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PROBLEMS
1. Does there exist a “real” example of a space X such that X* is perfect (or,

better, perfectly normal) but X is not? Can it have cardinality e, ?

2. Does there exist a consistent example of a Moore space X such that X2 is

normal but X3 is not?
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3. Suppose X is generalized ordered and X? is perfect. Is X perfect?
4. Suppose X2 is perfectly normal. Is X submetrizable?

References

H. R. Bennett and D. J. Lutzer, A note on weak 0-refinability, Gen. Top. Appl. 2 (19 72)
pp. 49-54.

D. K. Burke and D.J. Lutzer, Recent advances in the theory of generalized metric spaces,
Topology, Proc. Memphis State Univ. Conf. 1975, New York 1976, pp. 1-70.

J. Chaber, Conditions which imply pactness in c bly spaces, Bull, Acad.
Polon. Sci. 24 (1976), pp. 993-998.

E. van Douwen, A technique for constructing honest, locally compact submetrizable examples,
preprint.

R. Engelking, General Topology, Polish Scientific Publishers, Warszawa 1977.

A. Hajnal and I. Juhdsz, A4 consequence of Martin’s Axiom, Indag. Math. 33 (1971),
pp. 457-463.

R. W. Heath, On p-spaces, q-spaces, r-spaces and “s” spaces, Proc. Auburn Top. Conf.
March 1969, pp. 123-134.

~ D.J. Lutzer and P. L. Zenor, Monotonically normal spaces, Trans. Amer. Math. Soc.
178 (1973), pp. 481-493.

I Juhdsz, K. Kunen and M. E. Rudin, Two more hereditarily separable non-Lindeléf

spaces, Canad. J. Math. 28 (1976), pp. 998-1005.

M. Kat&tov, Complete normality of cartesian products, Fund. Math. 35 (1948), pp. 271-274.
K. Kunen, Products of S-spaces, hand-written notes.

D.E. Kullman, Developable spaces and p-spaces, Proc. Amer. Math. Soc. 27 (1971),
pp. 154-160. .

D.J. Lutzer, A metrization theorem for linearly orderable spaces, Proc. Amer. Math. Soc.
22 (1969), pp. 557-558.

T. C. Przymusinski, On the notion of n-cardinality, Proc. Amer. Math. Soc., 69 (1978),
pp. 333-338.

— Normality and paracompactness in finite and countable cartesian products, Fund, Math.
105 .(1979), pp. 9-26.

— 4 note on Martin’s Axiom and perfect spaces, Collog. Math. (to appear),

G. M. Reed and P.L. Zenor, Metrization of Moore spaces and generalized manifolds,
Fund. Math. 91 (1976), pp. 203-210.

V. Sneider, Continuous images of Souslin and Borel sets, Metrization theorems, Dokl. Acad.
Nauk SSSR. 50 (1945), pp. 77-79 (in Russian).

INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES
‘Warszawa

Accepté par la Rédaction le 2. 1, 1978

icm

Prolongationally stable discrete flows
by

Ronald A. Knight (Kirksville, Mo.)

Abstract. Our objective in this paper is to obtain properties for certain homeomorphisms of
HausdorfT spaces. In particular we extend the conclusions obtained by Knight in [7] for continuous
flows of characteristic 0 on Hausdorff phase spaces to discrete flows.

1. Introduction and preliminaries. Flows of characteristic O from an important
subclass of closed flows satisfying certain bilateral stability criteria. Ahmad intro-
duced continuous flows of characteristics 0*, 07, and 0% in [1] and Knight intro-
duced continuous flows of characteristic 0 in [5]. Classifications and characterizations
of such flows were given in [1], [2], [5], [6], [7], and [8]. Lam made some obser-
vations about discrete and continuous flows containing subflows of character-
istic 0% in [9].

In this paper we extend the results of [7] to discrete flows. Much of the reasoning
used in [7] yields similar discrete flow properties, however, several of the tech-
niques employed either do not apply or directly apply here. Virtually all continuous
flow results of [7] extend to discrete flows. In Section 2 we analyze discrete flows
of characteristic 0 and in Section 3 we give characterizations of such flows.

The standard terminology, notations, and definitions used in the references
cited above are used in this paper. The sets of integers, nonnegative integers, and
nonpositive integers are denoted by Z, Z*, and Z -, respectively. By C(x), K(x),
L(x), D(x), and J(x) we mean the orbit, orbit closure, limit set, prolongation, and
prolongational limit set of x, respectively. The corresponding positive and negative
concepts carry the appropriate + or — superscript. The statements y € J * (x) implies
xeJ(y), yel*(x) implies xeJ* (), and ye K(x) implies J*(x)=J*(}) are
well known tools for continuous flows which are easily demonstrated for discrete
flows.

A discrete or continuous flow (XX, ) is said to be of characteristic 0% (07)
if D*(x) = K*(x)(D"(x) = K™(x)) for each point x in X, or equivalcnjtly, if

J*(x) = L*(x)(J ~(x) = L~ (%)) for each point x in X. A flow of characteristics o+
and 0~ is of characteristic 0%. We say that (X, n) is of characteristic 0 provided
D(x) = K(x) for each point x in X.
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2. Discrete flows of characteristic 0. Throughout this section we shall consider
a discrete flow (X, z) on a Hausdorff space X. The next three propositions are a resunlt
of applying the proofs for the corresponding propositions given in [7] for continuous
flows to discrete flows.

ProrositioN 1. If (X, 7) is of characteristic O, then any restriction to an invariant
subset of X is of characteristic 0.

PRroPOSITION 2. The following statements are equivalent,

(a) (X, n) is of characteristic 0.

(b) T (x) = J~(x) = @ or K(x) for each xe X.

© J*(x) =J~(x) = C(x) or L(x) for each x€ X.

PROPOSITION 3. Let (X, m) be of characteristic 0, If L*(x) # @ (L~(x) # ©)
Jor some xe X, then J¥(x) = J7(x) = L*(x)(J*(x) = J7(x) = L™()).

COROLLARY 3.1. Let (X, m) be of characteristic 0. If J*(x) # @ for some x & X,
then

J(x) =J"(x) =J7(x) = D(x) = D*(x) = D" (x) = K(x),
K(x) = K*(x) = L(x) = L*(x) if L*(x) # O, and
KxX)=K () =Lx=L"(x)if L7(x) # @.
PROPOSITION 4. If (X, ) is of characteristic 0, then L*(x) (L™(x)) is minimal
for each xe X. :
Proof. For L*(x) = @ the result is trivial. Let y & L*(x) for some x € X, Then
KO)eL* (=T (=T ()=D() = K(),
and hence, L*(x) = K(y). Thus, L*(x) contains no nonempty closed invariant proper
subset.
CorOLLARY 4.1. Let (X, =) be of characteristic O and X be locally compact.
IfL*(x) (L™(x)) is compact for some x in X, then L*(x) (L™ (x)) is positively and
negatively minimal and each point of L¥(x) (L™(x)) is recurrent. '

Proof. The minimality properiies follow easily. Recurrence follows from VL. 5
and VI 6 p. 90 of [10]. i

PrOPOSITION 5 For a flow (X, m) of characteristic O with locally compact phase
space the following statements are equivalent for xe X.

(a) L*(x) is compact minimal.

(b) L*(x) consists of almost periodic points.

(©) L*(y) # D for each y in L*(x).

(@) L*(p) = L*(x) for each y in L*(x).

Proof. The equivalence of the statements follows trivially whenever L™ (x) = @&
for xe X. Let L*(x) # & for some xe X, According to Proposition 2.5 of [4],
(a) and (b) are equivalent. It is easy to see that (a) implies (c). If (c) holds, then for
¥ & L*(x) we have x & J (). By Proposition 3, x e L*(y), and hence, L*(y) = L*(x).
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Finally, if (d) holds, then x e L*() for each.y e L*(x). Hence, L*(x) = Aj(x} (the
region of weak attraction for x) and L*(x) is minimal. The compactness of L*(x) is
all that remains to be shown.

In order to show that L¥(x) is compact we consider the restriction (Y, ¢) of
(X, ) to the locally compact subspace L*(x). If ¥ is the only compact neighborhood
of x in Y, we are done. Let V< Y be an open neighborhood of x in ¥ with compact
closure ¥ s Y. Each orbit in Y is frequently in ¥ and Y— ¥in view of condition (d).
For each ye V we define 1, = min{teZ*: yte V and y(r—k) ¢V for some k,
0<k<t}. For y ¢ V define 1, = ¢, where z is the first point of C*(y) in ¥. By the
continuity of ¢ we have for each y € ¥ an open neighborhood V(3) of y in V and
an integer te€Z* such that 0<t<z,, V(3)tc¥Y—V, and V(y)t,=¥. Thus, for
each z & V (), 1,<t,. For any ye @V there is a least integer 1(y) e Z* such that
¥1(y) & V. Choose an open neighborhood V(y) of y such that ¥ (301 (») <= V(yt(»)).
Then for each ze V() with y e dV, zt(y) e V(pr(3)) so that 1,<t,y,. Owing to
its compactness there is a finite cover {V(y,), ..., ¥(»,)} for V. Now for y, € at:
define Oy = T(V)+tyuqn and for y,e V define O, = 1,,, 1<k<n. For any ye V
we have'#,<Q = max{Q;: 1<k<n}. For each pe VZ¥ —V there are minimum
and maximum integers t(p)e Z* and T(p) e Z~, respectively, such that pt(p)e V'
and pT(p)e V. Now

TP [e(p)—T(p)] = pr(p)e V

implies that ©(p)—T(p)< Q. Thus, pe V[0, 0, and we havc,~172+c Vo, Q1.
Since C*(x) is a subset of the compact set V[0, Q], L*(x)= V[0, Q], whence,

L*(x) is compact. This completes the proof.

COROLLARY 5.1. If (X, ) is of characteristic O with locally compact phase space
and L*(x) is a nonempty compact minimal set for some x € X, then L(x) = L*(x)
= K(x) = K¥(x) = J(x) =J*(x) = D(x) = D*(x).

COROLLARY 5.2. Let (X, m) be of characieristic O with locally compact phase
space and let L*(x) be a nonempty compact minimal set for each x e X. Then (X, m)
is of characteristics 0%, 07, and 0%.

We introduce the following notation for convenience. For a flow (X, m) we let

M, = {x: L*(x) # © and L™(x) = @},
M, = {x: L*(x) = @ and L™(x) # O},
My = {x: L(x) = @ and J*H(x) # 9}, and
My = {x: L¥x) = L™(x) = J*(x)} -

The next theorem follows by the reasoning given for the proof of Theorem 6

of [7].
TueoREM 6. Lef (X, n) be of characteristic' 0. T) he collection

(M2 1<i<4 and M; + O}
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is a partition of X. The restriction of the flow to

(@) M, U M, is of characteristics 0 and 0%, and is of characteristics 0~ and 0%
if and only if M, = @,

(b) M, U M, is of characteristics O and 0™, and is of characteristics 0" and 0%
if and only if M, = @;

(©) M, is of characteristics 0 and 0% ; and

(d) M; is only of characteristic O provided it is not dispersive.

COROLLARY 6.1. Let (X, 7)) be of characteristic 0. Then (X, 7) is of character-
istic 0% (07) if and only if M, = My = & (M, = My = Q). Furthermore, (X, 7) is
of characteristic 0% if and only if X = M,.

COROLLARY 6.2. 4 flow (X, ) of characteristic 0 with locally compact phase
space is of characteristic 0% if and only if each nonwandering point is Lagrange stable.

A flow (X, m) of characteristic 0 is of characteristic 0% provided X = M,.
Lam noted in [9] that for X a locally compact metric space M can be decomposed
into the open and closed sets {x: J*(x) = @} and {x: x is almost periodic}, re-
spectively. In view of Proposition 5 this decomposition holds for X a locally compact
Hausdorff space. The set F = M, U M, U Mj consists of the points which do not
satisfy the characteristic 0¥ condition. The following theorem indicates that Fe M,
when X is a locally compact or a complete metric space. The results obtained by
Lam in [9] apply here only when F = @, that is, only to flows of characteristic 0 which
are also of characteristic 0%. ‘

THEOREM 7. Let (X, ) have a compact phase space. Then the characteristic 0%,
07, 0%, and O properties are equivalent. In this case X = M, and K(x) is compact
minimal for each x e X. .

Proof. A flow of characteristic 0% is of all three other characteristics. Let
(X,m) be of characteristic 0%. Then L*(x) is nonempty compact for each
xeX. For yeL*(x) we have L*(y) # O so that xeJ*(y) = L*(y»)=L*(x).
Thus, L*(x) = L¥(y) and L*(x) is compact minimal and Pojsson stable. The
compact minimality of L*(x) implies L*(x) = L™(x). If peJ " (x), then x € J*(p)
=L*(p). Also, if L*(p)AL*(x)# &, the minimality of L*(x) implies
L*(p) = L*(x). The Poisson stability of p follows as did that of x so that
PEL*(x) = L™(x) implying J~(x)=L™(x). Hence, J7(x) = L™ (x) for each xe X.
Thus, (X, n) is of characteristic 0~. A dual argument yields a flow of character-
istic 0~ to be of characteristic 0. Finally, if (X, ) is of characteristic 0, then by
Proposition 5, L*(x) is a nonempty compact minimal set for each x e X. Corollary 5.2
yields the desired result. This completes the proof.

THEOREM 8. Let (X, 1) be of characteristic O where X is metric and either locally
compact or complete. Then X = 1\71'4..

Proof. Let ¥ = {xe X: J*(x) # ©}. Choose a sequence (x;) in Y converging
to a point x. Suppose that '

X¢JH) = N {D*(x1): teZt).
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Then there is an integer #,>0 and a neighborhood ¥ of xto such that x ¢ D¥(xzy)
and x ¢ VZ*. The sequence (x;10) is ultimately in ¥, and hence,

x €T (x)e D*(nitg) = VZ+

holds ultimately. But this means that x; — x in VZ* which is absurd. Thus, Y is
closed. It is easy to show that Y is invariant.

Whenever L(x) # @ for some x € X, L(x)< Y because y e L(x) implies x € J(y),
and hence, y € J*(y). Thus, L(x) = L(x) A ¥ = Ly(x) (limit set of x relative to ¥ )
for each xe Y. Also J(x) = K(x) = Ky(x) = Jy(x) for each xe ¥, Each point
of Y is nonwandering.

We shall show that the set of bilaterally Poisson stable points ¥ A M, is dense
in Y, and consequently, that X = M, (note that X— Y= M,). Let d be the given
metric on X. For each positive integer n define

B(n) = B*(n) u B~ (n)
where )
Bf(m) = {xe ¥: d(x, xt)=1/n for each t>n}
and
B™(n) = {xe Y: d(x, xt)>1/n for each t<—n}.

For each y in B*(n) there is a sequence (x;) in B* (1) converging to y. For ¢ large
enough we have
Un<d(x;, x,1)<d(x;, ) +d(y, x;t)

so that 1/n<d(y, yt). Thus, B*(n) is closed. Similarly, B™(n) is -closed.

Next, suppose that for some 7, B*(r) is not nowhere dense in Y. Let M be an
open subset of BY¥(n) and x e M. Since x € J¥(x) there is a sequence x;— x and
t;— + oo such that x;#; — x. For some iy, x;€ M and t;>n whenever >, But
x;€ BT(n) and t;>n imply that

1/n<d(x;, xt)<d(x;, x)+d(x, ;) —0 as i— + o

which is clearly impossible. Hence, each set B¥(n) and similarly each set B~(n) is
nowhere dense in Y. The Baire Theorem yields

N{Y-Bm): neZ*} = Y- {B(m): neZ*}

dense in Y.

No point of |} B(r) is bilaterally Poisson stable since y € B(k) implies d{y, yt)> 1/k
for |k|>n. On the other hand, if ye Y—{J B(n), then there is a sequence ¢, —+ o0
with d(y, yt,)<1/n for each n, and hence, y e L*(3) = L™(y). Thus, Y- B, is
the set of bilaterally Poisson stable points of X. This completes the proof.

THEOREM 9. Let (X, ) be a flow of characteristic O with locally compact phase
space. A closed connected invariant set M with compact boundary is either a component
of X or is not isolated from nonempty compact minimal sets.

5 — Fundamenta Math, 108/2
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Proof. Suppose M is a closed connected invariant set with compact boundary
which is not a component of X. Then @ s L*(x)cdM for every x e dM, and
hence, L*(x) is compact minimal for each x € 0M. Let W be a compact neighbor-
hood of éM. If W contains no invariant subneighborhood of dM, then there exists
a sequence x, — x in M and (f,) =Z such that x,7, — y in %1~ W°. This is absurd
since D(x)=dM. Thus, éM has a compact invariant neighborhood ¥ each point of
which is contained in a compact minimal set. The proof is complete.

Letting A% (x) (45(x)) denote the region of (weak) attraction of x in X we
have the following proposition.

ProPoSITION 10. Let (X, 7) be a flow of characteristic 0. Then for each x ¢ X,

Ap(LH(x) = AT(L*(x)) = L¥(x),
AL (x)) = AY(L™(x)) = L™(x), and
Ap(C(x) = AT(C(x)) = K(x) .

Proof. The proof given for Proposition 9 of [7] suffices here. However, one
reference is cited which should be demonstrated for discrete flows. The proof here
is easy. We need to show that for any set M < X, x e 4;5(M) implies J *(x)=J *(M).
Let xe Ajp(M). Then K*(x) n M # @. If ye K*(x) n M, then

ST eI ed N (M) .
Remark. In view of the example of a continuous flow of characteristic 0 given

in [7] it is obvious that such a flow need not generate a discrete flow of churac-
teristic 0, ‘

3. Characterizations of discrete flows of characteristic 0. The characterization
given in Proposition 2 is the nearest statement to the J*(x) = L*(x),J ~(x) = L™(x),
and J*(x) = L*(x) for each x & X characierizations of flows (discrete or continuous)
of characteristics 07, 07, and 0%, respectively. The J(x) = L(x) for each xe X
property does not characterize flows of characteristic 0. Indeed, in view of Theorem 6
it is easy to construct flows of characteristic 0 for which J(x) # L(x) for some
xe X, ie. M; # Q.

Throughout this section (X, 7) is a discrete flow on a Hausdorfl phase spaceX.

THEOREM 11. Let X be locally compact. Then (X, n) is of characteristic O if and
only if

(@) edach compact minimal set is bilaterally stable and

(b) J(¥)= K (x) for cach x not is a compact minimal set.

Proof. Let (X, n) be of characteristic 0 and let & be compact minimal. Then

D(H) = {(D(x): xeH} = {K(x): xeH} = H.
Suppose that # is not bilaterally stable. Then some compact neighborhood V of H
does not contain an invariant subneighborhood of H. Any neighborhood W of H
in ¥ has a component W, such that for some teZ*, Wyrn V@ and
Wot 0 (X—V) # @. Hence, Wt n (VT —V°) % @. Thus, there are SeCIURNCes X; > X
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in H and t;>0 such that x;#,— yin 8V. But y e D(x)=D(H) = H which is absurd,
and hence, H is bilaterally stable. Condition (b) follows immediately from Prop-
osition 2. . . . .

On the other hand, let x e H where H is compact minimal. Then H = K(x).
Let ye D(K(x)) and let ¥ be a compact invariant neighborhood of K(x). Then
D(K(x))=V. Evidently, local compactness yields yeK(x), and hence,
D(K(x))=K(x). Thus, D(x) = K(x). That D(x) = K(x) for each x notin a compact
minimal set follows trivially. The proof is complete.

COROLLARY 11.1. Let (X, 7) be of characteristic O with locally compact phase
space, Each compact minimal subset of X has a neighborhood of Poisson stable points.

COROLLARY 11.2. 4 compact flow is of characteristic O if and only if each compact
minimal set is bilaterally stable.

The proof of the following theorem is the same as the one given in [7] for
continuous flows.

THEOREM 12. A necessary and sufficient condition for a flow (X, 7) to be of charac-
teristic 0 is that A*(C(x)) = D(x) for each x < X.

COROLLARY 12.1. A flow (X, ) is of characteristic O if and only if AT(M)= D(M)
Jor each invariant set Mc X.

COROLLARY 12.2. Let (X, ) be of characteristic 0. Then a compact (closed with X
regular) invariant set is asymptotically stable if and only if it is open.

Proof. An open invariant set is trivially asymptotically stable. Conversely,
Corollary 12.1 yields 4*(3) = D(M) open for any asymptotically stable set .
‘We need only show that D(M) = M. Let x ¢ M and W and V be disjoint open neigh-
borhoods of x and M, respectively. Since M is stable we can select ¥ positively
invariant yielding D¥(M)c Ve X—W. Thus, x¢ D*(M) and D*(M)cM. By
Corollary 3.1, D{M )<= M, and hence, D(M) = M.

COROLLARY 12.3. Let (X, 7) be of characteristic 0. Then a compact (closed with X
regular) connected invariant set is asymptotically stable if and only if it is a component
of X. Furthermore, if X is connected, there are no compact (closed) connected invariant
asymptotically stable proper subsets of X.
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