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In fact, for every p € X, every sufficiently small neighbourhood of p hasa count-
able, regular base of regions (see [4], p. 231, Theorem 8). Hence there exists a de-
creasing sequence of continua K;< X such that

pelntk; for all j.

(= NK and
j=1

Then F(p) = ﬂ F(Kj) by virtue of (VIII). Therefore by (IX), for every open

set Y=Y such that F(p)cV there exists a j' such that F(K;)<=V. (VI) follows.

ProBLEM. Can the c-function in Theorem 6 be replaced by a single-valued
function ?
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Products of perfectly normal spaces
by

Teodor C. Przymusifski (Warszawa) *

Absiract. Answering a question raised by R. W. Heath, we construct, assuming Continuum
Hypothesis, for every natural »n a separable and first countable space X such that

(a) X" is perfectly normal;

(b) X"*1 is normal but X"** js not perfect.

The space X (and X"**) has cardinality , and can be made either Lindelof or locally com-
pact and locally countable.

We show that the existence of such spaces is independent of the axioms of set theory.

§ 1. Introduction. In 1969 R. W, Heath [7] raised a question whether for n>2
there exist spaces X such that X" is perfect but X"** is not. This question has also
been repeated by D. Burke and D. Lutzer in [2] and has been brought to the author’s
attention by Eric van Douwen. '

In this paper we give a positive answer to this question, constructing, under the
assumption of the Continuum Hypothesis (CH), the following two examples.

ExAMPLE 1. (CH) For every n<w there exists a first countable, locally compact,
locally countable space X of cardinality w; such that:

(a) X" is perfectly normal and hereditarily separable;

(b) X" is normal but X"*! is not hereditarily normal ().

ExAMPLE 2. (CH) For every n<w there exists a first countable space X of
cardinality w, such that:

(a) X" is hereditarily Lindelof and hereditarily separable;

(b) X"+ is Lindeldf but X"*' is not hereditarily Lindelof.

This paper is closely related to our paper [16] where, under the assumption
of Martin’s Axiom, positive results concerning the preservation of perfectness and
perfect normality in product spaces are given.

* This paper was oryginated while the author was 2 Visiting Assistant Professor at the

University of Pittsburgh in 1976/77.
(% Let us recall that a perfectly normal space is hereditarily normal and that a Lindelof space

is perfect if and only if it is hereditarily Lindelof.
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We were unable to construct a “real” example answering Heath’s question,
although it is natural to conjecture that such “real” examples exist. Nevertheless,
the following theorem, which is based on results obtained in [16] and other results
already’existing in the literature, shows that our Examples 1 and 2 are independent
of the axioms of set theory (?).

THEOREM 1. If n22 and X is a space such that X" is perfectly normal but X"**
is not perfect, then X cannot belong to any of the following classes of spaces:

(a) O-refinable p-spaces,

(b) strict p-spaces,

(c) M-spaces,

(d) locally connected and locally compact spaces,

(e) linearly ordered spaces,

(f) monotonically normal p-spaces,

(g) pseudocompact spaces.

Moreover, if Martin's Axiom plus the negation of the Continuum Hypothesis
(MA+ 1CH) is assumed and the cardinality of X is w{, then X cannot belong to any
of the following classes of spaces:

(h) O-refinable spaces:

(i) separable spaces;

(j) complete cce spaces;

(k) generalized ordered spaces.

It can be shown (see Section 2) that the assumption of #32 is essential in all

the above statements (a) through (k), with the possible exception of (j). This should
explain the motivation behind Heath’s question.

Spaces described in Examples 1 and 2 cannot be both paracompact and locally
compact (see [18] or Theorem 1, (a), (b) or (c)). One easily sees that they also cannot
be both paracompact and locally countable. ‘

The construction of Examples 1 and 2 relies heavily on the techniques oryginated
by K. Kunen (see [9] and [11]) and E.van Douwen [4]. It also exploits the notion of
n-cardinality (see [14]) and methods developed in [15).

Theorem 1 is proved in Section 2 and Examples | and 2 are constructed in
Secrion 3.

§ 2. Proof of Theorem 1.

Proof of Theorem 1. {(a) Kullman [12] proved that a 0-refinable p-space
with a G-diagonal is a Moore space; (b) Kullman also proved that a strict p-space
with a regular Gs-diagonal is a Moore space; (¢) Chaber showed [3] that M -spacas
with Gy-diagonal arc metrizable; (d) Reed and Zenor [17] proved that a locally
connected and locally compact space whose square is perfectly normal is metrizable;

(®) For undefined notions and symbols the reader is referred to [5] and [2].
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() Lutzer [13] showed that linearly ordered spaces with G,-diagonals are metrizable;
(f) monotonically normal p-spaces with G,-diagonals are metrizable [8]; (g) normal
pseudocompact spaces are countably 'paracompact and thus M-spaces. (h) Since
perfect f-refinable spaces are subparacompact [1], this follows from Corollary 3
in [16]; (i) this is implied by Corollary 7 in [16]; (j) since under (MA + "1CH] first
countable complete ccc spaces are separable [6], (i) applies; (k) see [16]. B

Let us now show that the assumption of n>2 is essential in all statements (a)
through (k) of Theorem 1, with the possible exception of (j).

The familiar example of the “double arrow™ (see [5]; Exercise 3.10.C) due to
Alexandroff and Urysohn is a compact, hereditarily Lindeldf, hereditarily separable,
linearly ordered space without a Gj;-diagonal (compact spaces with Gs-diagonals
are metrizable [18]; see also Theorem !, (a), (b) or (c)). This shows that n>2 is
essential in (a), (b), (c), (e), (f) and (g).

The Souslin line, whose existence is consistent with the axioms of set theory, is
a locally connected, compact, perfectly normal, non-separable linearly ordered space,
which does not have a Gz~diagonal. This implies the necessity of #3>2 in (d).

If we build the “double arrow™ starting with a subset of the unit interval of car-
dinality w,, then we will get a hereditarily Lindelof and hereditarily separable
linearly ordered space which, as one easily checks, does not have a G,-diagonal.
Thus, n2 is necessary in (h), (i) and (k).

§ 3. Construction of Examples 1 aund 2. Let us first recall the definition of
n-cardinality.

DEFINITION. [14] For a subset .4 of M", where M is an arbitrary set, we define
the u-cardinaity |4|, of A by

|4], = max{|B|: Bc4 and p; # q;, for i = 1,2, ..., n and

any two distinct points p = (py, ..., ) and g = (g1, .., gu) Of B}.

We say that A in n-finite (n-countable, n-uncountable) if its n-cardinality is
finite (countable, uncountable). B

The following proposition has been proved in [14].

ProposiTiON 2. ' A is not n-finite, then

4], = min{}Z|: ZeM and Ac | (M “IxZxM'H . H
i=1

Construction of Example 2. For the sake of simplicity, we shall give
a detailed construction of Example 2 only in case of 1 = 2. The proof of the general
case is quite analogous. ‘
Denote by M the space of irrationals. By Theorem 2 in [14] there exists a sub-
set .S of Af such that
1) S¥n F#3 s (M8 ¥ A F, for every 3-uncountable closed subset F
of M3,
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Let us fix a one-to-one correspondence between points of M and ordinals
a<ew, = 2°. From now on we shall identify M with w; = {a: «<w,}. Denote
by & the topology on M = w, generated by the standard metric ¢ on the real line
and let {4,: y<w,} be the family of all countable subsets of M 2 = w?. Clearly, we
can assume that o = {a: a<w} is dense in 0y = M, Snw =& and

@ A,y

For every a<w;, n<w and i = 1,2,3 we shall define subsets B(x,n) of
®; = M so that the following conditions are satisfied:

for every y<wy .

(3) Foreveryi= 1,2, 3 the collection {#(e0)},<,, of families B,(x) = {By(a, n)}, <,
satisfies the axioms of a neighbourhood system and therefore generates
a topology 7; on w; = M in which families % ,(«) form bases of neighbour-
hoods of points e M (see [5]; Proposition 1.2.3);

(4) For every i = 1,2, 3 the topology t; is finer than ¢;

(5) Foreveryi=1,2,3, n<w and a<w, the sets B;(x, n) are e-closed and if
o€ S then they are also e-open;

(6)  For every o.e M\S we have [B;(x, 0) x By(0r, 0) x By(at, )] n 4 = {(a, o, @)},
where 4 = {(8, B, B): f<w,} is the diagonal of M?;

(7} Forevery i,j=1,2,3, a<w;, <o and y<a:
(@) (¢, ®) € Clyxy, 4y, if (2, @) € Clyy, A4,
(®) (@, B) € Clyuyydys if (@, ) € Cly,dy;
(©) (B, ) € Clyyy A, if (B, 2)e Cly, 4,.

Define X to be the topological sum of spaces X; = (M, 1)), i.e.

w

®) ' X= @ M,1).
i=1

[

We shall show first that the space X has the desired properties. -
From (3) and (4) it follows that X is first countable and Hausdorff. Conditions (5)
and (4) imply that X is zero-dimensional, hence completely regular.

I X3 is Lindeléf. Suppose the contrary and let m be the smallest natural
number < 3 such that X™ is not Lindeléf. Consequently, there exist /;, ..., 7, = 1,2, 3
such that the space Y= X; x..x X, = (M" v, %.. x1;,) is not Lindeldfl, Let %
be an open covering of Y. By (5) there exists a countable family 7" of cuclidean-
open subsets of M™ which covers S™ and refines %. By (1) the euclidean-closed subsct
F=(M"U?)xM*™ of M® must be 3-countable, because Fn §3 = @.
It follows that the subset K = M™\ (} ¥ of M™ is m-countable and there exists
a countable subset Z of M such that

n
KeL= |J (M=t xZx ™y,
- f=1

j=
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Since X™~* is Lindeldf, the subspace L of Y is also Lindelsf and can be covered
by a countable subfamily #" of %. The countable open covering % = ¥ U ¥
refines % and this contradicts our assumption that X3 is not Lindelsf.

I X3 is not hereditarily Lindelof. By (1) the set M\S must be uncountable,
but by (6) the subspace

T={(a,0,)e M3: e M\S}
of Xy x X, x Xy = (M3, 7, X1, x1;) is discrete-in-itself and thus T is not Lindelsf.

IO. X? is hereditarily Lindelof and hereditarily separable, The following four
lemmas are essentially the same as those proved in [11].

LemMma 1. For every k = 1,2,3 and every subset A of M there exists a y<w,
such that if azy and o€ CLA, then oe Cl, 4.

Proof of Lemma 1. Let B be a countable euclidean-dense subset of 4. There
exists a y<w, such that BxB = 4,. Let o e Cl,4 and «>y. Then « e Cl,B and
therefore (o, o) e CI,Bx CL,B = Cl,,,Bx B = Cl,,,4,. Consequently, by (7),
(o, 1) € Clyy e 4, = Cl BxB=Cl, BxCl, B and aeCl, B=Cl, 4. &

LEMMA 2. For every k =1,2,3 the space X is perfect and hereditarily sep-
arable.

Proof of Lemma 2. Let U be an open subset of X;. By Lemma 1 the set
U\Int, U is countable, which easily implies that U is an F,-subset of X. Let B be
an arbitrary subspace of X and let 4 be a euclidean-dense countable subset of B.
By Lemma 1, there exists a y<ew, such that the countable set 4 Uy is 7,-dense
in B. &

LEMMA 3. For every k= 1,2,3 and every Ac M?* there exists a y<w; such
that if («, B) € Cl,x,A4 and azy, then (a, )€ Cl, « 4.

Proof of Lemma 3. Let {V,}.<, be a countable base for ¢ and let
A, = n(A N (Mx V,))=X,, where n: X, x M — X is the projection. By Lemma 1,
for every m<o there exists a y,<w; such that if «>y, and ae Cl4,, then
aeCl, A4,. Let y=sup{y,}n<e> %>y and assume that (, ) e Cl,x.4. Take
a neighbourhood Ux ¥ of («, f) in X,x M, where V' = V,,, for some m. Since
aeCln(d n(MxV)) = Cl4, and a>y,, we have a € Cl, 4,. Therefore, there
exists § € 4,, n U and n e V such that (5, ) € A. Consequently, (6, 7)€ A n (Ux V)
and (¢, )eCl, 4. B

LeMMA 4. For every i,j = 1,2,3 and every A4 cM? there exists a y such that
if (a, B) e Clyy, 4 and o, f=y, then (a, f) € Cl x4 .

Proof of Lemma 4. Let B be a euclidean-dense countable subset of A. There
exists <o, such that B = 4,. Applying Lemma 3 twice we find a y<w,, y=n
such that if «, B2y and (x, B)& Clyx.4,. then (o, f) € Cl . Ay N Clixy 4, If
(¢, e Clx,A and a, By, then (x, )€ Cly 4y, (@, B) € Cl,x 4y 0 Clyxr, 4y,
n<a and n< f. Depending on whether a = B, o< B or o> f we use one of the con-
ditions (7) (), (b) or (¢) to show that (x, B) € Cl,,x;, Ay Clyx,, 4. W

T X Tk
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Since X? is Lindelof it remains to show that X2 is perfect and hereditarily
separable. To this end, it is enough to prove that for arbitrary i, j = 1, 2, 3 the space
Y = X;x X; has these properties. :

Let U be an open subset of Z. By Lemma 4 there exists a y<w, such that

UNInt, UcT, = U [{a} x X; 0 X;x{a}].
a<y

By Lemma 2, T, is a perfect F,-subset of Y. Therefore,
U = Int,,.,Uu (T, n 0),

as a union of two F,-subsets, is an F,-subset of Y.

Let B be an arbitrary subspace of ¥ and let 4 be a countable euclidean-dense
subset of 4. By Lemma 4, there exists y<w; such that B\Cl, x,,A=T,. Since
Lemma 2 implies that T is hereditarily separable, the space B is separable in Y.

This completes the proof of the properties of X. [t remains to construct sets
Bj(«, n) satisfying properties (3)-(7). We shall conduct the construction by induction
on a<w;.

For every a<w, n<w and i =1, 2,3 define B(x, n) = {a} and assume that-

a<w; and that sets B,(f§, n) have been constructed for f<o, i = 1, 2,3 and n<ow.
We will define sets B(«,n), for i =1,2,3 and n<o.

If @e§, then By(x,n) will be an arbitrary e-clopen subset of M of
¢-diameter <1/(n+1) containing «.

Suppose o« € M\S. For every y<a such that (x, a) € Cl ., 4, there exists a se-
quence {(X,, ¥)}s<e Of points of A, such that (x,, v,) o (=, @). By (2), for every n

the set P,(y) = {x,, y,} is contained in a.
For every y<a, f<a and j=1,2,3, if («, f) € Clyx . ju4, then there exists
a sequence {(x,, ¥»)},<o of points of A4, such that (x,, y,) —= (o, §). We put
’ EXTjla

Qn('ys ﬁ:i) = {xn}'
Similarly, for every y<ea, f<o and i=1,2,3, if (/J,a)eClrd,mAy, then
there exists a sequence {(x,, »,)}n<w of points of 4, such that (x,, y,)—s(f, &).
Tijuxe

We put R,(y, B,1) = {y.}.

Let us notice, that in the above described manner we have defined only coun-
tably many sets. It is easy to show that there exists a sequence T' = {ctw}m<w OF
different points «, <« which e-converges to « and has the property

() for every y<o, f<ao and i,j=1,2,3 the sets {n<w: P,p)=T},
{n<w: 0, B,))=T} and {n<w: Ry, B, {)=T} are infinite, provided that
the corresponding sets P,(y), Q(y, 8,/) and Ry, B, i) are defined.

It is clear, that we can decompose w into three disjoint sets Ly, L,, Ly so that

each of the sequences T = {w,,: m € L;} has the property (9), with T replaced by T}.

Let us find disjoint ¢-open sets U,, such that

(10) a,€U,, a¢ U, and the g-diameter of U, is <1/(m+1).

icm®
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By (4), for every i=1,2,3 and m<w we can find an /<o such that
o, € By(a,, )= U,. Put B/(m) = B(a,, ) and define

(1) Bi(e,n) = {o} U U {By(m): m>n and me o\L;}.

Let us briefly check that the above defined family of sets By(x, n) satisfies con-
ditions (3)-(7). One easily sees that conditions (3)-(6) are fulfilled. To illustrate the
proof that (7) holds, let us show for instance that (7a) takes place.

Let a<w, y<o, 1,7 = 1,2,3 and (z, &) € Cl,x,4,. It suffices to show that for
every n

12) Ba,m)x Bi{a, M) " 4, # D .

Take k different from i and j and notice that the intersection By(x, n) N B, 1)
contains almost all elements of the sequence 7. Therefore, by (9) there exists an n
such that

P,(y)= By, n) N By(x, n),
which implies that
' (%45 Yu) € B, m) X B, n) 0 A, .

This proves (12) and completes the construction of Example 2. M

Construction of Example 1. The construction of Example 1, although
similar to the construction of Example 2, is nevertheless more complicated. The
reason for it is that this time in order to ensure the normality of X"*' we
additionally use a technique introduced by van Douwen in [4] and later improved
by the author in [I5].

We shall only briefly sketch the construction in case of n = 2.

For every a<wy, n<wandi = 1, 2, 3 we construct again sets B(x, Hc M = o,
so that conditions (3), (4) and (7), together with conditions (13), (14), (15) and (16)
below, are satisfied.

(13) Foreveryi=1,2,3, n<w and a<o, the sets By(«, n) are ¢-compact sub-
sets of a+1 = {f: f<a};
(14) For every o € M\S we have
[By(a, 0) x By(at, 0) % By(or, )] 0 A< {(B, B, f): B =0 or f<o};
15 {(B, B, P): f<w} is (7 X1, x 13)-dense in 4;
(16)  For every pair 4, B of countable subsets of M? if Clyy,xsd N Clxox,B

is 3-uncountable, then Cl,xyxed M Clyxeyxe, B # @

We define X as in (8). First countability, complete regularity, local compactness
and local countability of X easily follow from (3), (4) and (13). The normality
of X¥? can be derived from (16) (cf. [4], [15]). The subspace (M\S*n 4 of
X, x X, x X, is not normal, because by (15) it is separable and by (14) it contains
a closed discrete subset (MN\S\®)® N 4 of cardinality @, = 2° (use Jones’ Lemma).
The proof that X is perfect and hereditarily separable is the same as in Example 2. ®
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PROBLEMS
1. Does there exist a “real” example of a space X such that X* is perfect (or,

better, perfectly normal) but X is not? Can it have cardinality e, ?

2. Does there exist a consistent example of a Moore space X such that X2 is

normal but X3 is not?

[1]
21
[3]
[4]

[5]
[61

7
18]
9
[10]
[11]
[12]
[13]
[14]
[15]

[16]
[17]

[18]

3. Suppose X is generalized ordered and X? is perfect. Is X perfect?
4. Suppose X2 is perfectly normal. Is X submetrizable?
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Prolongationally stable discrete flows
by

Ronald A. Knight (Kirksville, Mo.)

Abstract. Our objective in this paper is to obtain properties for certain homeomorphisms of
HausdorfT spaces. In particular we extend the conclusions obtained by Knight in [7] for continuous
flows of characteristic 0 on Hausdorff phase spaces to discrete flows.

1. Introduction and preliminaries. Flows of characteristic O from an important
subclass of closed flows satisfying certain bilateral stability criteria. Ahmad intro-
duced continuous flows of characteristics 0*, 07, and 0% in [1] and Knight intro-
duced continuous flows of characteristic 0 in [5]. Classifications and characterizations
of such flows were given in [1], [2], [5], [6], [7], and [8]. Lam made some obser-
vations about discrete and continuous flows containing subflows of character-
istic 0% in [9].

In this paper we extend the results of [7] to discrete flows. Much of the reasoning
used in [7] yields similar discrete flow properties, however, several of the tech-
niques employed either do not apply or directly apply here. Virtually all continuous
flow results of [7] extend to discrete flows. In Section 2 we analyze discrete flows
of characteristic 0 and in Section 3 we give characterizations of such flows.

The standard terminology, notations, and definitions used in the references
cited above are used in this paper. The sets of integers, nonnegative integers, and
nonpositive integers are denoted by Z, Z*, and Z -, respectively. By C(x), K(x),
L(x), D(x), and J(x) we mean the orbit, orbit closure, limit set, prolongation, and
prolongational limit set of x, respectively. The corresponding positive and negative
concepts carry the appropriate + or — superscript. The statements y € J * (x) implies
xeJ(y), yel*(x) implies xeJ* (), and ye K(x) implies J*(x)=J*(}) are
well known tools for continuous flows which are easily demonstrated for discrete
flows.

A discrete or continuous flow (XX, ) is said to be of characteristic 0% (07)
if D*(x) = K*(x)(D"(x) = K™(x)) for each point x in X, or equivalcnjtly, if

J*(x) = L*(x)(J ~(x) = L~ (%)) for each point x in X. A flow of characteristics o+
and 0~ is of characteristic 0%. We say that (X, n) is of characteristic 0 provided
D(x) = K(x) for each point x in X.
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