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The theory of abelian p-groups with the ﬁuanﬁﬁer I
is decidable

by

Andreas Baudisch (Berlin)

Abstract, Define 2 |k Ix(p(x), w(x)) if {a: Ak p(@)} and {a: Ak (@)} are of the same
power (Hartig). Let T,(I) be the theory of abelian p-groups with the quantifier I and L(I) the
corresponding language. The nonlogical signs are “+”, “—", “0”, and “p"|x” ( an(p"y =x)).

Extending the set of elementary basic sentences of Szmielew a set of basic sentences is given such
that every formula of L(I) is equivalent relative to T,(/) to a boolean combination of basic sentences
and atomic formulas. Using this the decidability of Tp(7) is. shown. ’

1. Introduction. In [3] the decidability problem of the theory T'(I) of abelian
groups with the quantifier J has been discussed:

Uk Ix(p(), ¥ () if {a: Wkp@} and {a: Ak ¥ (@)}

have the same power. This quantifier was introduced by Hirtig/[5]. Let L be the
elementary language of group theory with the nonlogical symbols “+7, “~>, “0%,
and “g"|” where ¢"|x is defined by Fy(¢"y = x) for every prime g and every n.
Let L(I) be the language corresponding to T(J).

Extending the set of elementary basic sentences of Szmielew [8] in [3] a set of
basic sentences was given such that every formula of L(J) is equivalent relative
to T(/) to a boolean combination of basic sentences and atomic formulas.

The problem of decidability of T((I) remained open. The equivalence was shown
to the problem of effective solvability of certain systems of equations and unequations
in the naturals.

By a p-group is meant a group in which the orders of the elements are powers
of the prime p. In this paper we use the results and ideas of [3] to prove:

TuroreM. The theory of abelian p-groups with the quantifier I is decidable.

The theory of abelian p-groups with the quantifier 7 we denote by T (D). Con-~
trary to [3] T,(I) is not the I-theory of an EC,-class (in elementary sense).

0, denotes the generalized quantifier “there exist o,-many” [6]. Let L(Q,)
be the corresponding language. T(Q,) and T,(Q,) we use to denote the theory of
abelian groups (resp. of abelian p-groups) with the quantifier Q,. Let T be the
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elementary theory of abelian groups and T, the elementary theory of abelian
p-groups. )

If 2 L(I) (resp. Z=L(Q,) and A is an abelian p-group with Ak X then U is
called a p-model of 5. @ we use to denote the direct sum. A? is the A-fold direct
sum of 2. Let (p") be the cyclic group of order p' and 3(p*) the group of type p®.

A p-model A is normal T A S @ 3(pH VDI (p™)** where finitely many

0<i<e

A(%) # 0 only. )

We define a sentence ¢ occurs in a set X of sentences iff peX or T1peZ. If
we say a group we mean abelian group. If X is a subset of a group 2 the sub-
group I X 1is the subgroup of 2 generated by the elements of X. | X| we use to denote
the power of X. '

2. Basic subgroups. The basic subgroup of p-groups is one of the most funda-
mental notions for working with abelian p-groups. This notion is due to Kulikov.
Let A, B be p-groups. »

B is a pure subgroup of U if for every n, every b e B, and every ae U with
P'a = b there is some ce B with p"c = b. U is divisible if for every n and every
ae U there is some be A with p"b = a.

A subgroup B of U is a basic subgroup of U iff

() B is a direct sum of cyclic groups.

(i) B is pure in A

(i) A/B 1is divisible,

TreorEM A (Kulikov). Every p-group % contains a basic subgroup B.

THEOREM B (Baer). Assume that B is a subgroup of the p-group Wand B = @ B,

<wp
where B, is a direct sum of cyclic groups of order p". Then B is a basic subgro;p of W
if and only if
A=1B,D.0B, 0B, upUA

or every n where B = B,, 198B,..D ...

(For the proofs see [4].)

Every p-group U is isomorphic to 3(p®)* ® A’ where A’ does not contain any
nontrivial divisible subgroup. 2’ is called reduced.

ProposiTiON 1. If U = F(p®)* @ W where W' is reduced and B is basic
subgroup of W’ then 3(p®) @ B is an elementary subgroup of .

This follows from %'>% proved in [1] p. 795 using the results of Szmielew.
Then you get

COROLLARY 1. Every sentence of L fulfilled in a p-group is true in a direct sum of
Sinitely many groups of the form 3(p") and 3(p®).

Let [p"] be the subgroup {x: p"x = 0} of .

PROPOSITION 2. For every p-group % U] > implies |A| = |[p] A].
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Proof. By Theorems A and B I[P]¥U[>w. Therefore the First Theorem of
Priifer (A bounded group is a direct sum of cyclic groups) implies [[p] | = |[p"] 2]
for n>1. Then the assertion follows from 91 = U [p1e

3. T(Q,) is decidable. The Szmielew basic sentences for the elementary theory
of abelian groups are our starting-point [8]:

WE{y(p,n, k) means “There is a subgroup of A isomorphic to 3(p"*.
Wk Ly(p, n, k) means “UWp"Ak ¢ (p,n, k)y”.
Ak {5(p, n, k) means “There is a direct summand of 9L isomorphic to 3 (p"*.
Lu(m) = Vx(mx = 0).
Thereby #, m>0. Define
L(p,n, W) = sup({k ew: Ak (p,n, k)}) for ie{l,2,3}.

In [2] the following new basic sentences of the theory T(Q,) of abelian groups
with the quantifier Q, are added:

Qux(px =0Ap" %) and Q,x(m|x) where m,n>1.

The results of Szmielew are extended by the following:

THEOREM 1. There is an effective procedure to construct for every formula of L(Q,)
an equivalent relative to T(Q,) boolean combination of basic sentences and atomic
Sormulas.

Further we use:
LemmA 1. Given an abelian group .
v om=1
11 Ci(P’ n, QI) = fi(l’: m, 2[)'{' Z C3(psj: Qlf)for m>n and iE {1’ 2} [8]
J=n
1.2, Ak ~1Q,x(m|x) iff W =BDL with |B|<w, and m& =0 [2].
1.3, Let n<m and

WE 1Q,x(px = 0Ap™ Y )A A s(p, i, k)
n<i<m

Jor some naturals k,. Then Mk 1Q,x(px = 0Ap" x).

In this chapter we consider T,(Q,). We prove:

THEOREM 2.

L1 T(Q,) is decidable.

1.2. Every sentence of L(Q,) true in an abelian p-group is fulfilled in a normal
p-group of power smaller than w,,.q.

Proof. Using the elimination procedure of Theorem 1 we have to decide whether

a finite set = of negated and unnegated basic sentences of L(Q,) has a p-model or
not. If such a p-model exists we construct a normal one. Without loss of generality
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we can suppose that the basic sentences occurring in X are of the form {(p, n, k)
(1<i<3), Q,x(px = 0Ap"x), and Q,x(p"|x) only.
(Mention T,k {u(p™) > T11(p, n+1,1).)

‘We show that ¥ has a normal p-model if it satisfies the following conditions
(1)-(6). Then Theorem 2 is proved because such a condition is necessary for con-
sistency of ¥ relative to T,(Q,) or we can assume it, replacing X' by a finite set Q of
finite sets 2’ of unnegated and negated basic sentences such that % is a p-model

of X iff 2 is a p-model of some X' e Q.
Remark that we do not destroy a condition if we realize a new one. The condition

() 2N L has a p-model
is necessary. Further we can confine to sets X such that:
(2) If a>0 then formulas Q,x(p"x) and ~1Q,x(p"x) are not in Z.

To get (2) replace Q,x(p"|x) by Q,x(px = 0Ap"|x). This is possible because for
every p-group A with UEX the premise of (2) implies WF Q. (p"x) iff
Ak O, x(px = 0Ap"x) by Proposition 2.

(3)  If 1Qux(pT|x)e X then Qux(p"|x)¢ X for any n and further {,(p,1,k)
(resp. 71L5(p, i, k) is in 2 iff {,(p, i, k) (resp. "¢y (p,i, k)) is in Z.

By Lemma 1.2 2k 70, x(p™|x) implies that A & B@L with |B|<w and p"L = 0.
Therefore we can assume (3) replacing Q,x(p"|x) by Qox(px = 0A p'lx) and
adding some {{(p, i, k) resp. T1{(p, i, k).

@ If Qux(Px)eZ and “U(p,n,k)eZ then mzn and 1y(p,n,)),
{y(p,n,j)e X for some j<k.

If AE X then by Theorems A and B

with Z AG)<m.

nsx<e

®) AS © 30Y° 030
i<o
We can assume m>n considering instead of X the sets

Z = (Z\{Qox(p"'[x)}) U {Qox(px = 0Ap"x)}
and
Z = (AN{Qox(2"x)) U {1 Qox(px = 0Ap"[x), Qox(p")}

if n>m.

From mzn then follows A(w)>0 in (+). Therefore ¢,(p, n, W<t:(p, 1, X.
We get (4) replacing X by the set of all

ZJ’ =Zu {—]CZ(P5n:j)a El(p’ n;])} for j<k .
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Using tautologies of T'(Q,) we further suppose:

(5) There is at most one formula of the form Q,x(p"lx), one formula of the
form T10,x(p"|x), one formula of the form Q. x(px = 0Ap"|x), and one
formula of the form T1Q,x(px = 0Ap"|x) in 5.

Since 714(p, m+1, k) or 71Q,x(p"|x) implies 10, x(px = 0 Ap"[x) by Lemma 1.3
the following condition is necessary for consistency of X relative to T,(0).

(6) There is some j such that for all #n and m: If Q,x(px = 0Ap'|x)e %, and
“1Qex(px = 0Ap"x) e X or "1y (p, m+1,k)eZ or 10, x(p"x)e X then
n<j<m and neither 71{s(p, j, k) nor "1{(p, i, k) are in X for any k and any
i<j.

Now let us construct a normal p-model of X assuming (1)-(6). By (1) and

Corollary 1 there is some direct sum 2 of finitely many groups 3(p"), 3(p®) with

AEZ L.

1. Case T1Q,x(p"|x)e X for some m.

By (2) o = 0. If you replace in ¥ every direct summand 3(p®) by 3(»") for
sufficient large » by (3) you get a finite group ¥’ with A E X A L.

If Qox(px = 0Ap"x)¢ X for any n W'k X by (3).

If Qox(px = 0Ap"|x) is in ¥ then by (5) there is no other formula of this form.
Take the number j that exists by (6). Then by (2), (5), (6) W3 (p")**F =.

2. Case neither ~1Q,x(p"|x) nor Q,x(p"|x) is in X for any m.
If Q,x(px = OAp"|x)¢ X for any n then AF Z.

If Q,x(px =0Ap"|x)eX for some n apply (6) and (5) as above whenever
the premise of (6) is fulfilled. Otherwise A @ J(p°)“* is a model of X.

3. Case T1Q,x(p"|x) ¢ X for any m but Q,x(p™|x) € Z. By (2) a = 0. By the
second case and (5) there is some mormal p-model B of IN{Qyx(p"|x)}. If
184(p, n, k) ¢ 2 for any n, k then BDJ(p*) is a normal p-model of Z. Otherwise
by (4) there is some n<m and some k and j such that j<k, and 1{,(p, n, k)€ Z,
Ly(p, n,j) & Z, and ~1L,(p, n,j) € Z. Then B must have a direct summand isomorphic
to 3(p®) and therefore Bk X. B

We need Theorem 2 to prove the main result.

4. p-Systems. If kq, ..., k, are naturals then a term p*™~** is called a p-term
in the variables zy, ..., z,. In this chapter finite sets I" of equations IT = 0 and une-
quations IT 5 0 are considered where each II is a linear combination 3, m;t; of
p-terms #, with coefficients s, in the integers. Such a set I' is called a p-system.
By a solution of a p-system I' we mean a solution in natural numbers. We prove:

THEOREM 3. There is an effective procedure to decide whether a given p-system
has a solution or not.
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At first we consider a single p-equation II = :Z mp® = 0 with
=1
n
o= kyz;tk .
i=1

LeMMA 2. Assume p ¥ m; for every i with 1<i<s. If ¢4, ..., ¢, is a solution of
II =0 then there are i and j such that i % j and ofcy, ..., ¢,) = 65(C15 vy C).

The proof of the lemma is clear. How can we determine the solutions of IT = 0?

Assume w.l.o.g. p.fm;. Let II;; = 0 be the equation you get replacing oy
by o;. Applying Lemma 2 it follows:

II = 0 has a solution ¢y, ..., ¢, iff there is a pair {7,/ with i % j such that

0i(Cy; s 6) = 0y(Cy, ons ¢,) and ¢y, ...,y ¢, is @ solution of IT;; = 0.
s—=1

Put every II;; = 0 in the form Y. mjp" with p ¥ m; and apply Lemma 2 to
i=1 R

every IT;; = O again. After s—1 steps we get a finite set of pairs (mp” = 0, 6> where 8
is a finite set of linear equations in the variables z,, ..., z, and coefficients in the in-
tegers, and p° is a p-term. Then ¢, , ..., ¢, is a solution of II = 0 iff there is some
{mp° = 0, 0> such that m = 0 and Cyy ..oy €y IS & solution of 6. Let Q be the set of
all 6 such that (Op” = 0, 0 is obtained in the procedure above. We have proved:

LeMMA 3. For every p-equation I = 0 in the variables zy, ..., z, a finite set Q)
of finite systems of linear equations in z, , ..., z, and coefficients in the integers can be
constructed efffectively such that ¢y, ..., c, is a solution of Il = O iff Cyy wees Gy 18 @ SOlution
of some system in Q(II).

Now consider some p-system I'. Using Lemma 3 we get a finite set @*(I') of
systems of linear equations and unequations with coefficients in the integers such
that ¢y, ..., ¢, is a solution of I' iff ¢, , ..., ¢, is a solution of some system in Q*(I).
Therefore Theorem 3 follows from

LemMa 4. There exists an effective procedure to decide for every system 0% of
linear equations and unequations with coefficients in the integers whether it has a solu-
tion in naturals numbers or not.

Lemma 4 is implied by the fact that we can formulate “0* has a solution” in
the elementary language of Presburger arithmetic, and this theory is decidable [7].

5. Basic sentences of T),(1). In [3] the set of Szmielew basic sentences is extended
such that there is an effective procedure to construct for every formula ¢ of L(I)
a boolean combination i of basic sentences and atomic formulas equivalent to ¢ rela-
tive to T(I). Then ¢ and \/ are equivalent relative to T,(I). Now those basic sentences

needed for T,(I) will be described. Consider the following set Z,, of conjunctions of
atomic formulas: .

t
z, - {n(): n(x) = (p"x = 0a A p¥|p"x) where
i=1

ve{0,1}, r,<m, 5;>r;, r;>r; and §;>8;4r—ry if j>i}.

»
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A new basic sentence of T,(I) depends on two finite sequences 4 and B of formulas
of Z, with accentuated subsequences g, ..., y respectively iy, ..., ,, such that ¢,
is the first element of 4 and v, is the first element of B.

We write ¢;>7 if @, precede #, % is not accentuated, and there is no accen-
tuated ¢; between ¢; and # in A. Y;>-n is defined analogiously. We assume

TE@—e)a1(e—n  if Qi1
and

TEM—=yY)A W, —n)  if Y.

We make the convention that two elements on different places of 4 respectively B are
not identified even if they are the same formula of Zz,. )

Furthermore for every mew basic sentence we need a set ¢ of subsequences
of A and a set D of subsequences of B such that every one-element-sequence is a mem-
ber of C respectively D. In a formula such a subsequence is to be interpreted as the
conjunction of its members.

If p and v are subsequences let y o v be the subsequence of all members of u o

and v. Define

" 4'(4, B, C, D) =

A Bp=z2davo=2)) A A ABpG-z)Av(r-2z).
MV, aveC 1veC, poveC
or v, poveD org,veD, povgD

Every 4, B,v C, D as above determine -a new basic sentence 4 of T,() if
T,uv{. 3 z,.44,B,C, D)}
ueCub
is consistent:
A(4,B,C,D)=.. 3 z,..[4'(4,B,C, D)
Df  ueCubD

n

m
AN olr=z,)n N\ Tmly=z), NV ¥ly—z)a N\ m(r-z,)].
i=1 en j=1 yyen

From the results in [3] we get

THEOREM 4. There is an effective procedure to construct for every formula @ of
L(I) a boolean combination of basic sentences and atomic formulas equivalent to @
relative to T(I).

We define |¢(x)y = [{aeW: Ak ¢(a)}|. Consider some p-group U, a new
basic sentence 4(4, B, C, D), and an assignment a = (..., a, ...) of the variables
s Zyy . in 4'(4, B, C, D) such that (U, a)F 4'(4, B, C, D) and QI'F 1Qoxx(x)
for every accentuated y(x) of 4 or B. As shown in [3] for every n(x) in C or D we
can compute some naturals w; (1<i<f) and ve{0, 1} (in dependence of 7(x)
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only) with w; <1, w;<w;.<w;+1 such that

P Wn:a(y,iﬂl)+W1’C4(P:f:9-[)+"l§‘éx(?yl. )
m [7 ()l = p*=*™! .
Mention that we can choose the same f for every = of C or D using Lemma 1.1.
By 4'(4, B, C, D) |n(x—ay) An(x—ay)ly is coded for every 7, n € C (resp. D):

0 ifmoné¢C (resp. D),

In(x—a) AnGe—a)le = {In o (X—apo )l Otherwise.

Furthermore remark |w(x—>b)|y = |m(x)ly for every be .

Therefore we can prove (see [3]):

LEMMA 5. There is an effective procedure to construct for every new basic sentence
4(4, B, C, D) of T(I) a linear combination Fy(Xy, .., Xp41) of p-terms with coef-
ficients in the integers such that for every p-group W: W is a model of A with
Wk 1Qoxn(x) for every accentuated n in A or B and |[p]| | < iff

Ak..3z,..4'(4, B, C, D)

and
X =0a(p, 1, W if ISi<Sf,
xp=0(p, f, W) and
$i(p,J, W) if there is some accentuated n(x) = (p"|x)in A or B,
Xppg= <451 4

any natural otherwise
are maturals with Fy(xy, ..., Xpy1) = 0. (f can be choosen arbitrary large.)
6. Proof of the main result.
THEOREM 5.
5.1. T () is decidable.

5.2. Every sentence of L(T) true in an abelian p-group is fulfilled in a normal
one.

Proof. Using Theorem 4 we have to decide only whether a given finite set % of
unnegated and negated basic sentences of T,(/) has a p-model or not. If a p-model
exists by our decision procedure we get a normal one. To get certain properties
of Z we often replace the set X in question by a finite set of sets 5’ such that

Z has a model iff one of the sets X’ has a model.

If A(4, B, C, D) is a new basic sentence occurring in ¥ then let @15 .5 P, be the
accentuated formulas of 4, V¥, ..., ¥, the accentuated formulas of B,

2, the formula p(y—z,)A A “In(y—z,)
P>y
and

¥; the formula ¥,(y—z,)A A TIn(y—2z,).
¥i>n
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By the argument above we can assume w.o.lg.
() T+XnLE..3z ..[44,B,C,D)a A Tyd(3)A A ye,(m]
i i

for every 4 occurring in X,
As in the proof of Theorem 2

(2) we can confine us to elementary basic sentences of the form {,(p, #, k) for
n, k=1 only.

Let us mention that Q, is definable by I. Define
(DEE, () = K(E) VI, ()
and
(<0 (ux), v(@) = (<0)(r6), v) A UKD, 4()) -
Then for every U with Wk Qgxep(x) v Qo xi (x)
Wk (<) (@(), ¥()  iff o<W ®)ler-

Furthermore
TIYE Qoxu(x) v Qoxv(x)
= (Le((x), v(3)) > (€0) (), V@) A<D, 1@)).

Let ¥ be {(px = 0Ap"x), (p"{x): n1}. For our investigations it is useful to admit
certain negated and unnegated sentences O, xn(x) and (<x)(7(x), z(x)) for 5, we ¥
in Z.

1
If n(x) = (p"x = OA A\ p"|p"x) € Z, where v {0, 1} then
i=1

@ T(Qo)kF Qoxm(x) <> Qox(vpx = 0Ap"|x) where

ry, ifs; =0,
W= .
0, otherwise.

Let m*(x) be (vpx = 0Ap”|x). Define £ n L(Q,) = Z(Qo)- Let 2(Qo)” be Z(Qo)
without any Quxn(x) for n(x)e Y. )
For every new basic sentence 4 = 4(4, B, C, D) we can show using (1)

(see [3D:
(i) ITDEde /i\ “(Qoxpix) A 4\ Qo (Adv .z, AT A
AV (@0 ALx(oid, V) A
A NS00, o)A )\ (SO, U9)) -
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By the two equivalences (i) and (ii) we can suppose for every 4(4, B, C, D) occurring
in X (use (1)):

(3)  Either for every accentuated n(x) in 4 or B "1Q,xn*(x)e X or 4 is of the
form (<x)(u(x), v(x)) for p,ve ¥ and Qgxu(x), Qoxv(x) e L.
Now we define 2, and X, as in [3]:
Zy = Z(Qo)” u {4: 4 occurs in ¥ and for every accentuated u(x) in 4
or B T1Q,xu*(x)e X} .
Z; = (2\Zo) v Z(Qo) -
Clearly |(px = 0Ap™|X)lg<|(p"|X)|y for every . If Qox(p"|x) € £ therefore we can

consider instead of ¥ the sets

Zu{Qx(px =0Ap™x)} and (' U {Qox(px = 0AP™ NN Qox(p"|%)} .

Z’ you get replacing (p"|x) by (px = 0Ap™|x) in all formulas (<x)(p"|x, n(x))
and (<x)(n(x), p"|x) occurring in I,
Therefore it is possible to assume

@ If Qox(p"|x)eZ then 1Qux(px = OAp™|x) e 5. ,
If Qox(p™x) and "1Qox(px = OAp™|x) are in % and U is a p-model of ¥ then
AS @ 3(1)1)1(;‘) @ 3(pco)l(m)
O<i<p

where Y. A(x) is finite and A(w)3>1. This follows from Theorems A and B. Then

m<x$

L(p,m, Qf)m< {1(p, m, ). Therefore we are only interested in p-models of X,
with {,(p, m, W<, (p, m, W if Qyx(p™|x) € Z. We call them p-models of X, with
AP (additional property).

LeMMA 6. If X, has a p-model with AP it has a normal p~model A with AP and
[Pl YU <w.

Proof. If , 0 L = %, then the assertion is clear. Otherwise there exists some
TQoxn(x) e Zo with 7(x) = (px = 0Ap"x) or 4(x) = (p"|x).

If A is a p-model of X, with AP by Theorems A and B - Qoxn(x) e X, implies

AS @ Y3 with Y AW<o.
0<i<w m<x<a

Define 1'(%) = 4(x) if A()<w. Then there are natural numbers A(x) for 3 with
A(})=w such that

B= @ 305030 @:yx,.
O<i<o
B has AP. H

First we reduce our problem to the search for p-models of X, with AP, We use
the ideas of [3].
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Let Y(Zy) be the set of all u(x), v(x) e ¥ with (<) (1(x), v(x)) € Z,. Working
with X; we use (<x) and Ix only as abbreviations. Without loss of generality we can
assume

(5)  For every p(x), v(x) e Y(Z,)
either (<x)(u(x), v(x) ez, ,
or De(p(x), v(x) ez, ,
or  (<X)(v(x), u(x))ez,.
Further suppose

© (<)%, px)) e 2y for every (p™x), u(x) e Y(E,) -

This is possible by (5) because (<x)(u(x), Pilx)e 2, would imply [(7"x)|y>0
for every p-model 2 of X;. Then |(p™[x)y = [(px = 0Ap™x)lg by Proposition 2.
We could replace (p™|x) by (px =0 Plx) in every formula of Z,\X,.
Assuming (5) necessary conditions are:

(M 1 T(Qo)+2(Q) F T1Qox () Av() then (<3)(v(x), u(x)) € Z,.

(8)  There is a function t from Y| (Z,) in the infinite cardinals such that 7(4)<t(v)
iff (<x)(u(x), v(x)) € %y, and () = o for some pe Y(Z)).

In [3] is shown:

LEMMA 7. Let Z* be a finite set of unnegated and negated basic sentences of T(Q,).
Let W {n} be a finite subset of ¥ such that Qqxn(x) e 5* for every ne W u {rn}
and m(x) = (px = 0Ap"|x). Assume that for every ne W

T(Qo)+Z*F T1Qox(TIn(x) Am(x))

is not true. If WEZ* and w<|W|<L then there exists some » such that
B =UADIWEY kI Inly = Inls for ne W and |nly = A.

LemMA 8. X has a normal p-model iff Z(Qy) has a p-model and Eq has a p-model
with AP.

Proof, We prove the nontrivial direction. Let €, be a countable normal p- model
of X, with AP. This exists by Lemma 6.

S @ 30Y0 @3y,
o<i<aw

By Theorem 2 there is a countable normal p-model €, of Z(Qy)
¢,e @ 300 e30°)H@.
O<i<w
Define
U @ 30Y°030°"
O<i<a
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where
160 = A(x) if ll(u). =,
Ao(2)  otherwise .

Then U, is a countable normal p-model of X(Q,)+2,. Mention that 11l = I9lg,
if T1Qoxn(x) € X because in this case 1,(f)<w if 3(p")F Ixn(x) and Alw)<w
if 3(p*) F Axn(x).

Then Aok T, is shown easily. If Qox(px = 0Ap"|x)eX(Qy) then
Uo F Qox(px = 0Ap"lx) because by normality of Q, there is some %>n with
() = A(0) = 0. If @y x(p™|x) € Z(Q,) then by (3) and AP A(w) % 0 and therefore
Uy F Qox(p™|x). Tt follows Ay k Zo+2(0y).

By (5) and (8) there is an enumeration gy, ..., 4, ... of Y(Z,) such that i< iff
t(u)<t(yy) iff (Sx)(lli(x):ﬂj(x))ezr By (6) and (8) t(u) =0 = |leg, if
#; = (p"1x) for some m. Using (7) we can apply Lemma 7 step by step to get some
normal p-model B of X with |ujy = T(u;). A

Lemma 8 implies Theorem 5.2. Effectively every 2 was replaced by a finite set
of sets Z, U X, such that (1)-(8) were fulfilled. To prove .Theorem 5.1 by Lemma 8
and Theorem 2 we have to decide only whether Zy has a p-model with AP or not.
This will be done by the following

LEMMA 9. There is an effective method to construct Jor every 3, a set Q of
P-systems I'(X,) such that £y has a p-model with AP iff some I'(Z;) of Q has a solution.

Then Lemma 9 and Theorem 3 imply the main result Theorem 5.1.

Proof of Lemma 9. For every A(4, B, C, D) occurring in X, fix

Fy%gs s X4 ) =0

as constructed by Lemma 5. As remarked in Lemma 5 the number f can be choosen
arbitrary large. Therefore and by Lemma 1.1 we can assume w.l. 0. g. that there exists
some natural f such that

) L Every F, =0 for some 4 oceurring in X, is constructed in the variables
Xiseens Xppge
2. If {5(p, i, k) occurs in Z, then i<f.
3. If {(p, i, k) occurs in Zo for je{1,2} then i = f.
4. If 1Qgx(px = OAp™ix)eZ, or T1Q0x(p"|x) € Z, then m<f.
Let I''(Z,) be the following system of equations and unequations in the variables
Xgy ooy Xppq, Yyl
(@) F4=0if 4(4, B, C, D)e 5,
Fy#0if 714(4,B,C, Dyex,
b) x>k if {3(p, i, k) e Z,,
X<k if 5(p, 1, k) € 3,

icm
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X2k i L(.f,R)ex,
xp<k if Ty(p, f, k) € 5,
yrzk it L(p,f, k) ex,,
Ye<k if Up,f, k) ez,
©) Xpuy =0 if x; = 0 or y,<x,,
Xp2Yy,
Xp = yp if 1Qox(p"[x) € %, for some m,
xp>yy if Qox(p"Ix) e 5.

If 2, has a p-model with AP then there is a normal p-model A of I, with AP
and |[p]U|<w by Lemma 6. Then

X =0, W for i<y,
xp = {i(p, f, W,
yr=00p.f,0)
and
>ZfL](p,j, A)  if this is finite,

Xp4g =
0 otherwise,

is a solution of I"(Zg) by (1), (3), (4), Lemma 5, and (9). On the other hand
if X1, ., Xp4q, ¥y is a solution of I''(Z,) then

B= @ 303N @3¢y @ 3y
o<i<f
with
e = 1 if Yr #0,
" {0 otherwise
is a countable normal model of X, with AP.
You see
:3(175 i “B) = X if i<f’
Cl(p:fs B) = Xp s

L(p. [, B) =y
and

i}jf Lu(p, i, B) = xjy; if the left side is finite.
£

By construction of I"(Z,) and (2), (9) B k Z, 0 L(Q,). Since we have assumed (1),
BF..Hz,..4'(4, B, C, D) for every 4 occurring in %,. Furthermore 1[p]B| <w.
4.
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Therefore Lemma 5 implies

BEAMA,B,C,D) if AdeZ,

and
BF 14(4,B8,C, D) if "deZ,.

Since x>y, if Qyx(p"|x) € X for some m, B has AP. It is shown that Qo = {I'(Zy)}
has the property desired in the lemma. Now we have to replace 2, by a finite set
of p-systems. To do this we construct effectively a sequence of finite sets @, (0<ig )
of systems built up like I"(Z;) such that:

(*)  Some I';€Q, has a solution iff some I';,; of @,,, has a solution.

Step by step we cancel all conditions b) and ¢) of Z'(Ig). Assume this is done for
Xy Xy (J<f)in Q. Let I';_; € Q;_;. Since T,(Qy) is decidable we assume
w.lo.g. 2y n L(Q,) is consistent. Therefore it is possible to replace effectively all
conditions b) for x; by a condition k, <X; or a condition ky<x;<k, where
0<ky <k,. In the case k, <x;<k, we omit this condition varying about all possibi-
lities of substitutions x; =k with k, <k<k,. If there is k, <Xx; only we substitute
%; = zj+k,. Then the systems I'y_; of Q,., are constructed in the variables
Zys w5 Zpe15 Xp, Yp, Xp4 g and the conditions b) and ¢) of I'y_, contain the variables

Xpy ¥ps Xpey only. W.lo.g. assume that the condition b) is of the form -

ky<xp (<ka), k1<yp (<k)).

If the conditions b) and ¢) of I',_, are consistent with Xp=Yr=1Xp_ ;=0
then let 2., be the set of all T'y.y €9, restricted to part a) where Xps Vys Xraq
are replaced by 0. @, you get from Q,_y substituting x; = k for all k>0 with
max{k, Ky} <k<min{k,, ky} if x,<k, or yr<kj comes true or

©xp=max{l, ky, ki}+z,

otherwise, and omitting b) and ©), if I';_; b), ¢) is consistent with Xp = yp>0.
Q3 you get similarly by the substitution Xy = 0and x; = kfor all k with k, <k <k,
and ky<k if x,<k, comes true or Xr41 = 0 and x, = max{k,, ki+1}+z, other-
wise, if b) and ¢) are consistent with Xp>yr. Then Q = Q. = Q. U QU Qs
has the desired property. The construction was effective.
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