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Lusin properties in the product space S”
by

G.V. Cox (Auburn, Ala))

Abstract. A Lusin set X in a space § is one which is concentrated about every dense subset
of S. A v space is one which is Lusin relative toitself. Some properties of concentration in the
product space S” about certain dense subsets of S™ are examined, giving generalizations of Lusin
sets and v spaces.

1, Introduction. Suppose that S is a Hausdorff space. The subset X of § is
concentrated about the subset B of S if every open set containing B contains all but
countably many points of X. A Lusin set X (relative to S) is one which is concen-
trated about every dense subset of S. A v space is a space which is Lusin relative to
itself.

Some well-known relationships concerning these definitions are given. These

. relationships may be found or easily inferred from [2, Ch. 3, Sec. 40-VII] and [1].

Throughout this paper, the symbol (CH) indicates that the continuum hypothesis
is assumed.

1. X< S is Lusin relative to S if and only if every nowhere dense subset of .S has
countable intersection with X. This is often taken as the definition of a Lusin set.

2. S'is a v space if and only if every nowhere dense subset of S is countable. This
too, is often taken as a definition.

3, If X is a countable subset of S, then X is Lusin relative to S. The converse
is not true however (CH).

4. If X< S is Lusin relative to S, then X" (as a space) is v.

5. If Sis dense in T'and S is a v space, then S is Lusin relative to T. The premise
that S is dense in T may not be removed though (CH).

w

6. If each of X, X, ... is Lusin relative to S, then so is .-91 X;. This is not true
(even for finite unions) of v spaces (CH).

7.1f §'<S and S is a v space, so is S'.

Tt is also known that the property of being concentrated about some coun-~
table dense subset of S is weaker than being a v space (CH). Relative to the property
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of being concentrated about some countable dense subset of S, Michael shows [3,
Lemma 6.1] that if (CH) is assumed, then if N is a positive integer, there is an uncoun-
table subspace S of the line such that S contains the rationals, Q, and such that if
n< N, then §" is concentrated about the “grid” $”"—(S— @)". The purpose of this
paper is to examine questions of concentration of spaces S" about every dense
“grid”, thus giving generalizations of Lusin sets and v spaces.

2, Definitions. Let S be a topological space and n be a positive integer.

DermvitioN 1. S is V" (resp. strongly v") means that if B is dense in & (resp.
each of By, ..., B, is dense in S) and O is open in S” containing §"—(S— B)" (resp.
§"—((S—By)x ... x (S—B,))), then §"—0 is countable,

DEFINITION 2. S is v (vesp. strongly v*) means that S is ¥ (resp. strongly v")
for every n.

DerNiTioN 3. The subset X of S is L" (relative to S) means that if B is dense
in § and O is open in S" containing S"—(S—B)", then X"—0 is countable.

DermviTiON 4. The subset X of S is L (relative to ) means that X is L (rela-
tive to S) for every n.

We shall omit the phrase “relative to S™ when no confusion arises.

Remark. Another way of saying that §' (resp. X<S) is v" (resp. L") is that
if B is dense in S and M is an uncountable closed set in S” (resp. with M n X"
uncountable), then M intersects S"—(S— B)",

3. Notation. Again, let S be a topological space. Since we will often be working
with finite product spaces, the n-tuple (x1; ., x,) is sometimes denoted by {x).
If 5 is an increasing finite subsequence of the positive integers, then s = (i ;..., )
and if 4 is a subset of S™ (with n3>1,), we let n(d) = (@55 s @) (@g, 0, a) € A}
7;* is the inverse of 7. Also, we sometimes have occasion to talk about a “face”

n
of §". To do this, we replace S by S, for each i, so that S" = H S; and the s-face
i=1
of §™ is jll §; =8, %..xS;. If Ais a subset of S, then we let
€

J]:E]sAj = {(@;,, ..., a,): for each j, a,ed}.

The set S"—(S~B)" is sometimes called the B-grid in S" (or perhaps simply the
B-grid).

The interval [0,1] is denoted by L If O is open in I", then B(0)
is the boundary of 0, and we let a(0) = {{p)> e B(0): there is an integer k,
1<k<n and numbers « and & such that if x is a number between a and b, then
(D1 wves Pim12 X, Pra1s s p,) is also in B(0)}. We then let y(0) = B(0)—a(0).
Notice that if n = 1, y(0) = B(0). The diagonal in I" is written diag(I").

Finally, if ¢ is an ordinal number, then [¢] = ¢ if o is finite, and if o is trans-
finite, then ¢ = A+k where A is a limit ordinal and 0<k<w, and we let [¢] = k.
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4, Preliminary theorems.

THEOREM 1. If n>2 is an integer and S is a v* space, then S is a V"' space.

Proof. Let B be dense in S and let M be an uncountable closed set in §*~L,
Let x be a point of S— B (which must exist, else M clearly intersects S"~ 1 — (S—B)y1).
Since {x} x M must intersect the B-grid in S", M must intersect the B- grid in §"~ 1.
Thus S is v*~1.

THEOREM 2. If n>2 is an integer ond X< S is I", then X is I' 1.

Proof. Reword the proof of Theorem 1 to say that M has uncountable in-
tersection with X"~*, then pick x in X—B.

Tarorem 3. If S is countable, then S is v* and § is L (relative to any space
containing S).

Proof. Obvious.

THEOREM 4. If S is a o-compact Hausdorff space, and X< S is L, then X is L.

Proof. If X'is not L" for some #, then let B be dense in S and M be closed in S
missing S"—(S~B)" and such that M n X" is uncountable. Now, for each i,
1<ign, n(M) is of the first category in ' since it is o-compact and misses B. This
implies that m(M) n X is countable since X is L' and hence that

Mn Xc ﬁ (mM) n X),
i=1

which is a contradiction since we have an uncountable set lying in a countable set.
This concludes the theorem.

Several other facts are readily seen. Obviously the word “strongly” is appro-
priately used in the sense that strongly v" spaces are v* spaces. Also, it is possible
to modify the proof of Theorem 1 to show that strongly v* spaces are strongly v*~*.
However, it is unnecessary to do the latter (in second countable, Hausdorff spaces),
because of the following theorem.

Let space mean a Hausdorfl space that satisfies the second axiom of coun-
tability.

TUEOREM 5. If n is a positive integer and S is V", then S is strongly v*.

Proof, Notice that if S is v, then § is strongly v!. Suppose that n>1 is an in-
teger and that for all k <n, second countable, Hausdorff spaces are v if and only if
they are strongly v* Suppose that § is v* (hence v"~* and strongly v*™'), but that
S is not strongly v Let By, ..., B, be dense subsets of S and O be open in S” con-

n

taining "~ [] (S—B,) such that.the boundary of 0, f(0)= §"— 0O is uncountable.
i=1

Let G be a countable basis for S, and let G = {g; X ... X, g1, -e» gy BTE MU~
tually exclusive members of G}. G’ forms a basis for S"_:yj Hj;, where

Hi.r' = {(xla e xn) eS": X = x./}‘
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Next we observe that if 7 5 j, f(O) n Hy; is countable. To see this, consider
the homeomorphism from H;; onto [] S; (which is homeomorphic to ") that
k#]

takes (X1, «es Xp) = (X1, oo, Xjq5 Xjigs s %) Let U be the image of O n Hy;
and U covers [ Sy~ ] (S—By). Therefore, [| S,— U is countable, so f(0) n H;;
k#J k#j k#j

is too.

The preceding observation coupled with the fact that G is countable implies
that there is g, x...xg,€ G’ such that B(0) N (g;x...xg,) is uncountable. Let
0" = §"—(B(0) ncl(g, % ...xg,)), which is open in §", Furthermore, $"~0’ is
uncountable.

Now let

2= U Bing)u(s- Ud@).

B is dense in S, yet O’ covers the B-grid. That is,

@) if (xy, ..., X,) € S™ and x; ¢ cl(g;) for some 7, then {x) is in O’ (whether or
not {x) is in the B-grid); and

(i) if (xy, ..., x,) € S"—(S—B)" and for each i, x; is in cl(g;), then letting j be
an integer such that x;€ B, we really have that x;€ B;, so {x) is in

S"—((S—B)x..x(S—B)),

which is covered by O, so {x) is in O'.

This contradicts that S'is v" since O’ covers the B-grid but $"— O’ is uncountable.
This concludes the proof.

Remark. The definition of a “strongly L" set” may be easily stated and slight
changes in the wording of Theorem 5 yield an analogous theorem.

Hereafter we deal only with separable metric spaces (namely subspaces of I),
so we shall not use the word “strongly” again, although it is implied.

5. Examples. Our first example shows that Theorem 4 has no analogue for v*
spaces. In particular, given a positive integer n, we will exhibit a v" subspace of I that
is not v***, To prevent it from being v"**, we will need a sct B, dense in S, and a closed
uncountable subset M’ of $"** that misses the B-grid in $"**, Toward this goal,
we prove a lemma.

Lemma A. Suppose that B = {b: b is rational, 0<b<1} and that n is a positive
integer, There is a closed subset M of I"*' such that:
(1) M does not intersect B**1, and
() if k is an integer, 1<k<n, and s is an increasing finite subsequence of
(1,2, ..., n+1) with k terms, and F is a first category subset of [] I, then n5 *(F) n M
X Jjes

is of the first category in M.
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Proof. Define g: I"— I by

Xyt ot X,
" :

g(xXy5 s X,) =

Notice that g(B") = B. Let C be a countable dense subset of (0, 1) such that B and C
do not intersect, and let 4 be a homeomorphism from I onto I that maps B onto C.
Let f= hog, and let M be f. That is, let

M = {(xlv ...,x,,,f((x)): (xl: wery

M is closed since f is continuous, hence M is a Baire space. M satisfies condition (1),
for if m is in M and the first n coordinates of m are in B, then the last coordinate
of m is in C (thus not in B).

Before verifying that condition (2) is met, let us observe that if U is an open
rectangle in the interior of I"** and U intersects M, and 1<<k<nand s = (i, ..., )
is an increasing finite subsequence of (1, 2, ..., n+1), then n (U n M) is open in

[T 1. To sec this, suppose that (p,,, ..., p;,) € (U n M) and that for each positive
Jjes

integer 1, (ql,, ..., g}, is'a point not in n(U n M), yet this sequence converges to
(Piys oo Pi) Lot (Do, +ov s Pus1) be a point of Un M such that 7 ({pd) = (py,, ..., Pi)-
Now consider two cases, both of which lead to a contradiction of the fact that
(P1y» -» Py 15 & limit point of non-members of © (U N M).

(@) If i, # n+1, let (..., r}) be the n-tuple obtained by letting

x,") EI"} .

o {qf,, if mis a term of s,
-

Pw if mis not a term of s.

Let riyy = £, ..., ). Now () is in M for each t, (") — {p), so there is # such

that (> € U n M. But n({r'y) = (qi,, ..., g},) which is supposedly not in z,(U 0 M).
(i) If i, = n+1, let z be an integer, 1<z<n, such that z # i; for any j. (Such

a z must exist since k<n.) Now for all m, 1<m<n+1, except z, let

, ¢!, if mis a term of s,

™= \pn if mis not a term of 5.

Let # be the real number (perhaps not in I) that solves

h(r;+...+r;+...+r;> ¢

n

= Fpiy -

It is true that for sufficiently large ¢, r; must tend toward p, which is in th:a interior
of 1, thus for sufficiently large ¢, {) is in U n M. Again we have that <r') —{p>
and m((rD) = (@} s 01 ‘
Now, conditicl)n (2) is easily verified if we notice that it suffices to show that
if Fis closed and nowhere dense in [ /;, then 5 '(F) n M is closed and nowhere
‘ jes
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dense in M, which must be the case in view of our observation on the projection of
open rectangles. This concludes the proof of Lemma A.

Lemma A provides the structure for finding an uncountable closed set,
M'= M~ 8", in S"* that misses the B-grid. But some caution must be exer-
cised to keep M’ away from it. Condition (1) of Lemma A controls the set B"*"!,
so we will develop controls to assure that we do not allow points to be in .S if they
could combine with points of B to form an (n+1)-tuple that lies in M — that is,
M’ must not intersect the B-grid in $***. We prove a lemma that will be applied
in a recursion argument. The reader is forewarned of the difference between the
point (xy, ..., X,4+;) and the set {x,, ..., Xy41}-

Notation for Lemma B and Lemma C. Let n and k< n be positive integers,

and let 4 be a finite number set and let {»y, ..., ,} be a number set that does not
intersect 4. If m is a positive integer (for application, m = n or m = n+1) and ¢ is

an m-tuple from ({yq, ..., yer U A"—A", then if (xq,.., %) is a k-tuple, let
P (xy, .., x) be the m-tuple obtained from ¢ by replacing each y; with x;.

LeMMA B. Let B, n, and M be as in Lemma A. If C is a countable set (perhaps
empty) that does not intersect B and (C U BY'* 1 —C"*1 misses M, then there is a first
category subset E of M such that if (X{, ..., Xy4+,) is in M—E, then M misses
({15 wes Kara} U CU B —({x, oo, X} U OFFL

Proof. Let & denote the collection of increasing subsequences of (1, 2, ..., n+1)
with » or fewer terms. For an arbitrary s in &, let k denote the number of terms of s
and let E; = {(xy, ..., x) € HSIJ-: there is a finite subset 4 of Bu C such that

Jje
({xyy s e} U A1 — 4"F1 intersects M}. Let of denote the collection of all finite
subsets of C' U B and we have that E;, = | E 4, where
Aeod

Eju={(x1,., x)e [T L ({xg, ..., ;U Ay — 4" intersects M} .
Lo Jjes

Now, for Ade o, E, 4 is closed relative to [] I,— [T 4;, for if (py, ..., )
Jes 'ER
is in this set and a limit point of E, ,, then (using the notation described earlier
with m = _n+1) there is @ and a sequence {g'),<g>>, ... converging to {p)> such
that P,(<g')) is in M for each 7. Since M is closed, P,({pd) is in M and hence {p) is
in E, ,. Furthermore, FE, 4 misses the set [] B, since, by assumption, (C v B)"1—
jeS
—C"*! misses M. Therefore, E; 4 is nowhere dense in || Z; and consequently, E, is
jes
of the first category in [ J.
Jes
Let E = { n7*(E) n M which, by Lemma A, is of the first category in M.
sed

Furthermore, if (xy, ..., X,+,) is in M—E, then

({x15 s Xy} U CU BY* —({xy, e, Xpagy U CYFY
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can not intersect M, for if (m,, ..., My +1) is such a point of intersection, then there is
an integer / such that m, belongs to {x,, ..., X,41}. Letting (X550, X 3 be the coor-
dinates of (x> that appear as coordinates of (m), we see tﬁat (’x)Jkis in n7Y(E)
where s = (fy, ..., /i), Which is a contradiction. This concludes the proof. B

Lemmas A and B provide the framework to give us a space that is not y*+*
But we want the space to be v, so we prove one more lemma. As with Lemma B the.
following is to be applied in a transfinite construction, hence the peculiar worc;ing.

Lemma C. Let B, n, and M be as in Lemma A. If C is a countable set containing B,
and C" is a subset of C (perhaps empty), and O is open in I", and C*—C' mi:se.;
y(0)—B", then there is a first category subset F of M such that i (X15 eny Xppq) i5
in M—=F, then ({1, ., Xpi1} U C)'~C"™ misses y(0)—B". T

Proof. Let & denote the collection of increasing subsequences of 1,2,..,n+1)
with #n or fewer terms. For an arbitrary s€ &, let k denote the number of terms of s.
and let Fy = {(x;, .., x)€ sz I;: there is a finite subset 4 of C such tha;:

€

({5 o X} U A)Y'— 4" intersects y(0)}. Let o denote the collection of all Sinite
subsets of C and we have that F, = |J F, ,, where
Aded

Fy 4= {(x4, ., x)€ jﬂsij: ({15 s X} U A)"—~ 4" intersects y(0)} .

We will show that each F, 4 is nowhere dense in T I;, so suppose that this is
Jjes

not the case. We then have 4 € & and a rectangle R in T1Z; and one n-tuple ¢
: R . , . Jjes

(using the notation described earlier with m = n), and a dense subset D of R such

that if (xy , ..., X} € D, Pyloxy, ..., %) is in y (0). This implies that for each (X5 s XK)ER,

Py(xy, ., X is in B(O) which in turn implies that for each (X, s X)ER,

Py, ey x) 18 in a(O) and not in y(0). The contradiction means that F,, 4is nowhere

dense in []Z;, so Fy is a first category subset of []I,.
Jas Jjes

Let F = | ny%(F) n M which, by Lemma A, is of the first category in. M.
Sed
Furthermore, if (xy, ..., X,4.1) € M—F, then ({x, ..., X,41} U C)"~C" can not inter-
sect y(0) = B" In fact, if' (3, ..., »,) is in this set and not in C"—C"™ (which misses
P(0)—B" by hypothesis), then (y,..,»,) is not even in y(0), for letting
8= (fiy ey Ji)y wWhere (xp,, .., xp,) are the members of {xy, ..., x,.,} that appear as
coordinates of {pp, we see that F, keeps (y> out of y(0).

Trorem 6 (CH). If n is a positive integer, there is a subspace S of I which is dense
in I that is v* but not v'*'.

Proof. Let B, n, and M be as described in Lemma A. Let {uo, 4y, ...} be a coun-
table basis for M. Arrange the dense open subsets of I” which do not contain any open
(relative to diag(/")) subset of diag(/”) as boundary points, into a transfinite se-
quence: {Op}, 0<w,.
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Before we do a transfinite construction, let us show that our process does work.
Thus, we ask the reader to assume that for each o<w;, <x;» = 2, o, X2 Yy s
a point of u, such that

@) if t<oy, then (U {xt, 0, x0F1 U BY T = (U {5, -y 2579} does
o<t

LE3
not intersect M; and
(i) if 1<, and <7, then (U {x5, ... 53"} v BY'—(U {xk, ey X2
o<f

oSt

does not intersect y(Og)—B"; and
(iii) if T<w,, then <x» is not in U {<x,>}.
o<t

Let S = { {x2,.., "'} U B, which is obviously dense in I.
s<oy .

S is v, for if B’ is dense in S and O is open in $” containing the B'-grid, then
there exists #<w, such that Oy, n S™ = 0. That is, letting O’ be open in I" such
that O' n S” = 0, we see that O’ is dense in I", and furthermore, £(0") can not
contain a “piece” of diag(I™), else there is (&, b, ..., b) in B™ that is not covered
by O. Thus we are assured that O’ = O, for some <w,. Next we observe that
a(0g) N S* is empty, for if (py, ..., p,) 18 in &(Og N S”, then each p; is in S and
since {p) is in «(0,) (and since one coordinate of {p) is allowed to “move” without
getting outside B(04)), we see that there is a point of the B'-grid that is not covered
by O,. The contradiction implies that «(Oz) N S" is empty and hence that
B(0p) N S™ = y(0p) N 8", which is countable by condition (ii). Therefore, S"—0
is countable, and S is v".

S is not v**1 though, for B is dense in S and we let M’ = M n S™**, which is
uncountable by (iii). M’ does not intersect B"** since M does not. Furthermore, if
(X1, +s Xp11) € M and at least one coordinate is in B (but of course, not all coordi-
nates are in B), then the coordinates of {x) which are not in B violate condition (i)
imposed upon each {x,», meaning that such coordinates can not be in S. Therefore,
M’ does not intersect the B-grid in $"*! and S is not v**1.

Now, to complete the proof, we need to construct the sequence of points
satisfying (i)-(iii). An extra condition, (), will be introduced to make Lemma B
applicable. Condition (i) comes from application of Lemma B, and (ii) comes from
application of Lemma C.

nt+1
Let .D be the intersection of M and the B-grid in I"**. D= () =; *(B) n M,
=1

so D is of the first category in M. Apply Lemma B with C = @ to get Ey (Ein
Lemma B). Apply Lemma C with C= B, C' =@, and O = O, to get F, (Fin
Lemma C). Let (x3, ..., x37%) € (M —(D U Ey U Fy)) 0 1y, and notice that
*)  {x5s ., X6} misses B;
and

@ (x5, oo 6T} U BT —{x], ..., X571} misses M; and

i) ({x8, ..., 371} U B)" misses y(0p)— B".

@ ©
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Now suppose that t<w, and that

(x) if o<1, {x,> is a point of (M-D)u Ui
and
i) if é<r, the L n1 " "

| @ T n (}‘)6 R A Y B) “-—(dga{x;, s X3P does
not intersect M; and b

(i) if 6<v and 0<$, then L, Xt L 1 1y

. < (U {62231} 0 B) QIR AS)

does mnot intersect y(0z)—B"; and

(i) if 6<r, then {x,» is not in |J {Gxap}.

a<d

‘ = 1 S
Let C = ag: {x3, ..., xﬁ“} which is countable and does not intersect B (by (+)).

Furthermore, (C'U B)""*—C"™* does not intersect M. To see this, consider the
ca:esh(l) that t—1 = § is included in the hypothesis, and (2) 7 is a limit ordinal, in
which case there is <t for which it is true that a sy i :

‘ osed point of M
N ((Cu By'**—C""1) belongs to P R e

1 URHY
(ULEJJ {x}, e Xg Ju B)"”——(}s)’j{xt’,, ey X HIEL

Since both cases may be ruled out, we apply Lemma B to get the set E . (Ein
Lemma B), Now let C = (;) {x}o,.,.,x:“} U B which is countable and con-
o<t
tains B. For cach 07, apply Lemma C with ¢’ = | {x?, ..., x;*Y and 0 = 0,
. a<p
to get Fj (Fin Lemma C). Since there are only countably many <1, let F, = (J Fj,

<t

and F, is of the first category in M.
) Let (xf.)' bfa a point of (M—(D v E, u F)n Uy. Furthermore, to assure that
condition (iii) is met, pick (x> outside {) {¢x,»}. It remains to verify that con-
<t

o # e ae ] 7
ditions (), (i), (ii), and (iif) are satisfied, which is easily done.

COROLLARY, There is a dense subspace S of I that is L (relative to I) but not v2.

This comes from the theorem when n = 1 and since S is v* and dense in I, then
(Property 5 from the introduction) § in L! so (Theorem 4) S is L*.

Finally, we show the existence of a v* space, and in fact, we exhibit a very
“fragile” v* space, More precisely, from properties stated in the introduction, we see
that if S'is dense in 7 and S is a v! space, then if B is a v! space and dense in 7 (in
particular, if B is countable), then §'U B is also a v* space. Also, it was noted that
bheing a v* space is a hereditary property. These properties are not true of v* spaces
though.,

THroreM 7 (CH). There exists a subspace S of I which is dense in I'such that S isv®
and such that there are countable sets B and C in I for which neither S U B nor S—C
is v2,
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Proof. Let B = {b: b is rational, 0<b<1}, and let Z denote the integers.
Let & be a homeomorphism from 7 onto I such that if b € B, h(b) ¢ B. Let ho(x) = x,
and if » is a positive integer, let A,(x) = h(% ~1(x)), and if n is a negative integer,
let hy(x) = 1"l (x)). If xel, let H) = {h,,(x)} Let D= U H(b).

If n is a positive integer and O is open in I", lct a'(0) = {{pde ﬁ(O) there is

an integer k, 1<k<n, and a subsequence (i, .., %) of (1,..,n) and a function
@: {1, ..., k} = Z and two numbers a and b such that if x is a number between a
and b, then (Dy, v, Pii=1> Ber()s Pis1s o> Pieis BoX)s Pirs1s > Pu) 18 also in
B(O)}. Let y'(0) = B(O)—a'(0).
) For each positive integer n, well order the dense open sets, O, in I* for which
it is true that if ¢ and b are two numbers, there is a number x between a and b such
that (H(x))* does not intersect B(0), {03}, < w;. Let {uo, uy, ...} be a countable
basis for I.

We want to generate, for each c<w®,, a point x, from u, such that

() if <o, and 8<7 and 7 is a positive integer, then ( (;J Hx))'—( Uo H(x,)Y
a7 o<

does not intersect y'(0p); and
(i) if t<wy, x, is not in U {x,}.

o<t
So we first let, for each positive integer n, Fy = {x € I: (H(x))" intersects y'(0g)}.
For each n, F is of the first category in 1. That is, for each function g from {1, ..., n}
into Z, let Fg(g) = {xel: (hy(x), ..., hp (%)) is in ¥/(0g)}. Now, Fyle) is nowhere
dense in I by virtue of the restrictions placed upon each Ojp. Since there are only

countably many such g, we see that Fj is of the first category in I. Let F, = ) Fg,

n=1
and pick x, from ue—(D U Fy).
Now suppose that T<o; and that if o<1, x, is a point of u;— D. Suppose
further that

(i) if <7 and #<4 and n is a positive integer, then ( |J H(x,))'—( U H(x,))"
o< o<
does mnot intersect y'(Op); and
(i) if 6<t, x5 isnot in U {x,}.
a<d

U H(x,), and for each 0<r, let C; = U H(x,), both of which are

countable. For each positive integer n, let Ej = {xe I (H (x) U C)*—(Cy)* inter-
sects y'(Op)}. Eg is of the first category in I, for Ej can be written as a countable union
of sets of the form Eje, 4) = {xel: ({hy(x), ..., o (3)} U A)'—(Cy)" intersects
7'(0R)}, where g is a function from {1, ..., n} into Z, and A is a finite subset of C;
and Eg(g, 4) is nowhere dense in I by reasoning very similar to the reasoning that

Let C =

showed (in Lemma C) that F, , is nowhere dense. We let E, = (J EJ and
n=1
F.= | E,y, so F, is of the first category in I Pick x, from u—(D U F). To

(A
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satisfy (ii), also pick x, outside |J {x,}. We therefore genergte a transfinite sequence

o<t

of points with the desired properties, (i) and (ii). Let S = |J H(x,), which is dense
a‘<m1

in I since, for each o, x, e uy,.

Next we show that S'is v*. Suppose that n is an arbitrary positive integer and B’
is dense in S and O is open in S” containing-$"—(S— B')". Let O’ be open in I" such
that 0’ N §" = 0, and we will show that O’ = O] for some . 0’ is clearly dense
in I". Furthemore, if a<b, we will find 4 number x between @ and b such that
(H(x))" does not intersect §(0"). For each function ¢ from {1, ..., n} into Z, let
K, = {xe (@, b): (h(x), ..., () is in B(0")}. K, is nowhere dense in (a, b),
for it is closed relative to (g, b), and can contain no point g such that &, (q) e B,
else /1,,(q) is in S for each i, so (h,,(9), .., h,,(@)) is in the B'-grid in S”, yet not in O.
Taking the union of X, over all such g, we only get a first category subset of (a, 4),
thus we pick x outside this first category set, and (H(x))" must miss f(0"). Therefore,
there exists @<w, such that Oy n S" = 0.

«'(03) N S is empty, because if {p) € «’(Of) N S, then there is k, 1<k<n
and a subsequence (i, ..., &) of (1,...,n) and a function g¢: {I,...,k} —Z and
numbers a and b such that if x is bewween a and b, then

(pl’ "'5pi1—1’ hg;(x)’pi1+1: '--:pik—l: hak(x)apikw)—l: seey pn)

is in B(0p). As before, let ¢ be a point between a and b such that h,(g) e B’, and
we get (Py, vrs My (@), o5 B (@), ..., p,) in ™ and the B'-grid, so this point is supposed
to be in O, yet it is not in O (which is a contradiction). Therefore, &'(Op) N S” is
empty, so B(05) N S" = 9(0f) n S", which is countable by construction, hence
S"—0 is countable and S is v". Since n was arbitrary, we have that S is v*.

S U B is not v? however, for let M be the closure in (S U B)? of

{(x;, A(x)): T<w4}.

M is a subset of the graph of 4. M is uncountable, since we conveniently picked a new
point x, for each 7. M does not intersect the B-grid in (S u B)* though. That is,
if b e B and s is 2 number such that (b, ) is in M, then (i) s is not in B since h(b)
is not, and (ii) s # h,(x,) for any pair (n, 7), else x, is in D, so s is not a member
of S'u B. Similar reasoning takes care of (s, b). This implies that M misses the
B-grid in (S U B)?, so SuU B is not v2.

Finally, to show that there is a countable set C such that §—C s not v?, let M be
the previously defined set (which actually lies in S? since it misses the B-grid).
Let N denote the fixed points of . N is nowhere dense in [ since it is closed and does
not intersect B. Recalling that {ug, uy, ...} is a basis for /, let by be a point of uo—N,
and for each positive integer n, let b, be a point of

= (Vo (] U {hBY}) U (U B -
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Let C= U ({h(®)} U'h~10)}) and B’ = {bo, by, ...}. Notice that B and C do
. =0

not intersect. For example, if b, = h(b)), then n # j, else b,e N, and n}j, else
b, e {h(b)}, and n#j, else b; e {h~'(b,)}. B' is dense in S—C though, for it is dgnse
in I, and M n (S—C)* is closed (relative to (S—C)?) and still uncountable, but it is
forced to miss the B’-grid in (S—C)>.

The author is grateful to J. B. Brown and P. L. Zenor for their helpful sugges-
tions and advice, and especially to Zenor for first raising the question of the existence
of a v* space.
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Dimension of free L~spaces
by

Keié Nagami (Matsuyama)

Abstract. We introduce the class of free L-spaces which is countably productive and hereditary.
The class is an intermediate class between that of L-spaces and that of M,-spaces. The class has
excellent features in dimension theory a part of which is clarified in this paper.

0. Introduction. In a previous paper [6] we introduced the notion of L-spaces
which constitute an intermediate class between that of Lainev spaces and that of
M -spaces. As was noted there the class of L-spaces is not even finitely productive.
In this paper we introduce the notion of free L-spaces in Section 1 which generalizes
the notion of L-spaces. The class of free L-spaces is not only hereditary and coun-
tably productive but also has many excellent features in dimension theory. In Sec-
tion 2 we show that even the dimension-raising theorem is valid for the class of free
L-spaces. As trivial corollaries of this theorem there are the decomposition theorem
and the coincidence theorem for two basic dimensions. A characterization theorem
for a free L-space X with dim X = n is also presented. Our characterization assures
the existence of equi-dimensional Gj-envelopes as in Theorem 2.8 below. In
Section 3 we show that the universal space for free L-spaces is the countable product
of almost polyhedral spaces. As a special case we prove, in Theorem 3.8 below, that
each space X is a free L-space with dim X<0 if and only if it is embedded in the
countable product of almost discrete spaces. Thus a role played by Baire’s
0-dimensional spaces in the theory of metric spaces is done by the countable products
of almost discrete spaces in the theory of free L-spaces.

In this paper all spaces are assumed to be Hausdorff topological spaces, maps
to be continuous onto, and images to be those under maps. The letter N denotes
the positive integers. For undefined terminology refer to [2] and [6].

1. Definition of free L-spaces.

1.1. DerNITION. Let X be a space, F a closed set of X, and 4 an anti-cover
of F.If §is a subset of X, %(S) denotes the star U {Ue ¥: Un S # @}. X(S) is
defined inductively by the formulae: #*(S) = %(S) and %'(S) = %(U'~Y(S)).
A set V of X is said to be a canonical neighborhood of F (with respect to %) if V is
an open neighborhood of F such that, for each #, Cl#'(X—¥) does not meet F.
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