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fixed, then there are only finitely many different & and f, hence LO(Qq, ..., Q) is

decidable, LO(Q;: i<w) is decidable, because the decision methods for
LO(Qo, -.» Q) are uniform in m.
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Prime and coprime modules
by

L. Bican, P. Jambor, T. Kepka and P. Némec (Praha)

Abstract. The results of this paper generalize the notion of prime ideal. Consequently, there
is defined prime module and its dual, coprime module. Similarly as the Jacobson radical is defined,
we introduce the notion of prime radical. Besides the essentials of the calculus of prime and co-
prime modules, the main purpose of the paper is to show how these notions are related to- the
general theory of preradicals as a tool for structural investigation of rings and modules.

1. Introduction. In the following, R is an associative ring with unit and R-mod
stands for the category of unital left R-modules. R is called left V-ring if all simple
modules are injective. Further, R is said to be left (right) duo-ring if all left (right)
ideals are two-sided. As usually, E(M) will denote the injective hull of a module M.
A submodule N of a modu': M is called characteristic if f(N)SN for each
feHom(M, M).

Recall that a preradical » for R-mod is a subfunctor of the identity functor.
We shall say that r is

idempotent if r(r(M )) = r(M) for every M € R-mod,

a radical if r(Mjr(M)) = 0 for every M € R-mod,

hereditary if r(N) = N o r(M) for every N, M e R-mod, NeM,

superhereditary if it is hereditary and the class ", of all r-torsion modules is
closed under direct products,

cohereditary if r(M|N') = (r(M)+N)/N for all N, M € R-mod such that Ne M
(in this case, #(M) = r(R)M for all M & R-mod),

splitting if r(M) is a direct summand for each M e R-mod. }

Let » be an arbitrary preradical. For each M € R-mod we define F(M) = YN,
N<SM and r(N) = N, and #(M) = (P, PEM and r(M[P) = 0. It is easy to see
that 7 is the largest idempotent preradical contained in r and ¥ is the least radical
containing r. The definition of inclusion, sum and intersection of preradical is obvious.
Further, we definer! = r, = randr"*'(M) = F(r(M Vs T 1 (M) (M) = r(M/r,.(M))v
for every module M.

If T is a two-sided ideal then we define a cohereditary radical r and a super-
hereditary preradical s corresponding to I by r(M) = IM and :

s(M) = {me M| Im = 0},

3 — Fundamenta Mathematicae T. CVII/1
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for each M e R-mod. Tn this case, I = r(R) = (| K, s(R/K) = R/K. Further, we
define preradicals id ‘and zer by idM = M and zerM = 0 for all M e R-mod.

Let o be a non-empty class of modules. We define the idempotent preradical p_,
and the radical p” by p (M) = YImf, feHom(4, M), desf, and Jad (7))
= (Kerf, fe Hom(M, 4), A€, respectively. If & is a representative set of
simple modules then we put Soc = py and ¢ = p?. Finally, we define @ = 2,
where % is the class of all modules which are small in its injective hull (i.e., M+K
= E(M) implies K = E(M)) and % denotes the singular submodule. Obviously,
for every module M, SocM is the intersection of all essential submodules of M
and #(M) is the sum of all small submodules of M.

For further details concerning preradicals, the reader is referred e.g. to [1]-[5].
Some other concepts of prime submodule (ideal) can be found e.g. in [6] and [7].

2. Prime modules. Let 4, B be two submodﬁles of a module M. Put A#y,B
= Y.£(4), f Hom(M, B).

2.1. LeMMA. Let 4, B, C be three submodules of a module M. Then

(i) A%y B is a submodule of M and Ax, B<B,

(i) Oxpyd = A%yy0 =0,

(i) A*y M is the least characteristic submodule of M containing A,

(V) A%y B is a characteristic submodule of M provided that B is so,

(V) (A B)ayy C= Ay (Bry C),

(Vi) (A% B)#p C = A%y (B*y C), provided M is projective.

Proof. The assertions '(i)—(v) are obvious.

(vi) Let D= [] B and let for every g € Hom(M, C), p, be the canonical
Hom (M,C)

projection of D onto B. Then h: D —> B#,C defined via h(x) =Yg(p,(x)),
g e Hom(M, C), is an epimorphism. If f: M — B#,C and ae A are arbitrary
then, M being projective, there is k: M — D with ik = f and f () = Y. g{p,(k(@))).
However p,k € Hom(M, B), so that p,(k(a))e A%, B and consequently f(a)e
€ (Axy B)xy C. Thus Ay (B C)S (A% B) %y C. .

The equality (vi) does not hold in general. For example, if Z is the additive
group of integers and Q that of rational numbers then 0 = (Z%gZ)%,Q
# Zxg(Z#g Q) = Q.

2.2. LemMA. Let I, K be left ideals of R. Then Ixzx K = IK.

Proof. Obvious. .

A module M is called prime if p™ = p" for every non-zero submodule N of M.
Clearly, the class of all prime modules is closed under submodules.

2.3. PROPOSITION. The following are equivalent for a module M:

(i) Ay B # 0 for all non-zero submodules A, B& M,

() pN(M) = 0 for every non-zero submodule NS M,
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(iii) If O # NSM then M is isomorphic to a submodule of a direct product of
copies of N,

(iv) M is prime.

Proof. (i) implies (if). Suppose that PP(M) = A4 # 0 for some 0 # BS M.
Then f(4) = 0 for every fe Hom(M, B), and s0 A#pyB = 0.

(ii) implies (iii). Let 0 # N=M be a submodule. Since p(M) = 0, there is
a set f;, i€ I, of homomorphisms of M into N such that 0 = () Kerf;. Hence M

iel
can be imbedded into the direct product of Imf;. Consequently, M is isomorphic
to a submodule of a direct product of copies of N.

(iii) implies (iv). Let 0 % NSM be a submodule. Obviously, p*<p” and
PV(N) = 0. Since M is isomorphic to a submodule of a direct product of copies
of N, we have p"(M) = 0. Consequently, p* being a radical, pNep™

@v) implies (). If 0% A, BcM and AxyB=0 then f(4) =0 for all
feHom(M, B), and so 0 # Aspi(M) = pM(M) = 0, a contradiction.

2.4. PROPOSITION. (i) 4 module M is prime iff pM = p® for every non-zero cyclic
submodule C of M.

(i) Every direct sum of copies of a simple module is a prime module.

Proof. Obvious.

In contrast to 2.4(ii), direct products of copies of a simple module need not be
prime. It follows from the fact that such direct products may contain non-zero
submodule with zero socles.

A submodule N of a module M is called 1-prime if M|N is a prime module,
It is 2-prime if A%, BE N, whenever 4, B are submodules of M and A;N,} B;t_z\f.

2.5. LEMMA. The following are equivalent for a module M:

@) M is prime.

(i) 0 is a 1-prime submodule of M.

@) 0 is a 2-prime submodule of M.

Proof. It follows immediately from 2.3.

2.6. PROPOSITION. Every characteristic 2-prime submodule is 1-prime.

Proof. Let N be a characteristic 2-prime submodule of a module M. Suppose
that A/NsxyyB/N = 0 for some submodules A, B of M containing N. If f: M — B
/5 a homomorphism then f induces a homomorphism g of MJN into BJN, since
F(N)SN. According to the hypothesis, g(4/N) = 0. Hence f(4)= N and we see
that A#, B<S N. However N is 2-prime, and therefore either AN or BeN. Thus
either A/N = 0 or B/N = 0. According to 2.3, M|N is a prime module, i.e. Nis
a 1-prime submodule of M.

2.7. PROPOSITION. Let N be a 1-prime submodule of a profective module M.
Then N is a 2-prime submodule. ; i

3%
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Proof. Suppose AEN and BEN. Since M/N is prime, there is /@ M|N
~»(B+N)/N with 0 5 f((4+N)/N). However M is projective and hence there is
g: M — B such that the following diagram commutes '

M— > MIN
”l lf
B— —>B+NIN
Since 0 5 f((4+N)/N), g(d)£B A N, and so A+yBEN.
2.8. PROPOSITION. Let N be a 2-prime submodule of a projective- module M.

Denote by C the largest characteristic submodule of M contained in N. Then C is
a 1-prime submodule of M.

Proof. With respect to 2.6, it is sufficient to show that Cis a 2-prime submodule.
Let A, B€M and A%, B<(C. Then .
(Axg M) 4y (Bryy M) = Aspy(Mbyy(Byg M)) = Axy((Moxy B) M)
SAxy(BiyM) = (A% B) s M= Cxy M = CSN .
Since N is 2-prime, either 4%, M SN or BxyMcN. However, both A%, M and
Bxy M are characteristic.

2.9. CorOLLARY. Let M be a projective module without non-trivial characteristic
submodules. Then M is prime.

Proof. Let 0 # M. Then M contains a proper maximal submodule N. Since
MIN is simple, N is a 1-prime submodule of M, and hence M is prime by 2.5, 2.7
and 2.8.

2.10. PROPOSITION. The following are equivalent for a left ideal I:
(i) I is a 1-prime submodule of R.

(ii) For every left ideal K with I 2K and every x € R\I there is y € K such that
IysI and xy ¢ I

(i) For all x,ye R\I there is z& R such that Izy =1 and xzy ¢ I.

Proof. (i) implies (ii). Let K be a left ideal with I S K and x e R\I. Since
PRI = 0, there is a homomorphism f: R/I— K/I with f(x+1) % 0. The
element y defined by f(141) = y+1I has the desired property.

(i) implies (i). Let X be an arbitrary left ideal with I S K. If x e R\I is arbitrary

and y e X is such that Iy<J and xp ¢ I then the mapping f R/I— K/I defined via
fr+1I) = ry+TIis a homomorphism and f (x+1) s 0. Consequently, pX/*(R/I) = 0
and 7 is 1-prime.

The equivalence of (ii) and (iii) is obvious.

2.11. PROPOSITION. The following are equivalent for a left ideal I
() I is a 2-prime submodule of R.

GD) If K, L are left ideals and KL<T then either K<I or L<I,
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(iii) If K is a two-sided ideal, L is a left ideal and KL< then either K<I or LI

(iv) If a,be R and aRb< I then either acl or bel.

Proof. The implications (i) = (ii) = (iii) = (iv) are obvious.

(iv) implies (i). Let A, B be left ideals such that A&/, BEI Suppose that
AxgB = AB<I. If ae ANJ, be B\J, then aRb=ABS], and hence either ae’l
or bel, a contradiction. Thus Az B&/[ and [ is a 2-prime submodule of R.

2.12. PROPOSITION. The following are cquivalent for a two-sided ideal I:

() I is a 1-prime submodule of R.

Gi) I is a 2-prime submodule of R.

@iy If K, L are two-sided ideals with KL< I then either K<I or L&

Proof. (i) is equivalent to (ii) by 2.6, 2.7 and (ii) is equivalent to (iif) by 2.31.

A two-sided ideal satisfying the equivalent conditions of 2.12 will be called
prime ideal. This coincides with the usual notion of prime ideal. Thus, for a left
ideal 7, the expressions “/ is a prime module” and “/is a prime ideal” indicate two
different situations, the latter denoting simply the fact that / is a two-sided ideal
satisfying the conditions of 2.12.

2.13. PROPOSITION. Let M be a prime module and I = (0:M). Then

) if P Lomis a projective presentation-of M then P/IP is a prime module,

(i) I is a prime ideal.

Proof. (i) Let C be the largest characteristic submodule of P contained in
Kerf. Clearly, C = KP for some two-sided ideal K. However, IP is a characteristic
submodule of P contained in Kerfand KM = 0. Thus JP = KP and we can use 2.8.

(ii) There is a free presentation F— M. By (i), FJIF is prime. However, .R/I
is a submodule of F/IF. Thus I is 1-prime in R and, being two-sided, [ is a prime
ideal.

2.14. COROLLARY. The following are equivalent for a ring R:

@) R is a prime ring (i.e., O is g prime ideal).

@ii) R is a prime module.

(iii) R has a faithful prime module.

(iv) Every submodule of a projective module is a prime module.

2.15. PROPOSITION. Let R be a left duo-ring. Then the following are equivalent
Jor a module M:

(1) M is prime.

(ii) There is a prime ideal I such that M is isomorphic to a submodule of a direct
product of copies of R/I.

Proof. Apply 2.13 and 2.4(i).

3. Prime radical. Let .# be the class of all prime modules. We define the prime
radical # on R-mod by 2 = p*.
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3.1, PrOPOSITION. () 2 is a radical, ¥ n F<P and Soc N FS P F.

(ii) For every module M, P(M) coincides with the intersection of all 1-prime
submodules of M.

(iti) For every projective module M, P (M) coincides with the intersection of all
characteristic 1-prime submodules.

(iv) For every projective. module M, & (M) coincides with the intersection of all
2-prime submodules.

Proof. (i) Obviously, # is a radical and the inclusion 2 < # follows immediately
from the fact that every simple module is prime. If M is a prime module and
SocM # 0 then M has a non-zero simple submodule S and M is isomorphic to
a submodule of a direct product of copies of S. Since #(S) = 0, we immediately
have #(M) = 0. Thus SocNn £(N) =0 for every Ne # and consequently,
Soc n # being a radical, Soc N #<S#. Finally, suppose that M is prime and
F(M) # 0. Since #(M) is the sum of all small submodules, there is a non-zero
submodule N small in M. Then obviously Ne % and consequently #% (M) =0,
M being isomorphic to a submodule of a direct product of copies of N. We have
proved that for every M e #, (M) % (M) =0, and hence F n ¥ <.

The remaining assertions follow immediately from 2.6, 2.7, 2.8 and the fact
that .# is closed under submodules.

3.2. PROPOSITION. (i) 2 (R) is the intersection of all prime ideals.

(i) #(R) is a nil-ideal and P(R) =  (0:M), Me A.

(iii) 2 (R) contains all left T-nilpotent left (right) ideals as well as all right T-nil-
potent left (right) idedls.

Proof. (i) and (ii) are obvVious.

(iii) First, let I be a right T-nilpotent left ideal and K be a prime ideal. Suppose
that there is x, € INK. Then, for some a, € R, x; = Xxo4,%q ¢ K. Proceeding in this
way, we get the elements x;,., = x;4;x; that are not in K. On the other hand, ob-
serving the sequence apx,, @y X¢, ... and using the right T-nilpotency of I we see
that x, = 0 for some n, a contradiction. We have proved that /=2 (R). If I is a right
T-nilpotent right ideal then Ra is right 7-nilpotent for all a € I. The rest is similar.

3.3. PROPOSITION. Let r be a preradical such that ¥ = zer. Then

@) r(M) is small in M for every M e R-mod,

(i) r&.g, :

(iii) r(R) is left T-nilpotent and r(R)<?(R),

(iv) if r is cohereditary then r<2.

Proof. (i) Let r(M)+N = M and f: M— M/N be canonical. Then M/N
= f(r(M))=r(MJN). Thus M/N is r-torsion, and so N = M.

(ii) Obviously, #(M) coincides with the sum of all small submodules.

(iii) Letay,a,, ... r(R) be arbitrary, F be a free module with countable infinite
basis X1, Xa, 0y Y3 = X;— ;X0 q, i = 1,2, ..., A; be the submodule of F generated
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by Yia
% = blxl_b1a1x2+b2x2—bza2x3+...+b,,x,.——b,,a,,x,.+1 for some by,...,b,€ R.
Consequently by = 1,by = a;,by = ajay, ., by = a1a, .., and a, 4, ... a, = 0.
Hence r(R) is left T-nilpotent and r(R)=2(R) by 3.2.

(iv) This follows immediately from (ii.

3.4. PROPOSITION. Let r be a preradical such that r" = zer for some n. Then
re?.
Proof. Let M be a prime module and N = (M) # 0 for some k1. Then
p(M) = 0, ie. there is /1 M— N with F(r(d)) # 0. Consequently, 0 # r(¥)
= r**1(M). However r(M) = 0, and hence r(M) =0 and rs2.

3.5. PROPOSITION. Let M be a projective module with 2 (M ) = 0. Then

(i) A#pyd # 0 for every 0 # ASM,

(i) 4 A B = 0, provided A, B=M and A%yB =0,

(i) M is prime, provided that every non-zero submodule of M is essential.

Proof. (i) Let0 # A= M. There are Pe A and f: M — P such that £ (4) # 0.
Since P is prime, there is g: P —f(4) with g(f(4)) # 0. However M is projective,
and consequently there is h: M — A such that f (h(m)) = g(f (m)) for each me M.
Now 0 # h(A)S A%y 4.

(ii) We have (4 N B)xy(A4 N BYS A%y B = 0. By @, AnB=0.

(iii) Apply (i) and 2.5.

3.6. PROPOSITION. The following are equivalent for a ring R:

(i) R is a left V-ring.

(i) # is hereditary.

(iii) # = zer.

@iv) # = zer.

V) @ is hereditary.

Proof. (i) implies (ii). Since # is a radical, it suffices to show that # (M) =0
implies #(E(M)) = 0. However J.= p” and every simple module is injective.

(i) implies (iii). If x & # (M) then # (R/(O:x)) = R[(0:x), F being hereditary,
and so (0:x) = R and x = 0.

(iii) implies (iv) and (iv) implies (v) trivially.

(v) implies (i). Let M be a non-zero simple module, If E(M ) is not prime then
Mc2(E(M)), and hence M = P (M) F (M) = 0, a contradiction. Thus E(M)
is prime, hence p¥(E(M)) = 0 and there is /3 E(M)— M with f (M) # 0. Clearly,
[ is an jsomorphism. ’

3.7. PrOPOSITION. The following are equivalent for a ring R:

(i) @ = # is cohereditary.

(i) & is cohereditary.

oyand A= U 4;. Obviously, 4+r(F) = F and (i) yields 4 = F. Hence
i=1
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(iii) R/Z(R) is a left V-ring.

Proof. (i) implies (i) trivially.

(i) implies (iii). Clearly, £ is cohereditary on R/#(R)-mod and P(RIZ(R)) = 0.
Thus & = zer on R/?(R)-mod and we can apply 3.6.

(iii) implies (i). Since # (R/?(R)) =0, #(R) = #(R). Further, f = & = zer
on R/#(R)-mod. If MeR-mod and #(M) =0, Z(RAIM =0 and M is an
R/# (R)-module. Now, we see that the class of all 2-torsionfree modules and the
class of all #-torsionfree modules are closed under factormodules. Since 2 and ¢
are radicals and 2 (R) = #(R), # = £ is cohereditary.

The following lemma is clear.

3.8. LEMMA. Let r be a splitting radical such that O is the only cyclic r-torsion
module. Then every r-torsion module is injective. ‘

3.9. CorROLLARY. The following are equivalent:

() & is splitting. )

(ii) & is idempotent and every P-torsion module is injective.

3.10 CorOLLARY. The following are equivalent:

@) Z is splitting.

(i) Every P-torsion module is injective.

3.11. PrOPOSITION, Let R be a ring such that every module is prime. Then R is
isomorphic to a matrix ring over a skew-field.

Proof. First, R is a left V-ring by 3.6. Further, p = zer for every non-zero
module M. In particular, for every simple module S, p*(S) = 0 and S is isomorphic

to a left ideal. Thus every simple module is projective and R is completely reducible.
Finally, R is a simple ring e.g. by 2.11.

4. Coprime modules. Let A, B be two submodules of a module M. Put A, B
= f"(4), fe Hom(M, M), f(B) = 0.

4.1. LeMMA. Let A, B, C be submodules of a module M. Then

(i) AON B is a submodule of M and B< Ay B,

(i) MOpd =M= A0y M,

(i) AC1\ O is the largest characteristic submodule of M contained in A,

(iv) AQDM(BOKC)S (404 B) O C,

) AQu(BOxC) = (A B) 4y C, provided M is injective and artinian.

Proof. (i), (i) and (iii) are obvious.

(iv) Let Ay, i€ I, be the system of all endomorphism of M such that #,(C) = 0.
Put Y= () b '(B). Clearly, x & (A[1, B0 C iff fhi(x) e 4 for all ie I and all

iel
JeHom(M, M) with f(B) = 0. Similarly, x € A[1,,(By; C) iff k(x) e A for every
keHom(M, M) with k(Y) = 0. Hence 4[] y(By C)S(40 4 B) 1y C.

(V) Since M is artinian, there is a finite subsystem Ay, ..., s, such that
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Y = ﬁ]z]‘(B). Let xe (A0 B)0OyC, k: M— M be such that k(Y) =0,
=1

g: M— M|Y be canonical and #: M|Y -] M|B be defined by t(a+7)
1

= {(h(d)+ B, s h(@)+B). Clearly, ¢ is a monomorphism and % = gtg for some
q: [ M/B— M. Finally, let uy, ..., u, be canonical homomorphisms from M into

fIM/B' Thus k (x) = qtg(x) = quy hy(x)+ ..+ qu, h(x). However, qu;e Hom (M, M),

qluj(B) =0, h(C) = 0, and hence k(x)e A.

42, Lemva. Let I, K be left ideals. Then ITIRK = (I: (0:K),).

Proof. Obvious.

A module M is called coprime if pyy = py for every submodule Ng M.

4.3. PROPOSITION. The following are equivalent for a module M:

() AQyB # M for all submodules A, B M.

(ii) pyun(M) = M for every submodule Ng M.

(i) If N QM then M is a homomorphic image of a direct sum of copies of MIN.

(iv) M is coprime.

Proof. () implies (ii). Let NgM be such that Pun(M) = K # M. Then
KOy N # M, and consequently there are x & M and f: M — M such that f(N)=0
and f(x) ¢ K. Hence g: M/N— M defined via g (m+N) = f (m) is a homomorphism
and g(x) ¢ K, a contradiction. )

(i) implies (iii). Since pyyn(M) =M, M = Y. f(M|N), fe Hom(M/N, M),
and consequently M is a homomorphic image of a direct sum of copies of MJ/N.

(iit) impliés (iv). Obviously, py/nSPu and pyn(M/N) = MIN. Thus pyn(M)=M
and consequently py Spumyn-

(iv) implies (i). Let 4, B M and AOyB= M. If g: M — M|B is canonical
and fe Hom(M/B, M) is arbitrary then fg(M)s A. Hence py (M) <S4, a contra-
diction.

4.4, PROPOSITION. (i) A module M is coprime iff Py = Pun for every non-zero
cocyclic factormodule M|N of M.

(ii) Every direct sum of copies of a simple module is a coprime module.

Proof, Obvious.

4.5. PROPOSITION. Let N be a characteristic submodule of a module M. Suppose
that NG AQy B. for all submodules A, B&N. Then N is a coprime module.

Proof. Let K, Lg N be arbitrary and f: M — M be such that f(K) = 0 and
F(N)L. Then f induces a homomorphism g: N/K—N such that Img &L, and
consequently pyx(N) = N. ‘

4.6. PROPOSITION. Let N be & coprime module and M be an injective module
containing N. Then Nt AUl B, whenever A, BEM, N&A and NEB. :

Proof. Suppose, on the contrary, that N&4, N¢B and NS Ay B. Then
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thereis f: N/N n B— Nwith f(N/N A BYEN n A. If we put h(x+) = f(x+(N n B))
for all xe N, y € B, then A is a well-defined homomorphism of N+ B into M such
that (B) = 0 and h(N)& A. Now the injectivity of M gives rise to g € Hom (M, M)
extending A, a contradiction.

4.7. PROPOSITION. Let N be a coprime module contained in an artinian injective
module M and C be the least characteristic submodule of M containing N. Then C is
a coprime module.

Proof. Dual to that of 2.8.

4.8. LEMMA. Let M be a coprime module with (M) % M. Then M is completely
reducible.

Proof. If #(M) # M then there is a submodule N& M such that M/N is simple.
Hence M = py(M) = pyn(M)SSocM.

4.9. LeMMA. Let M be a non-zero coprime module and I be a left ideal. Then
IM # 0 iff IM = M. ‘ .

Proof. Let IM # M. Then pyu(M) = py(M) = M, so thal IM = 0.

4.10. COROLLARY. Every coprime module is completely reducible, provided at
least one of the following conditions holds:

' (1) Every mnon-zero module hds a proper maximal submodule.

(ii) Every non-zero module hds a non-zero minimal submodule.

Proof. (i) Apply 4.8.

(ii) Let M be a coprime module and I = (0:M). Then M is coprime as an
R/I-module and Soc(R/I)M # 0, so that Lemma 4.9 yields that M is completely
reducible. :

4.11. PROPOSITION. Every module is coprime iff R is isomorphic to a matrix
ring over a skew-field. '

Proof. If every non-zero module is coprime then obviously p,, = id for each
0 % Me R-mod, and consequently R is completely reducible. Finally, if J # R

is a two-sided ideal then pg,(R) = R, and so I = 0. The converse implication is
obvious.

5. Preradical . Let /" be the class of all coprime modules, Put @ = p,-.

5.1. PROPOSITION. (i) # is an idempotent preradical, Socc#< & -+Soc and
R % +Soc.

(ii) For every module M, R (M) coincides with the sum of all coprime submodules
of M.

Proof. (i) Obviously, # is an idempotent preradical and Soc< #. Further,
the inclusion #< £ +Soc follows immediately from 4.8. Finally, if M is a coprime
module with SocM # M then there is an essential submodule Ng M. However
& (M|N) = M|N and consequently, M being coprime, (M) = M.

icm®
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(i) It follows immediately from the fact that 4" is closed under factormodules.
5.2. COROLLARY. Let M be a finitely generated module with M = R(M).

Then M is completely reducible.

Proof, We have M = F(M)+SocM by Proposition 5.1(1). However,

Fne g(M) is a small submodule of M.

53. LemMA. Let r be a preradical and K, = (\ (0:m), mer(M), Me R-mod.
Then

() K, is a two-sided ideal and K SN 1, r(R/]) = R/1,

(i) if r is hereditary then K, = N1, ¥(RII) = R/I,

(iii) if we denote by shr the superhereditary preradical corresponding to K, then
reshr and shr is the smallest superhereditary preradical containing r.

Proof. Obvious.

5.4. PrOPOSITION, (i) K, is equal to the intersection of (0:M), where M runs
through all coprime madules.

(i) KaSF(R).

(iii) K, contains every left T-nilpotent left (right) ideal.

Proof. (i) and (ii) are obvious.

(iii) Let / be a left T-nilpotent left ideal. If /¢ K, then, with respect to 4.9,
IM = M for some non-zero coprime module M. On the other hand, IM is small
in M, a contradiction, I / is a left T-nilpotent right ideal then Ra is left T-nilpoteat
for each ue I ,

5.5. PROPOSITION. Let r be a preradical such that ¥ = id. Then

@) r(M) is essential in M for all M € R-mod,

(i) Socer,

(iil) K, is right T-nilpotent.

Proof. (i) If M e R-mod, NeM and r(M)n N =0 then r(N) = 0, hence
F(N) =0 and so N = 0.

(i) It follows from (i), using the fact that for each M € R-mod, Soc M is the
intersection of all essential submodules.

(i) Let / = {xe R| for all a(, ay, ... € K, there is nz1 with a, ... aza,x = 0}
Obviously r(R/f) = 0, hence [ = R and lel .

5.6, PROPOSITION. Let r be a preradical such that 1, = id for some n. Then
Aer.

Proof. Let M be a coprime module and N = r(M) # M for some k1, Then
Punw(M) = M yields f(M|N)gr(M) for some f: M|N— M, and consequently
r(MIN) # MIN. Thus r,.. (M) # M, which is a contradiction.

5.7. PROPOSITION. Soc is superhereditary iff RLF(R) is .completely ;'edtchble.

Proof. If Soc is superhereditary then R/#(R) = RINI=]I R/L I Tuns over
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all maximal left ideals, is completely reducible. Conversely, if R/ Z(R) is completely
reducible then every R/# (R)-module is completely reducible, however every direct
product of completely reducible modules is an R/ 7 (R)-module.

5.8. PROPOSITION. The following are equivalent:

() Z is cohereditary.

(i) Z = id.

(i) R is completely reducible.

Proof. (i) implies (ii). Suppose % # id, Then [ = Z(R) # R. Since # is
cohereditary, every non-zero factormodule of R/I is Z-torsionfree, a contra-
diction.

(ii) implies (iii) by Corollary 5.2.

(iif) implies (i) trivially.

5.9. PrOPOSITION. The following are equivalent:

(i) & is superhereditary.

(i) R/Ky is completely reducible.

(i) # = Soc is superhereditary.

In this case, Kz = #(R).

Proof. (i) implies (ii). By Lenima 5.3, the two-sided ideal corresponding to %
is just I = K. Consequently, R (R/I) = R/I, & = id for R/I-modules and we can
apply Proposition 5.8. -

(ii) implies (iii). Clearly, Kg = #(R). By Proposition 5.7, Soc is superhereditary
and the corresponding ideal is F(R) = Kg. Hence #<Soc, while the converse
inclusion always holds.

5.10. PROPOSITION. The following are equivalent:
) 2 is her’editary.

(i) # = Soc.

(ii) Every coprime module is completely reducible.
Proof. Use 5.2.
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