Every compact 7 sequential space is Fréchet
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Abstract. Among the various results proved in this short paper are two theorems, both of
which imply the assertion of the title separately.

§ 1. General results. The following general lemma and the two theorems suc-
ceeding it, are not very interesting on their own right. But they contain the key-ideas
out of which all the elegant results of this paper are proved. N denotes the set of
natural numbers.

Lemma 1.1, Let X be a Hausdorff space, x be an element of X such that X\{x}
is normal. Let (x,) be a sequence of elements that are mutually distinct and different
from x, converging to x. Then for each n in N, there is an open neighbourhood W,
of x, such that

() W, W, is empty if n # m and
(i) if F, is a finite subset of W,\{x,} for each nin N and if F= |) F,, then

n=

FeFu {x}.

Proof. Step 1. We let C, be the set of the sequence (x,). Then C, is a discrete
countable subset of X. For each 1 in N, there are three neighbourhoods v v?
and V2 of x, such that :

0 x¢ Vi,

() V2n Cy = {x}

@) V3cvin Vi

(For (i) use Hausdorffness of X to separate x, and x by disjoint neighbourhoods;
for (ii) use the fact that x, is isolated in the relative topology of CiFor (jii) use the
fact that the space is regular at the point x,).

Then put ¥, = VN U V2] for each n>1 and ¥; = V;.
Let V' = U V, and C, = WN\I'\{x}.

n=1
1 — Fundamenta Mathematicae T. CVIL2


GUEST


86 V. Kannan

Step 2. C; and C, are claimed to be disjoint closed subsets of X\{x}. Now
U {x} is clearly compact and hence closed in X. Also C, u {x} = NV =

a closed set \ an open set; therefore C, U {x} is closed in X. Thus C, and C, are

closed in X>{x}.

For each n, we have x,€ V,. Therefore C;cV. But C, is disjoint from V.
Therefore C; n C, is empty.

Step 3. Since X\{x} is normal, there is an open set W containing C;, whose
closure in X\{x} is disjoint from C,. We let W, = W n V, for every nin N. Clearly,
these W,’s are pairwise disjoint and x, € W, for every nin N. It remains only to prove
that the assertion (ii) of the statement holds.

Step 4. Let F be as in the statement (ii). Now

2]

Fe U W,e UV, =V
1

n=1 n=
and hence
)] FcV.
Also since ¥, is open,

FaV,=FnVynV,=F,nV,=F,

(since F, is finite and hence closed). Therefore

@ Frv= GFH=F,

n=
Thirdly, Fc Wand therefore by the choice of W, F is disjoint from C, = WWV\{x}.
Therefore
® FnVeVuix}.
Now we have
F=FnVeFnV)yu{x}=Fu{x},

because of (1), (3) and (2).

THEOREM 1.2. Let X be a countably compact Hausdorff space. Let x in X be such
that X\{x} is normal. Let Y be a sequential subspace of X containing x. Then x is

a Fréchet point in Y. (That is, whenever xe A and Ac Y, there is a sequence in A
converging to X.)

Proof. Let A=Y and xe AN4. Then because Y is sequential, there exists
a, sequence (x,) of distinct elements different from x converging to x, such that
Xy, € YN A. Assuming that there is no sequence from A4 converging to x, we get
that x, € (¥ n ANA.

Applying Lemma 1.1 for this sequence, we get a sequence (W,) of pairwise
disjoint open sets in X\{x} such that x, € W, for every n and such that Fc F u {x}
whenever F = U F,, where F, is a finite subset of W,\{x,} for every neN.

n=1
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Since x, is an accumulation point of 4, and W, is a neighbourhood of x,,
the set A n W, is nonempty. We choose a point y, in it and put F, = {y,}. When
this is done for every n in N, we let F = {y,| n e N}. Then by the property stated
above, we have FcF L {x}.

Therefore either F = F or F = Fu {x}.

Now Fis clearly infinite and discrete. Hence it cannot be closed in the countably
compact space X. Therefore F has to be equal to Fu {x}. In this case, x is the
only limit point of F in the sequential space Y. Therefore there is a sequence in F
(and hence in A) converging to x.

TuEOREM 1.3. Let X be a sequential space such that X\{x} is a T,-space for
every x in X. Let r be a positive integer. Let Y be a subspace of X such that ¥ is homeo-
morphic to S,. Then there is a subspace Z of Y (relatively closed in Y ) such that Z
itself is homeomorphic to S,. (Here, as in many other places below, ¥ denotes the
sequential coreflection of Y.) (See [6] for the definition of §,.)

Proof. We prove by induction on r. For r =1 this is obvious, because,
a Hausdorff space Z is homeomorphic to §; if and only if Z is homeomorphic
to S;.

Suppose we have proved it for r = n. Now let ¥ be a subspace of X such that ¥
is homeomorphic to S, . Let y be the point of Y correspoding to the unique point
of S, having sequential order n+1. Let (y,) be the essentially largest sequence
of distinct elements different from y, in Y, converging to y.

Apply Lemma 1.1 to this sequence and obtain a sequence (W,) of pairwise
disjoint open sets such that x, € W VYm and such that if F, isa ﬁm ¢ subset of
W, \{x,} for each n and if F = U F,, then FcFuU {x}

w1

Now look at W,, n Y. Itcan be proved that its sequential C oreflection is homeo-
morphic to S (More generally if ¥ is an open subspace of X, the topology-of ¥
is the same as the relative topology from that of X. Further, if ¥ is an open subset
of S,., containing only one point of sequential order » and not comammg the
pomt of sequential order n+1, then ¥ is homeomorphic to" S,.)

Therefore by induction hypothesis, there is a subspace Zy, of W,, 8 Y, open

in W N Y, such thdtZ itself is homeomorphxc ‘to S,. Nowlet Z = {y} Ui U Z -

This is clearly a closed subspace of Y. We claim that it is homeomorphic to S,,+1~
We make use of the following general result: Let P be a topological space written

as P = U P, where

n=0
(i) P, is the set of a sequence {py, Pz; - Pn
(i) P,nP, =0 [ 0=n+# m‘;f 0.
(iii) P, n Py = {p,} for every n>0 and

...} converging to an clément Po-

I

(iv) P, is homeomorphic to 'S, for every n>0.
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Then P is homeomorphic to S, if and only if whenever F = |J F, where F,,
n=1

is a finite subset of P,\{p,} for every m, then F is closed. b

We leave the proof of the above assertion to the reader and observe that we are

in a situation similar to that stated above, by choosing P, to be Z,, and P, to be
o

{3l n=0,1,2,..}. We have only to prove that if F = |J F, where F,, is a finite

m=1
subset of Z,,\{y,} for every i, then F is closed. Since Z,, = W,,, it follows from our
choice of W, that Fe Fu {x}. On the other hand, F is discrete; if F = Fu {x},
x will be the only accumulation point of F; F must be sequential, since it is
a closed subspace of X; therefore there is a sequence in F converging to x. This
contradicts the fact that ¥ is homeomorphic to S, . Therefore x cannot be a limit
point of F.
Therefore F is closed. The proof is now complete.

§ 2. Corollaries.

COROLLARIES 2.1. (1) Let X be a countably compact Hausdorff space and let
X\{x} be normal for each x in X. If Y is a sequential subspace of X, then Y is
Fréchet.

(2). In every countably compact Ts space every sequential subspace is Fréchet.
(T's spaces are, by definition, the hereditarily normal spaces).

(3) (Countably compact+Ts-+sequential) = Fréchet.

(4) Every compact Ts sequential space is Fréchet.

Proof. Among these four a'ssertions, each follows easily from the preceding.
The first of these assertions follows from Theorem 1.2.

COROLLARIES 2.2. (1) Let X be a countably compact T, space; let xe X be
such that X\{x} is normal. Let (x,) be a sequence of distinct elements different from x
converging. to x. Then there exists a sequence of pairwise disjoint open sets
Wi, Wa, wow Wy, .., such that x,, e W, for every n and such that every neighbourhood
of x contains W, completely for all but a finite number of values of n.

(2) Let X be a subspace of a compact T space. Let (x,) — x, in X. Then there
exists an open neighbourhood W,, of x,¥n, such that every neighbourhood of x contains
W, for all but a finite number of n.

(3) The countable Ts space S, does not admit any Ty compactification.

Proof. To prove (1), apply Lemma 1.1 to choose the W,’s. Now let W be
any neighbourhood of x. Assume that W does not contain W, for an infinity of
'values of 7. Then choose some y, in W,\W for these values of n and let F be the set
thus formed. Then F< F U {x}. But F is infinite and discrete. Since X is countably
compact, F cannot be closed. On the other hdnd x is not a limit point of F, since W
is a neighbourhood of x disjoint from F. Thus we have arrived at a contradiction.

(2) can be deduced from (1), and (3) from (2).
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COROLLARY 2.3. Let X be a sequential space such that X\{x} is a T,-space
for every x in X. Let n be a positive integer. Then the following are equivalent:

1) The sequential order of X is >n.

2) X contains a subspace Y such that Y is homeomorphic to S,.

3) X contains a subspace homeomorphic to S,.

4) X contains a closed subspace homeomorphic to S,.

Proof. The equivalence of 1) and 2) has been proved in [1]. Tt follows from
Theorem 1.3 that 2) implies 4). It is obvious that 4) implies 3) and 3) implies 2).

COROLLARIES 2.4. 1) Let P be any closed-hereditary property not possessed
by S,. Then every sequential Ts-space possessing P is Fréchet.

2) Every (countably) compact sequential Ts-space is Fréchet.

Proof. 1) follows from Corollary 2.3 by taking » = 2. Then 2) follows easily
from 1).

COROLLARY 2.5. There is a space Z with the following peculiar properties:

1) Z is a Ts space, but no compactification of Z is Ts.

2) Z is a Ts space; Z can be embedded in a T, sequential space; but still, Z cannot
be embedded in any T sequential space. )

3) Z is a countable T, space; Z can be embedded in a sequential T, space; but Z
cannot be embedded in any countable sequential T, space.

Proof. Consider the space y* which is essentially the only. known example
of a compact Hausdorff sequential non-Fréchet space. (See [2] and [6].) By the
result of [1], there is a subspace Z of ¥* such that Z is homeomorphic to S,. We
claim that this Z has the stated properties.

1) Z is Ty, since * is so. Z is also countable. Every countable T3 space is T's-
Therefore Z is a Ts-space. It can be deduced from Corollary 2.2 (2) that Z cannot be
embedded in any compact T space.

2) Zis already a subspace of the T,-space y*. Suppose X is a sequential T's space
containing Z. Then by Theorem 1.3 there is a subspace ¥ of Z homeomorphic to S.
This implies that S, can be embedded in y*, which is false as proved in [6] or [4].

3) It can be proved along the lines of [6] that for a countable sequential T', space
an analogue of Theorem 1.3 holds. Considering this for r = 2, we get that Z cannot
be embedded in a countable sequential T, space; for, as observed already, Z does not
contain a subspace homeomorphic to S,.

§ 3. Remarks.

1) To illustrate Theorem 1.2 with an example, we consider the space y*. Here,
there is a unique point x, of sequential order 2. When that point is removed, we get
the space . It is easy to prove that is not normal (see [3], p. 79). If ¢ is an isolated
point of *, then y*\{r} is compact Hausdorff and hence normal. If ¢ is a limit
point of y* different from x,, then there is a compact open neighbourhood ¥ of ¢
in \*, every other point of which, is isolated. Thus y*\{r} is the disjoint topological
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sum of a compact Hausdorff space and a discrete space. Thus we have y*\{t} is
normal for every point ¢ different from x,.
It is also easy to see that every point of y* different from x, is a Fréchet-point.
Thus this example helps to appreciate the force of Theorem 1.2. In fact, it is
this example that motivated the main result of this paper.

2) Itis a good guess that the spaces S, serve as test-spaces for sequential order
in the following sense: A sequential 7, space has sequential order >n if and only
if it contains a copy of S,. However this guess is not true. What is true is a very close
result: A sequential T, space has sequential order >n if and only if it contains
a subspace whose sequential coreflection is homeomorphic to S,. This has been
proved in |1]. Several years later, the falsity of the first guess was proved in [6].

Naturally one likes to know whether the first guess is correct, when we restrict
our attention to a fairly nice class of spaces. In this direction [6] gives the first positive
result that it is so in the class of countable spaces.

Our Corollary 2.3 supplements these results by showing that the first gues
holds good in the class of hereditarily normal spaces. :

3) We leave open a simple-looking question: What are all the subspaces of
compact Ts spaces? Every such space must be obviously 75. Further whenever
(x,) — x, there should exist neighbourhoods ¥, of x, such that every neighbourhood
of x must contain ¥, for all but a finite number of values of n.

4) See [5] for the definitions of spaces S,, sequential order at a point, etc.

Added in proof. The following is a noteworthy consequence: For any sequential Ty
space, the sequential order and the k-order coincide.
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IIpocTpaHCcTBa ¢ €IMHCTBEHHON TOUKOH
IKCTPEeMANBHOW HECBAZHOCTH

B. M. Mansixux 1 B. M. Virsanor (Mocksa)

Abstract. R. Telgdrsky posed in [4] the following question: Does there exist a completely
regular space X with exactly one non-isolated point * of extremal disconnectedness ? In this paper
there are constructed two dense in itself spaces providing an answer in the positive sense: 1. A count-
able regular space X; and 2. (CH) A compact Hausdorff space X in which points of X-{*} have
countable character.

P. Temrapckuit [4]-IOCTaBUI CIEMYIOLy o npobremy:

CyllecTByeT NI MPOCTPAHCTBO € ONHOH ¥ HEMSOTMpOBAHHOMN TOUKOH 3KCTpe-
MaJbHON HEeCBSASHOCTH ?

HaromeeM, YTO B TOHONOTMIeCKoM mpocrpascTee (X, 7) TOUKA X HasbIBACTCA
mouxosi axcmpemasrotl. necsasrocmy (KOPOTKO ,,9. H.”), eCi x & [Vl n [V,] nna
JHOBBIX MM3BIOHKTHRIX Vi, V, et

OCHOBHBIE De3yNsTaTHl HAcroAmelt paGoTbl (POPMYIMPYIOTCA | CHIEAYIOLIMN
obpasom:

Ilepmer 1. CyIiecTBYeT CUETHOE PECYJIAPHOS IUIOTHOE B CeGe IPOCTPAHCTBO
POBHO C ONHOH TOUKOH 3. H. -

Tirsmer 2 [CH]. Cymectsyer WioTHbI B cefe GUKOMIAKT POBHO C OHOI TOU-
Kofi 9. H., OCTAJBHBIE TOUKH MMEIOT CUETHBIN XapaxTep.

Yacrs paboTBI, CBASAHHAR C MPUMePOM 1, TPHHAIIEMIT B. M. VeaHOBY,
ocransuoe — B. M. ManpixuHy.

1. Ilocrpours xaycropdoBo MPOCIPAHCTBO POBHO C OXHOM ¥ HEM3OIUPOBAHHOK
TOUKOM 9. H. He cocrasiser mumxaxoro Tpyma. Ilycrs (X, T) — npousBonbHOE
xaycrnop(oBo e GHKOMIAKIHOE NPOCTPAHCTBO. CIreIoBaTeBHO, CYIIECTBYET L(EH-
TpupoBannast cucreMa {7, He HMEIONAA B IPOCTPAHCTBE (X,T) rouxu pu-
xocHomenust. Jlomomuum ee [0 KakoH-HuOYHb MAKCAMATGHOM LEHTPHPOBAHHOK
CHCTEMBI OTKPBITHIX MHOMKECTE 7. TLosormm Tereps X, = X U Y, T,=Tu{{nv
U A| A en}. Jlerxo yGemuTsCs, YTO MPOCTPAHCTBO (X,, T,) xaycmopdoBo 1 TOUKE
{n} B HeM — TOUKA 3. H.

TIpegnosxeaue 1. IIpocmpancmeo (Xy, T,)) pezyAspHo eca v MoABKO eCau pezyaapHO
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