(x, @;, ..., a;), then for a certain blok H'(BL aqs s )
thus we have a decision procedure for “o F AxH'(x, ay, «r &))"

12. ¢ = f-w. Clearly, frw is isomorphic to f+my+f-@. Then we can assume
that all constants @, ..., d; OCcur in B-m,. Now, by the definition of o, o admits
a splitting of type w and each part of the splitting is isomorphic to f. In the same way
as in case 1.1, there are effective procedures which produce elements B, I<i<my +2"
and 0<r<s,;, and b! belongs to the ith part of the splitting. From Lemima 6 it follows
that, for every element b e« which belongs to some part my, my-+2"<m,, there
is a certain &' with (&, b) ~ {a, biy. Thus, as in case 1.1, we geta decision procedure.

13. ¢ = f-w;, 1<i<m. Analogue of case 1.2

14 o = 0, )(F), F = {Fis oo Fy - By the definition of a, o admits a splitting
of type o;;. Regard those parts which contain some constant of ay, ..., g;. Since
these constants are effectively calculable, these parts are effectively given. As before,
case 1.1, there are effective procedures which produce elements bi. Now, for every
Be|F| U ..U |Fpl we choose effectively finitely many parts of the splitting, all
of type B, such that between any two constants of ay, ..., a;, say @ and a;, , there is
4n effectively chosen part (if a; and a;,.; do not belong to the same part). Moreover,
we choose effectively two parts of type § which are greater and smaller, respectively,
than dny of the parts which contain some of the constants ay; ..., a;. For all these
parts we have also procedures which produce elements b'. From Lemma 7 it follows
that: for every b e o;,(%) there is a certain bj such that {(o;(#), b 2 Lo (F), by
As in case 1.1 we get a decision procedure.

2. Case H(ay,..,a) = QixH'(x,ay, ..., a;), 0<ism.

For simplicity let i = 1. Then by the definition of « there is a splitting on o.
For a ¥ Q,xH'(x, ay, ..., a;) to be valid, there are two' possibilities:

(1) there are uncountably many parts of the splitting which contain an element b
with ¢k H'(b, ay, ..., a;), or

(2) some part contains uncountably many elements bwithok H'(b, Gy, -.os ).

ad (1): This is without sense if the splitting of o has only countably many parts.
Thus o must have the form §-w; or o;(F), 1<i<m. Leta be f-w, . In the decision
procedure for « k IxH'(x, ay, ..., a;) (case 1) we had to decide o k H'(bL, ay, s &)
By Lemma 6, it follows that uncountably many parts contain a certain b with
ok H' (b, 0y, ., a)iff o F H'(b, ay, ..., a;) for some Bi, i = m;+2". However, the
right side of this equivalence is decidable by the induction hypothesis.

The other cases for o are similar. »

ad (2):In case | we decided o ¥ AxH (x, ay, ..., a)) by decidinga ¥ H'(bL, ay, ..., a)
for effectively calculable elements bl. Every bl was determined by an effective pro-
cedure which produced an element such that  F H, (b)). Then from case 1.1 if follows
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thatin one part j there are uncount'ably many elements b such thata F H'(b, 4y, ..., ;)
iff for a certain HX(x) B Q; xH/(x). However, the latter proposition is decidable.
Thus we have proved (i) of Theorem. (ii) follows automatically from case 1.1.
Q.E.D.
TurorReM 3. The set of all sentences H e L"(Q) such that for all terms o€ My,
ok H is recursive.

Proof. This follows from Theorem 2 and the following fact. By the definition
of Mipps Minms 18 generated by 1 with the operations “+ 7, “ w;”, “-@f” and “o;(F)",
0<i<m. By Lemma 3 we infer that for every n L is an equivalence relation
between ordered sets which is compatible with the operations above, i.e. ~ s
a congruence relation with respect to these operations. Then the factor structure
Mgl ~ is well-defined. Clearly, My, f/,'L is generated by the equivalence class of 1.

Let H be given. Suppose H has n quantifiers. To decide whether o« F H for all
o € My,;, we have only to decide whether for all 4 e M,/ < there is a certain
ae My, such that 4 = {BeMpys: B ~ ¢} and o F H. Lemma 2 implies that
Mim f/i is finite. Thus My, s/ 2, s finite and generated by the equivalence class of 1.
Hence we have only to decide for finitely many terms oy, ..., %, whether o; k H
ornotand «;, ..., o, can be constructed effectively. If for all i, 1<igr, o; F H, then H
is valid in all terms o & My, Now we have a decision method which answers the
question: “Is H valid in every terma € M 7. Since this decision method is uniform,
this is the same as saying that the set of all sentences which are valid in all terms
o€ My, is recursive. Q.E.D.

Now we get the decidability of many classes of orderings in the language L™(Q).

Let LOk,m,f) be the set of all sentences of L™(Q) which are true in all
orderings with cardinality greater than or equal to w;, and let LO(k, m,f) be the
set of all sentences of L™(Q) which are valid in all orderings. DLO(k, m, f) and
DLOk, m, f) are defined similarly with the restriction, that we only regard dense
linear orderings.

All the results we have proved depend on the hypothesis Tj,(f) (see § 1).
Let LO(Qp, ..., Q) be the set of all sentences of L™(Q) which belong to all
LO(k, m, f) for all k and f (there are only finitely many such k and f).

TaeoreM 4. () LO(k, m,f), DLO(, m,f) and for every i, O0<i<m,
LO(k, m,f) and DLO(k, m,f) are all decidable.

(i) LO(Qos s Q) Is decidable.

(iii) LO(Q;: i<w) is decidable.

Proof. Theorem 1 implies that the set of sentences which are valid in all or-
derings is exactly the set of sentences which are valid in all terms o € My,,. Then the

decidability of LO(k, m, f) is an immediate consequence of Theorem 3. The other
theories of (i) are finite extensions of LO(k, m,[), hence also decidable. If m is
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fixed, then there are only finitely many different & and f, hence LO(Qq, ..., Q) is

decidable, LO(Q;: i<w) is decidable, because the decision methods for
LO(Qo, -.» Q) are uniform in m.
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Prime and coprime modules
by

L. Bican, P. Jambor, T. Kepka and P. Némec (Praha)

Abstract. The results of this paper generalize the notion of prime ideal. Consequently, there
is defined prime module and its dual, coprime module. Similarly as the Jacobson radical is defined,
we introduce the notion of prime radical. Besides the essentials of the calculus of prime and co-
prime modules, the main purpose of the paper is to show how these notions are related to- the
general theory of preradicals as a tool for structural investigation of rings and modules.

1. Introduction. In the following, R is an associative ring with unit and R-mod
stands for the category of unital left R-modules. R is called left V-ring if all simple
modules are injective. Further, R is said to be left (right) duo-ring if all left (right)
ideals are two-sided. As usually, E(M) will denote the injective hull of a module M.
A submodule N of a modu': M is called characteristic if f(N)SN for each
feHom(M, M).

Recall that a preradical » for R-mod is a subfunctor of the identity functor.
We shall say that r is

idempotent if r(r(M )) = r(M) for every M € R-mod,

a radical if r(Mjr(M)) = 0 for every M € R-mod,

hereditary if r(N) = N o r(M) for every N, M e R-mod, NeM,

superhereditary if it is hereditary and the class ", of all r-torsion modules is
closed under direct products,

cohereditary if r(M|N') = (r(M)+N)/N for all N, M € R-mod such that Ne M
(in this case, #(M) = r(R)M for all M & R-mod),

splitting if r(M) is a direct summand for each M e R-mod. }

Let » be an arbitrary preradical. For each M € R-mod we define F(M) = YN,
N<SM and r(N) = N, and #(M) = (P, PEM and r(M[P) = 0. It is easy to see
that 7 is the largest idempotent preradical contained in r and ¥ is the least radical
containing r. The definition of inclusion, sum and intersection of preradical is obvious.
Further, we definer! = r, = randr"*'(M) = F(r(M Vs T 1 (M) (M) = r(M/r,.(M))v
for every module M.

If T is a two-sided ideal then we define a cohereditary radical r and a super-
hereditary preradical s corresponding to I by r(M) = IM and :

s(M) = {me M| Im = 0},

3 — Fundamenta Mathematicae T. CVII/1
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