210

{281
[29]
[30]
[31]
[32]
[33]

[34]

C. Smorynaski

W. E. Ritter, Representability of partial recursive functions in formal theories, Proc. Amer.
Math. Soc. 18 (1967), pp. 647-651.

J. B. Rosser, Extensions of some theorems of Godel and Church, J. Symbolic Logic 1 (1936),
pp. 87-91.

~— An informal exposition of proofs of Gddel’s theorem and Church’s theorem, J. Symbolic
Logic 4 (1939), pp. 53-60.

D. Scott, Algebras of sets binumerable in complete extensions of arithmetic, in: Recursive
Function Theory (AMS, Providence), 1962.

J. C. Shepherdson, Representability of recursively enumerable sets in formal theories, Arch.
Math. Logic 5 (1960), pp. 119-127.

C. Smorynski, Caleulating self-referential formulae, I; explicit calculations, to appear in
the Proceedings of the 1977 Logic Colloquium at Wroclaw.

— Avoiding self-referential statements, to appear.

‘Westmont, Illinois

Accepté par la Rédaction le 17. 4. 1978

On order locally finite and closure-preserving covers
by

Rastislay Telgarsky (Wroctaw) and Yukinobu Yajima (Yokohama)

Abstract. The present paper deals with structural properties of the covers and contains the
order locally finite sum theorem and the closure-preserving sum theorem for the covering dimension.

The purpose of this paper is to study structural properties of the covers and,
besides, by mean of that properties, to derive two general sum theorems for the
covering dimension dim. Section 1 contains a characterization of order star-finite
open covers. There are many tesults (cf. [2], [7], [8] and [9]) dealing with spaces
endowed with two order locally finite covers {E,: {<a} and {U;: & <o} such
that Ey is closed and has a topological property 2, while U, is an open neighborhood
of E, for each {<a. In Section 2 a structure of such spaces is described and, in
particular, the order locally finite sum theorem for the covering dimension is estab-
lished. Finally, Section 3 is concerned with closure-preserving closed covers con-
sisting of countably compact sets, where the closure-preserving sum theorem for the
covering dimension is proved. The last result turns out to be a special case of a state-
ment established by a topological game.

The set of natural numbers 1, 2, 3, ... is denoted by N, while natural numbers
by k, m and n. Ordinal numbers are denoted by o, ¢, n and &

Let {4;: ie I} be an indexed family of subsets of a space X. We shall denote
by {A;: ieI}* the set of all points x € X such that the set {iel. Un 4, # 0}
is infinite for each neighborhood U of x.

Let us note several properties of the operation :

(@) {d;: iel}* = 0iff {4;: iel} is locally finite.

(b) {4;: iel}¥ is closed in X.

(&) I U={d;: ieI}*, where U is open, then {4;—U: iel}* =0

(d) If B4, for each iel, then {B;: ie D¥c{d; iel}¥.

1. Oxder star-finite covers. A family {4;: i€ I} of subsets of a space X is said
to be order star-finite [9], if one can introduce a well ordering < in the index set [/
so that for each i e I the set 4; meets at most finitely many 4; with j<i. Since
every well ordered set is order isomorphic to an initial segment of ordinal num-
bers, we may use the notation {4;: <} instead of {d;: iel}.
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Lemma 1. Let {Ey: &<} and {Uy: E<a} be order star-finite covers of a space X,
where Ey is closed and U, is an open neighborhood of Ey for each &<et. Then there is
a partition {I,: ne N} of {&: E<a} so that for each ne N:

VW if &, nel, and & # n, then U:nU,=0;

1.2. if Cel, and m<n, then {nel,: U, n U, # 0} is finite;

13. {Us: ¢el}* U {E,: nel, and m<n};

14. F, = {E;: ¢el, and m<n} is closed in X.

Proof. For each ¢ <a, we define a sequence (T}, Téz, ...» of subsets of {¢: &<a}
as follows. We set T} = {n<&: U, n Uy # 0}. Assume that T} is already defined.
Then we set 7;™ = {J {T}: neTf}. Now we set T, = {&} u U {T&: ne N}. Itis
easy to show (by induction with respect to &) that the sets T} are finite. Let us observe
that

L5, if n<é<o and U, n U; # 0, then T,=T\{¢}, and therefore cardT,
<card Ty.

For each n e N we set I, = {{<a: cardT; = n}. Clearly, {I,: ne N} is a par-
tition of {¢: £<a}. The condition 1.1 immediately follows from 1.5. Let tel, and
m<n Weset T'={nel,: U, U;# 0% If y>& and U, n Us # 0, then cardT,
>cardT, by 1.5, and thus 5 ¢ T. Hence T {n: n<¢}, and therefore T'= T, ie.,
the condition 1.2 is fulfiled. Let x e {U,: ne I,}*. There is me N and £ e I, such
that x € E;. The set S = {nel,: U, n U, % 0} is infinite, because x ¢ U,. Since
the set {y<&: U, n U, 5 0} is finite, there is ne§ with n>¢&. Hence cardT,
>card Ty, i.e., n>m. Therefore the condition 1.3 is satisfied. Finally, we claim that
the set F, is closed. The set F, is closed, because (E;: éeI}® =0 by 1.3. Let
n>1 and xeF, If xeF,_,, then XeF, because F,_,<F,. If x¢F,_,, then
x¢{E;: ¢el}¥, and hence x e Ey for some ¢ e 1,. Therefore F, is closed for each
neN.

PROPOSITION 1. An open cover {Uy: i€ 1} of a space X is order star-finite {ff the
index set I admits a partition {I,: ne N} such that for each ne N the Jamily
(Uit ie L) consists of pairwise disjoint sets and the set {jely: Un U #0 and
m<ny} is finite for each iel,.

Proof. The “only if” part of the assertion follows from the proof of Lemma 1.
The “if” part is almost immediate, since one can introduce a well ordering < in J
so that i<j for each ie”,, jel, and m<n.

COROLLARY 1. Each order star-finite Jamily of open sets is o-disjoint.

2. Order locally finite covers. A family {4;: ie ] } of subsets of a space X is said
to be order locally finite [2], if one can introduce a well ordering < in the index set J
so that for each e [ the family {4;: j<i} is locally finite at each point of 4;. Since
every well ordered set is order isomorphic to an initial segment of ordinal numbers,
we may use the notation {4;: {<a} instead of {d,: iel}.

LemMA 2. Let X be a space with order locally finite covers {Ee E<a) and
{Us: E<u}, where E, is closed and Us is an open neighborhood of E; for each E<a.
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Then X has a closed cover {Ey,: E<o and ne N} such that for each ne N:
2.1 By S Egpyy and U {Ey,: ne N} = E; for each E<u;
2.2. {E, n<o}¥ <) {Egy: é<o and k<n};
23. F, = U {E;,: &<a} is closed in X.

Proof. For each {<u, xe X and ne N we set T,, = {n<¢&: xe U,} and
Eg, = {x € Ey: cardTy ,<n}. Since the set T, is finite for each x e U, and &<z,
we have {J {E;,: ne N} = E;. Therefore the condition 2.1 is fulfiled. Now we
shall show that E,, is closed in Ey. Let xe E,~E,,. Then cardT;,>n+1 and
U= N{U,;: neTyy} is an open neighborhood of x in X. If ye Un E;, then
card Ty ,zn+1. Hence U N Ey, = 0 and therefore E,, is closed. In order we shall
show the inclusion in 2.2. Let x & {E,,: n<a}*. There are <o and ke N such
that xe Ey ;. Let U be an open neighborhood of x contained in N{U,: y& Ty )

3
and such that the set {#<¢: Un E, # 0} is finite. Since x € {E,,: n<a}¥, the set
{n<a: UnE,, # 0} is infinite. Hence there is #>¢ such that Un E,, # 0.
Let us pick a point ye Un E,,. Then ye U, n () {U,: peT,,} and thus cardT, ,
214-cardTy,, i.e., n>14k. Consequently, xe E;, where k<n. In particular, we
have {E, : n<c1.}* = 0, and hence the set F; is closed. Assume that F, is closed
for some ne N. Let xeF,.,~F,. Then, by 2.2, x ¢ {E;,¢;: é<a}®. Thus the
point x has an open neighborhood which meets at most finitely many E;,., with
E<a. Hence xe Ey,,, for some {<x and therefore x€ F,;;. By the same the
condition 2.3 is verified.

Remark 1. Under the same assumptions as in Lemma 2 one can point out
that X has an open cover {U,,: <o and ne N} such that for each neN: U,
CUspet> U{Usy: ne N} = Uy, where é<a, and {U,,: <o}® <U{Uy: E<a
and k<n}. The set U, is defined by setting Uy, = {x& U;: card Sg‘x<.n}, where
S, = {n<¢&: xe U} The inclusion Fy,< Up,, however, does not hold in general.
Le’t us notice, besides, that an analogous statement to Lemma 2 holds for spaces
with two order point finite covers.

Let X be a space and let K be a family of closed subsets of X such that (i) if
EeK and Fis a closed subset of E, then Fe K, and (ii) if Ee K and FeK, then
E U_}’ ¢ K. A space X is said to be Jocally K at apoint x, if x has an open peighborhood
U for which T e K. Furthermore, X is said to be K-scattered [10], if each closed
nonvoid subset of X is locally K at a point.

The next proposition is an immediate consequence of Lemma 2.

PROPOSITION 2. Let X be a space with order locally finite covers {E;: &<o}
and {Uy: E<a} such that Ey is closed, E;e K and Uy is an open neighborhood of E;
for each &<u. Then X is the union of a sequence FycFoc... of its K -scattered closed
subsets, where, moreover, Fy is locally K and F,+y—F, is locally K for each ne N.

Proposition 2 is a generalization of Theorem 3 in [9], where X was assumed
to be paracompact and K was the class of compact spaces.
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Lemma 3 (C. H. Dowker [1]). Let F be a closed subset of a normal space X with
dimF<n. If dimE<n for each closed set E with En F = 0, then dimX<n.

THEOREM 1. If a normal space X has order locally finite covers {E: &<a} and
{Us E<al such that Ey is closed, diim E;<n and U, is an open neighborhood of E,
Jor each &<a, then dimX<n.

Proof. By Lemma 2 we have X = {J {F;: ke N}, where F, = U {E;: E<a}.
By the locally finite sum theorem we infer that dimF; <a. Assume that dimF,<n
for some k € N. If E is a closed subset of X contained in Fy,, — F;, then, by 2.2, the
family {E;p+q N E: E<a} is locally finite in X. Thus, by the locally finite sum
theorem, dimE<n. Hence, by Lemma 3, dimF,,,<n. Finally, by the countable
sum theorem, dimX<n.

From Theorem 1 we get

CoROLLARY 2 (K. Morita [4]). If a normal space X has covers {Es: {<a} and
{Us: E<a} such that E; is closed, dim E;<n, U, is an open neighborhood of Ey and
{U,: n<&} is locdlly finite for each {<a, then dimX<n.

Remark 2. Inone of earlier versions of this paper we proved Theorem ! under
the assumption of the paracompactness of X. However, Professor K. Nagami has
informed us kindly that the normality of X is sufficient to get the result. The proof,
he has indicated, consists in the following: a given continuous map from a closed
subset of X into the n-sphere S” is extendable to X by transfinite induction with
respect to & <o, Moreover, the referee of this paper has also presented an argument
which eliminates the paracompactness of X. His suggestion has essentially contributed
to the present form of Lemma 2.

3. Closure-preserving covers. The following lemma is well known (e. g., it follows
from Proposition 1.3.8 and Lemma 3.2.4 of [5]).

LEMMA 4. Let X be a normal space and let E be a closed subset of X with
dim E<n, where n20. Then each continuous map f from a closed subset F of X into the
n-sphere S™ admits a continuous extension g: V— S", where V is an open set
containing E O F. '

Now we shall make use of the topological game G(K, X)introduced and studied
in [10]. Let Dim, = {¥: ¥ is normal and dimY<n}.

PROPOSITION 3. Let X be a normal space. If Player I has a winning strategy
in G(Dim,, X), then dimX<n. (The converse implication is obvious.)

Proof. Let s be a winning strategy of Player I in the game G(Dim,, X),
where X is a normal space. To prove the inequality dim X' n, it suffices to show that
each continuous map from a closed subset of X into S” admits a continuous extension
to the whole space ([5], Theorem 3.2.5). Let f: F— " be a continuous map, where F
is a closed subset of X. Put Ey = X and E; = s(Ey). Then dim E, <n. Thus, by
Lemma 4, f admits a continuous extension fy: V; — S, where ¥, is an open set
containing Fu E;. Put E, = X\V; and E; = s(Ey, E;, E;). Then dimE,<n.
Thus, by Lemma 4, f; admits a continuous extension f5: V, — §", where V, is an
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open set containing V; U E;. Put E, = X\V, and Es = s(E,, E,, E,, Es, E,).
Continuing in that manner, we get a play (Ey, E;, E,, ...) of G(Dim,, X), an
increasing sequence (¥, ¥,,..> of open sets, and a sequence < FofisSas -y of
continuous maps such that E,; = X\V,, FuE,cV,, Vie1 W Esp_1SVe,
i Vi— S" and f| Vi, = f,_, for each k>2. Since s is a winning strategy of
Player 1, we have ) {E,: ke N} = 0. Hence {J {Vy: ke N} = X. Let g be the
map defined by setting g (x) = f,(x) whenever x & ¥,. Then g: X — S"isa continuous
extension of f: F-— S”. Therefore dim X<n.

A family & of subsets of a space X is said to be closure-preserving [3] if
U&= U{E: Ec&} for each &=, Furthermore, a family & is said to be
o~closure-preserving if & = ) {&#,: ne N}, where each &, is closure-preserving.

The following lemma is an improvement of Lemma 5 in [6]; nevertheless their
proofs are different.

LEMMA 5. Let X be a space with a closure-preserving cover & consisting of
countably compact closed sets. Then to each closed subset E of X one can assign a discrete
fumily &y of countably compact closed subsets of E so that &y refines & and the
Sfollowing condition holds:

5.1, If KE,, Ey,...> is a decreasing sequence of closed subsets of X for which
EinlU&x=0and E,.y U Py, =0 for each ne N, then N{E,: neN} =0,

Proof. Let E be a closed subset of X and let &5 be a maximal disjoint sub-
family of {Fn E: Fe %}. Then the family &y is closure-preserving and thus it is
discrete. It remains to show that the condition 5.1 is fulfiled. For, let {E;, E,, ...>
be a decreasing sequence of closed subsets of X such that £; n J &y = 0 and
E,.. 0 U &g, = 0 for each ne N. Suppose that () {E,: ne N} # 0. Then there is
an F, € & such that Fy N E, # 0 foreachne N. Now we claim that Fy N E, ¢ ¥,
for each neN. For, if Fyn E,e %5, for some neN, then FonE, N E, .y
< &g, N E,q = 0, and hence Fy n E,;; = 0, because E,.,cE,. The contra-
diction shows that our claim is true. Let # € N. By the maximality of &, we infer
that there is F,e % such that F,nE,e %y, and F,0Fon E, # 0. Let x,
€ F, A Fy A E,. Then x,¢E,.,. Hence we have x, 7 x, for m # . Since
{x,: ne N} is an infinite subset of Fy, it has in F, a cluster point x,. We claim that
X0 € () {E,: ne N}. Indeed, if x, ¢ E, for some n€ N, then x,, ¢ E, for some m>n,
and that gives the contradiction with x,€ E,<E, Now we claim that x,
¢ {F,: neN}. For, if x, € F, for some n €N, then x4 € F, n E, & 5, and thus
%o & E,..,. Having the contradiction with the preceding claim we infer that the last
claim is true. On the other hand, we have {x,: ne N}cU {F,: ne N}. Since # is
closure-preserving, it follows that the set U {F,: ne N} is closed. Hence we have
xoe {F,: ne N}. The contradiction shows that ) {E,; neN} =0.

Tueorem 2. If a normal space X has a closure-preserving cover F such that
each Fe & is countably compact, closed and dimF< n, then dimX<n.

Proof. By Lemma 5, we infer that 5(Eg, s Eap) = U Fry is 2 winning


GUEST


216 R. Telgarsky and Y. Yajima

strategy for Player I in the game G(Dim,, X). Finally, by Proposition 3, we have
dimX<n.

COROLLARY 3. If a normal space X has a o-closure-preserving cover F such that
each Fe % is countably compact, closed and dim F<n, then dimX<n.
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On some Marcus problem concerning functions
possessing the derivative at points of discontinuity only

by

F. M. Filipezak (£6d2)

Abstract. In this paper we obtain (Theorem 1) affirmative answer on the following Marcus’
problem [1]:

Does there exist a function with a dense and, at the same time, boundary set of points of
continuity, which possesses the derivative at each point of discontinuity and which possesses no
unilateral derivative at any point of continuity?

Theorem 3 generalizes the obtained solution so that any dense, denumerable set given earlier
is a set of points of discontinuity of some function satisfying the conditions formulated in the
Marcus problem. As an auxiliary theorem we use Theorem 2 on the existence of homeomorphisms
of the class Cy, mapping the given, arbitrary, dense, denumerable set onto another such set.

1. Introduction. It is known that the existence of the derivative at a point for
a function of a real variable does not depend on the continuity of the function at
this point. All the same, the derivative exists only in an at most denumerable subset
of the set of points of discontinuity. Therefore the condition that the derivative
exists at each point of discontinuity can be satisfied only for the functions whose set
of points of discontinuity is at most denumerable. In connection with the above,
it is interesting to know whether there exist functions singular in the sense that they
have the derivative in the set of points of discontinuity, which is denumerable and
infinite, and they have no derivative at the remaining points. With this question the
following problem of S. Marcus is connected (see [1], p. 13, Problem 5):

Does there exist a function with a dense and, at the same time, boundary set
of points of continuity, which possesses the derivative at each point of discontinuity
and which possesses no unilateral derivative (neither the left-hand nor the right-
hand one) at any point of continuity?

Theorem 1 of this paper gives an affirmative answer to the above question, and
Theorem 3 generalizes the obtained solution so that any dense denumerable set
given earlier is a set of points of discontinuity of some function satisfying the con-
ditions formulated in the Marcus problem. As an auxiliary theorem we use Theorem 2
on the existence of homeomorphisms of the class Cy, mapping the given arbitrary
dense denumerable set onto another such set.
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