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Cech extensions and localization of homotopy functors
by

Jerrold Siegel (St. Louis, Mo.)

Abstract. The localized Kan extensions of Deleanu and Hilton are shown to be “j-represent-
able”. That is, they are of the form {#—, Y], where § denotes Stone-Cech compactification. The
classifying spaces are computed. Finally, the general theory of B-representable cofunctors is
discussed.

Tntroduction. Let & be a cohomology theory defined on the category of finite
CW-complexes. In [7], [8] Deleanu and Hilton consider “localized” (at a class of
primes) Kan extensions of 4 to a larger category 7. When J7 is the category of
1-connected finite dimensional CW-complexes and 4 has finitely generated coeffi-
cients, the extensions are well behaved. Here, they are shown to be prorepresentable
though not. necessarily representable ([7] 4.1-9).

In [3], [4], [5] Allan Calder and this author explored the relationship between
uniform homotopy and homotopy under hypothesis similar to those mentioned
above. It is the purpose of the present paper to make exact the relationship between
this work and that of Deleanu and Hilton. This will be seen to clarify the nature
of such localized Kan extensions.

More specifically, suppose we are given a category of topological spaces 7,
a full subcategory £ and a set valued homotopy confunctor Fon 2. Let & (resp. &)
denote the quotient categories of spaces and homotopy classes of maps. F may be
considered as a functor on & and its (right) Kan extension, F% to' & taken [9].
It is this construction that is usually called the Kan extension of F ([7], [9D.

Alternatively, one extends directly from £ to 7. We will denote this extension
by F? and call it the Cech extension of F. This name is justified since, as was shown
in [3], [5], for the “classical” pairs (Comp Ty, f Pol) (CRegT,, fPol), (Top, IfPol) ete.
F® coincides with the usual Cech extension by families of covers. .

We will be interested in determining the relationship between F? and F? for
pairs such as those considered by Deleanu and Hilton. It is worth noting in passing
that for such pairs a definition of Cech extension by families of covers does not seem
appropriate.

As an example, let m be a Serre class of finite abelian groups determined by
a set of primes. Let &, denote the category of 1 -connected finite simplicial complexes
with homology in . Finally, let fdNorm denote the category of finite dimensional
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normal spaces and hfdNorm — fdNorm, the quotient functor homotopy. We
show:

we have
F¥ = F7p,
In particular F*~ is a homotopy functor.
Next, for a given 1-connected CW-complex, let Fp denote the confunctor
€

[—, B] on &#,. Let n’ be the complement of = in the set of primes and let B — B,,
denote the localization of B at =’ (see for example [8]). Let B” denote the 1-connected
covering of the fibre of the map e. We show:

THEOREM 2. For the pair (CRegT,, &) we have that

Fy==[f—,B7.

Where f denotes Stone-Cech compactification.
Finally, combining 1 and 2 we have
THEOREM 3. For the pair (fdNorm, &,)

F§= = 18—, B.

Moreover, Fy= is half-exact carrying Puppe sequences into long exact sequences.

Theorem 3 provided an alternative to pro-representability. We will call co-
functors of the form [f—, ¥] “B-representable”. In the third section of this paper
we study the following general problem:

Given a subcategory #<f{Pol and a homotopy cofunctor F on 2, when is its
Cech extension to CRegT, f-representable?

We prove the following:

THEOREM 4. Let 2 =fPol be closed with respect to homotopy type, finite products
and equalizers. Let F satisfy the Mayer-Vietoris axiom and the wedge axiom [1].
Then if F is

(f) Abelian group valued or

(2) countable set valued
its Cech extension to CRegT, is B-representable. '

An appropriate generalization of Theorem 1 is also presented.

Finally, we would like to thank Allan Calder for his help in clarifying several
points raised in this paper.

§ 1. Preliminaries.

1.1. NoratioN. Throughout this paper we will be considering set valued cofunc-
tors on various categories and forming (right) Kan extensions [13] to certain larger
categories. For the sitnations we consider these extensions always exist (see [3]
or [5]). It will be necessary to keep track of the category over which these extensions
are formed, thus we introduce the following notation.

TueOREM 1. Let F be a homotopy functor on ¥ . Then for the pair (fdNorm, &)
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Let F: & — Set be as above. Let #<7. Denote the (right) Kan extension
of Fto 7 by

F?: 7 — Set.

We will be considering situations of the following sort. Let o= <7 .
Let F: &, — Set be as above. Considering F as a cofunctor on &, as well, we will
want to know when F?° = F?*, The following test will suffice for our applications.

1.2. Lemma [7]. Suppose:

1) For every X e|®,| (objects of #,) and xeF(X), there exists Y€ |Pol,
yeF(Y) and a map f: X— Y in &, such that F(f)y = x.

2) For every Yy, Y, €|Po|, y,€ F(Y)) and maps f;: X— Y, with Xel|?,
and F(f)y; = F(f2)ys, there exists Y|Py, yeF(y) and g;€ Morg, (Y3, Y)
with y; = F(g))y.

Then
F? = F%1,

The proof is a simple application of the point-wise definition of Kan extension.

We now wish to review the results of [3], [4], [5]. We do not require F to be set
valued.

1.3. DEFINITION.

a) Given a category &, a congruence [11] on &/ may be thought of as a functor
R: o —of such that || = ||, Ris the identity on objects, and for each X, Y e ||
we have that R: Mor (X, ¥Y)— Morg(X, Y) is onto.

b) Given a congruence R in &, a (co)functor F on o is called an R-(co)functor
if F= FRfor some F on .

) Given categories #<7 and a congruence R in 2, we defined the fodeter-
minate extension of R to  (I5] 1.5). This is a congruence R?in . When £ is a full
subcategory of 7, R? may be defined as follows.

Let f, g € Morg(X, Y). Set R?(f) = R?(g) if and only if for every R-functor F
on & we have that F*(f) = F?(g) ([5]1.12). Note that again we assume that the Kan
extensions exist. .

We will make use of the following application of the notion of codeterminate
exmnilec‘zn)}? be an R-functor on a category #SJ. Let & andyf?' be th; quotient
categories under a congruence RER” (R(f) = R(g) = R°(f) = R%(). We
have i

1.4. TueoreM ([5] 1.13). F% = F® o R That is, F® may be computed on the
quotient category. " . o )

We will usually write F? for F? since the meaning is unamplguous. .

In [3], [5] it was shown how one might compute the cod.etermmate extension
of various congruences. The following theorem Wwas the basis for those compu-
tations.

2 — Fundamenta Mathematicae CVIII/3
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1.5. TeEOREM ([5] 1.7). Given a congruence R in =7 and f, g € Mor4(X, Y),
we have that R?(f) = R?(g) if and only if for every Pe|P| and m: ¥ — P there
exists Q1 Qs s 0 €12, @,eMorg(X, Q) and m; ;€ Morg(Q;, P) (j=10,1)
such that:

1) nf = 73,001, g = nn,ﬂ(ﬂn »

2) My @p = Wypss0Pre1, 6l 1,

3) R(m;0) = R(m; y), all i.

The following definition and theorem is typical of the applications in [3], [5].

1.6. DeriNITION. Let & be a full subcategory of the category of finite poly-
hedra. Let Comp7, denote the category of compact Hausdorff spaces. Let & denote
the congruence homotopy in #. We define a congruence on Comp T, called homotopy
over 2 and denoted by /g by letting ha(f) = hg(g) if and only if for every P e |2
and w: Y — P we have that nf and ng are homotopic.

1.7. TaeoREM. Suppose P is closed under homotopy type then
) W o=hg.

Proof. By “closed” we mean that if P e|#| and if P’ is a finite polyhedron
homotopy equivalent to P then P'e|#|.

First, suppose 4°(f) = h®(g) and n: ¥ — P then 1.5 gives a prescription for
a homotopy of nf to mg.

Next, let F: XxI— P be a homotopy of nf to ng. Let P be a closed regular
neighborhood of the diagonal in P x P [11]. Let {%,} be a finite cover of P such that
U, x U, P. Using the cover {%,} and since X is compact we may choose 0 = #; <
<t;<..<t,ys = | such that F, xF, ,: X— PcPxP. Also since the diagonal
of Px P is a deformation retract of P we have that the projections p; and p,: P—
— P onto the first and second factors are homotopic.

We now must only list the data required by 1.5. Q;, = P, i = 1, ..., n. Since P
has the homotopy type of P it is in 2. Finally, ¢, = F, x F,,, and m; o = py,
Ty =Dy, all L

One verifies that this data satisfies the requirements of 1.5.

Asin [3], [5], we may extend 1.7 to CReg T, (Completely Regular T7) as follows.
For Xe|CRegT,|, Pe|?| and f: X — P, let ff: BX — P be the unique extension
of f to its Stone-Cech compactification. Define maps f,g: X— Y in CRegT), to
be uniformly homotopic over @ if and only. if for every P& |#| and n: ¥ — P we
have B(nf)~pB(ng) (see [4]). We denote this relation by Af.

1.8. THEOREM. Let 2 be closed under homotopy type then considering ? =CRegT,
we have that

W o=h.
In the next section we will find that it is sometimes more convenient to compute

our extensions over categories of finite CW-complexes 1.4-8 imply that this is
possible as follows.

icm

Cech extensions and localization of homotopy functors 163
1.9. Let 2 be as in 1.6. Again, let h:  — 2 denote the relation homotopy.
Let #°< 4 be the category of finite CW-complexes homotopy equivalent to simplicial
complexes in & (homotopy classes of maps). Finally, let F; be a functor on £ and
F=(F|#)oh
1.10. TuEOREM. On CRegT, we have that

F& ol = F?,

Proof. Applying 1.8 to 1.4 we have that F* o i, = F®. Also, for compact
spaces homotopy and uniform homotopy coincide, and homotopy equivalences
are homotopy over £ equivalences. Thus, every object in 2° is equivalent to an object
in &. By elementary considerations about Kan extensions we have that F? = F%.

Finally, we will make use of certain. results on representable functors. We
introduce the following notation. :

For B a space having the homotopy type of a CW-complex, let Fy = [—, B]
(homotopy classes of maps into B). Let f2 denote the category of finite polyhedra.
We have the following extension of ([9] 3.14 appendix).

1.11. TusoreM ([5] 3.2). On CRegT, we have that
F£9' = [ﬁ'— » B] .

In fact, 1.11 also generalizes the classical result which states that the Cech
cohomology (finite covers) of a space and its Stone-Cech compactification agree
({117 9.12). In general, [3—, B] is not a homotopy functor. Indeed, Dowker [10]
shows that [BR?, S*] is an uncountable set. However, one has the following result.

1.12. Tugorem ([4] 4.2). Let X e|fdNorm| (finite dimensional normal) and
let B be of finite type finite fundamental group. Let it X — BX be the inclusion of X into
its Stone-Cech compactification then i*: [8X, Bl~[X, Bl is a bijection.

§ 2. Examples of fj-representable functors.

2.1. NoraTIoN. In this section we will compute FZ for certain sub;ategories
PcfP. We will also wish to study the relationship between F2 and Fj in the.se
situations. For the reasons discussed in the introduction and for clarity, we will
call FZ the Cech extension and call Fy the Kan ‘extension. o

In all our examples # <2 will be a full subcategory all of who is objects are
simply connected. We will call such categories simply connected at the risk of con-

fusion with other uses of the term. .
Finally, again, functors of the form [8—, B] will be called B-representable.

We begin with a simple observation on 1.12.

2.1. TuEOREM. Let P <fP be simply connected and closed under homotopy type,
then on fdNormhy = hly. Hence, for any homotopy Sfunctor F, F?is also a homotopy
Sfunctor and Fﬁl’lg: = F?,

2%
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Proof. Let Pe|?| and Xe|fdNorm| then by 1.12 we have that maps
f.g: X— P are homotopic if and only if ff and fg are homotopic and hence
hs = k. The result now follows from 1.8 and 1.4,

2.1. essentially says that on fdNorm the Cech and Kan extension from simply
connected categories agree. We now give two specific examples of such categories.

Firstly, given B, let «B,,»i B be the (n—1)-connected covering of B. That is,
n(B,) = 0 for i<n and p,: n(B,) = ny(B) for izn. Let #,=fP be the full sub-
category of (n—1)-connected finite complexes.

2.2, THEOREM. On CRégTz we have that
FB“ = Fgf = [B—:Bn]'

Proof. By elementary homotopy theoretic considerations we know that
Dyt [P, B,] 2 [P, B] for Pe|#,|. Hence we have that Fg" = Far. )
Next, since hp21* for any £ =f2 we may apply 1.4 to conclude F&» = Farif,

Thus, if #; and f#° are the corresponding categories of finite CW-complexes,
by 1.10 and 1.11 it suffices to show that For = Fj%°.

. The remainder of the proof is a straight forward application of 1.2, Let C be
a finite CW-complex. By attaching a finite number of cells in dimensions <n we

may embed C in an (n—1)-connected complex C’ such that any map f: C — B,
may be factored through the diagram

C’
e
/S

/

T

This is essentially 1) of 1.2.2) follows by applying the above construction to the
equalizers of the appropriate maps.

The above proof is obviously an example of a more general procedure. We
now review another example, that of Deleanu and Hilton Dl

Let 7 be a family of primes. Let 4, be the Serre class of n-torsion abelian
groups. Let &, be the category of 1-connected CW-complexes whose homotopy
groups belong to 4. Finally, let #,<f% be the category of 1-connected finite
polyhedra in %,.

2.3, LemMA. Let Be|C,|. Then on CRegT, we have that
PP =Ff = [p-, B].

Proof. As in 2.2, the proof reduces to showing that FZ= = F{%°,

Cech e.
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Since B is 1-connected we know (2.2) that F§** = F§ i Thus suffices to show
that Fg fo F?". This is exactly what is done in [7] 4.15-18 by Deleanu and Hilton.

In order to complete the program of 2.2 we must associate a suitable space
in %, to each 1-connected CW-complex.

Tet = U ' be a decomposition of the set of primes into disjoint subsets. ‘For
a 1-connected CW-complex B, let e: B— B, be its localization at =’ (see .for
example [8]). Let B" be the fibre of the map e and B™ be the 1-connected covering
space of B

2.4. LEMMA. B%e. |4,| and for Pe|P,| we have that
[P, B"] = [P, B].

Proof. Since B, has the homotopy of B localized at n' and P has homollogy
in 7 one has that H"(P, 7,(Bg)) = 0 for all n. Hence all the obstructions for a given
map f: P — B, being homotopic to a constant map vanish ([12] 11.3) and thus
[P, B,] = 0. ) ~

Xlso, Pe|?, implies that its suspension S(P)e|?, so [S(P),Br]=0.

We may now apply these two facts to the Eckmann-Hilton homotopy sequence
of the fibration B" LB B, to conclude that iy: [P, B ~ [P, B].

To check that B has homotopy in 4,one again notes that By, has the homotopy
of B localized at 7'. An examination of the ordinary homotopy sequence of the
fibration shows that 7,(B") is in 4,. . .

Unfortunately, E“"may not be 1-connected. But since the objects of 2, are
one connected we have [P, BY] ~ [P, B"].

Combining 2.3 and 2.4 we have
2.5, TuroreM. Let B a 1-connected CW-complex. Then on CRegT, we have
Fg = Ffy = (-, 5.
We complete this section by reviewing the work of Deleanu and Hilton [7] in
the above setting. , o
By 2.1 in conjunction with 1.10 we have that on fdNorm F3" = Fgp hs,.
. 4 . P _ [R_ .
Hence, the study of F?% is essentially the study of the properties f’f F" = [/3ll s B ]
We first observe that F2 is half exact ([7] 2.14) by establishing the following
more general results.
2.6. LEMMA. Suppose [f—, Y] is a homotopy cofunctor on fdNorm. Let
A4 5 X—j> X u; CA be a cofibration in fdNorm then

(B4, Y] < [BX, Y]« [B(X 0, C4), Y]

is an exact sequence of sets.
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Proof. Let i* [f] = 0. Let F: pAxI— Y be a contraction of f. Using /X
and F/4x I as data we may construct g: X u; C4 — Y. But f and F take values
in a compact subset of ¥ hence ¢ extends uniquely to Bg: f(X u; C4) — ¥ and
Fx[Bgl=Lf]

Next let g: B(X u; CA)— Y. Since [f—, Y] is assumed to be a homotopy
functor and ji is homotopic to the constant map C, we have i = j» [g] = (ji) * [g]
=CxJg]l =0.

One also wishes to know under what conditions [BX, QY] = [B(SX), Y]
(see [7] § 3). Under the assumption that X and S(X) are finite dimensional normal,
one may directly apply 1.12 as follows..

2.7. LemMA. Let Y be 2-connected and of finite type then
[BX, QY] = [p(SX), Y] . _
Proof. Since QY is simply connected and of finite type we have
[BX, QY] = [X, QY],
[B(SX), Y) = [SX, Y].
2.7 may be extended to

2.8. THEOREM. Let ¥ = | ¥, in the weak topology, and where the Y;, are 2-con-
nected and of finite type then

[Bx, QY] = [B(SX), ¥].

Proof. By a simple point-set topological argument we have

[bX, QY] =lim [BX, QY],
[B(5X), Y] = lim [B(SX), ¥].

One now observes that the term by term equivalence given by 2.7 commutes with
taking limits.

Finally, we consider a specific example.

29. ExampLE (see [7] 4.1). Let B = K(Z, n) with n>2. For a given prime p,
let @ = {p}, the set containing the single prime p, and let Z,,.. be the p-component
of the rationals modl. One verifies that B* = K(Z,..,n—1), hence on fdNorm

FeGmy = [B—, K(Zyo, n—1)] = Eim[f—, K(Zp, n—1)] = lim[—, K(Zy, n—1)]
r—+ow r-ro

this last equality by 1.12.

§ 3. f-Representable Cech extensions. In this section we address the general
question of when is the Cech extension of a homotopy cofunctor Fon a subcategory
P <[P is B-representable. The theorem we obtain is that if 2 is closed in a suitable

sense under products and equalizers and F satisfies the Wedge and Mayer~Vietoris
axioms [1] then if F is
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(1) countable set valued or
(2) Abelian group valued

its Cech extension is fB-representable.
The method of proof is to use the appropriate version of Brown’s Theorem [1], 2]

.to show that the Kan extension of F, considered asa functor on £, is representable

on f#°; this in conjunction with 1.6 and 1.11 yields our theorem. We will 'only
present full details of the proof under hypothesis (1). The proof under hypothesis (2)
being similar though more tedious.

3.1, Remarks. In the first part of this section #°<f%° will be assumed to be
closed under equalizers and to contain I point spaces. Also, until further noted F
will be countable set valued cofunctor on #° satisfying the Wedge and Mayer—

Vietoris Axiom. . . . .
Recall [9] that F%°(X) is computed asa suitable direct limit over commutative

diagrams of the form
/ i
/ | !
X/———w——————y
&2 Pz

where &, f, &, are homotopy classes of maps. We will denote' such a diagrazn by

F: (Py, &) — (Py, &) and the category associated with such diagrams by (#°, X).

1t will also be convenient to set F(P, &) = F(P). ‘ i
Finally, we may assume that 2 is small since, as usual, it suffices to work wit

representatives of the equivalence classes of #°. A

3.2. DeFNITION [9]. Given categories & c# we say .521. is wecfrkly cofinal
in @ if for every Be || there exists on 4 € || and a morphism 4 —> B.

The following is similar in proof to (18] 1.11 Appendix).

3.3, TuporeM. Let W (@, X) be a small weakly cofinal subcategory then

FP(X)=( U FP,0)R
P, e
where R is the relation generated by all pairs ( ff(ﬁ)‘, FHB) with (P, &) €12, X)I,
BeF(P, &), fit (P, &)~ (P, &) and (P, E)elW], &= 1,2
i ] ?2(X) by 0.

We denote the obvious maps F(P, & — F7( : o

Under the hypothesis of this section we have the following alternate description
of R. ‘ c

3.4. LemMa. Let (o , o) € R with a € F(P,y, &) then there exists @, Hel@, X,

A, . , ‘ £

BeF(P, &) and fi(Py, &) — (P, 9] Wlfh a; = fi B
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Proof. The proof is by induction using the following special case. Suppose

(o;, o) is generated by the following diagram:

_Bl _ BZ
(Py, &) (P53, £2)
f;// r\\fm S2,3 \\fza
/ N \\
(Pls 61) (Pss 63) (Pza fz)
Oy %3 43

with f7'1 By = ay, fi3By = f3 3Bs = 03 and f3 B, = a,. Since #° is closed under
equalizers and satisfies the Mayer-Vietoris axiom we may find (P, &)« |29,
BeF(P,{) and g(P, &)~ (P,, &), r = 1,2 with g/ = B,. Set f, = g,f, ,.

To complete the proof one observes that (ay, ;) € R must be generated out
of a diagram of the form

B B B
(ﬂl;&) (PZ;EZ) (‘Fn—l:én—-I)
S/ \JS1.3 fz,a//’ \\ // Sn=1,2
7/ AN / N\ 7
/ N/ / N
(P, &) (Ps, &3) Py, &) (P2, &2)
oy o3 o, o,

Repeated application of the argument for 3.5 gives the result.

We are now able to state and prove the main theorem of this section.

3.6. THEOREM. Let P°<fP° and F be as in 3.1 then F*° satisfies the Wedge and
Mayer-Vietoris axiom on fP° and hence is representable (see [2]).

Proof. We first show F?° satisfies the Mayer—Vietoris axiom.

” Suppose w;:qare given X;e F(X) (i=1,2) and maps f;: 4— X; such that
F,c( f)xe = F7(f)x,. We wish to construct xeF*(X, u,X,) such that
F7(j)x = x; where j;: X;— X, v, X, are the respective inclusions.

By 3.3 we may choose ¢&;: X;—P; and o, € F(P,, £) such that x; = 0.
Hence, 0y, 7,(;) = Oy,7,(25). We may now apply 3.4 to find &: 4 P, feF(P, &)
and Ayt (Py, £:f) — (P, &) with F(h)f = a;.

Using this data we may construct &: X, U X, — P such that Hg(li‘)eFW
(X, U4 Xs5) is a suitable value for x.

To show that F?° satisfies the Wedge axiom, let X, v ... vX,e|f?|. Let

;wﬁ’", X) be the wedge category over X. Objects in (w#°, X) are diagrams of the
orm
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where (P;, &) €| 2°, X))|, and maps are appropriate wedges of maps. Since F satisfies

the wedge axiom on #° a simple computation shows that F***(X) = >n< F7(X).
We wish to show F***(X) = F*'(x). =
Firstly, (W, X) is weakly cofinal in (2, X) since given ¢&: \7 X, —P we
have that ‘ . o
{= ‘/J(iy1 (&)

where j;: X;— X arc the inclusion maps and ¢ is the folding map of the wedge
of n copies of P to P.
We are therefore able to apply 3.3 to (W, X)<=(2°, X) to conclude

FX)=( U F@H)R
(P, &) e |we, X|
and
F?X)=( U F@POIR
(P, 3) €|w#?, X|

where R (resp. R') is generated by all pairs (f1(B),f2(B) with f e F(P,¢) and
(P, O el(@, X)| (resp. (WP", X)). . :
We wish to show R = R’. Again, this follows from the observation that for

u "
any map f: \/ P;— P we have the factorization f = ¢( \{ (fi9)-
i=1 =

Combining 3.6 with 1.11 we have the following theorem.

3.7. Tueorem. Let F be a countable set valued homotopy cofunctor on P Sf%
such that F considered as a functor on P°, and P° itself satisfy the hypothesis of 3.1.
Then the Cech extension F? to CRegT, is B-representable. In particular, F? = [f—, B]
where B is given by 3.6.

3.8. Final Remarks. The hypothesis of 3.1 include the example of Section 2.
Also, assuming & to be simply connected we again have that F? is a homotopy
cofunctor on fdNorm. Hence, we have available the technical observations at the
end of Section 2.

Under the additional hypothesis that # is closed under products one can
prove 3.6 (as well as 3.7) assuming F to be abelian group valued. One uses the rep-
resentation of F?(X) given in ([8] 1.11 Appendix) and proves the ap,propn‘ate
version of 3.4 using the additional hypothesis on #. One also uses Adam’s version
of Brown’s theorem [L]. . ]

Finally, one might expect to be able to prove 3.6-7 under the hypothesis that Fis
abelian monoid valued (using Deleanw’s version of Brown’s theorem [6]). Unfor-
tunately, we do not know the appropriate version of 3.3-4 that our method seems
to require.
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The number of countable models of a theory of one wnary function
by
Leo Marcus (Marina del Rey, Ca.)

Abstract. If T is a theory in the language of one unary function symbol then T has 1, %o,
or 280 countable models.

§ 1. Introduction. Let L° denote the language containing equality and one
unary function symbol. We prove:

TuroreM 1. If T is a complete first order theory in L°, then T has 1, 8, or 2%
countable models. -

The part of the theorem claiming that if T has > #, countable models then T
has 2% countable models is the first-order Vaught conjecture for L° The L.,
Vaught conjecture was claimed by Burris in [1] but an error was found by Arnold
Miller. After writing the first draft of this paper I learned that Miller [5] had already
proven Theorem 1 by a different method in a more general setting, and some infor-
mation about the LY, case. .

The following theorem of Shelah gives information about the number of
uncountable models of a theory in L°.

TrEOREM (Shelah). If T is a complete first-order theory in L® then either T has 2*
models of power A for all Az, or T has <3,(lo) models of power- %, for some n<w
and all oz w.

There is a similar theorem for L§,,-

The proof uses general considerations of stability. The problem of the number
of countable models of a first-order theory of linear order was solved in Rubin [6].

I am indebted to Mati Rubin for calling my attention to the error in [1], and
to him and to Miller for detecting errors in earlier versions of the present paper.

§ 2. Preliminaries. We preserve the notation and definitions of [4]. Here is a brief
review. (For model-theoretic notation and definitions see [3].) The language contains
one unary function symbol f, and equality.

The distance between a and b relative to a set 4 is d(a, b) = min{r: there
are k, I such that k-1 = r and there are Xo, .. Xi> Yoo s 1€ A such that a = X,
b = yo, f(3x) = X144 for i<le, f(¥) = Pjr1 for j<I, and x, = y;}. A path from a
to bis such a sequence (Xo, ..., ¥ip. We say a is above b if there is a path from a to &
which contains f(5). The set 4 is below b if b is above every element of 4. Notice
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