228

F. M. Filipczak

Proof. Denote by B a set of points of discontinuity of the function f from Theorem 1. The set B is dense in R. Thus, in virtue of the corollary, there exists a homeomorphism of the class C_1 , $g: R \xrightarrow{\text{onto}} R$, such that

$$g(A) = B$$
 and $\pi^{-2} < g'(x) < \pi^2$ for $x \in R$.

Put

$$h(x) = f[g(x)]$$
 for $x \in R$.

Then, the function h satisfies the conditions of Theorem 3.

Reference

[1] S. Marcus, Sur les proprietés differentielles des fonctions dont les points de continuité forment un ensemble frontière partout dense, Annales Scientifiques de l'École Normale Supérieure (3), 79, 1 (1958), pp. 1-21.

INSTITUTE OF MATHEMATICS ŁÓDŹ UNIVERSITY

Accepté par la Rédaction le 28, 4, 1978

Some existence and non-existence theorems for k-regular maps

by

David Handel (Detroit, Mich.)

Abstract. A continuous map $f: X \to \mathbb{R}^n$ is said to be k-regular if whenever $x_1, ..., x_j$ are distinct points of X with $j \leqslant k$, then $f(x_i), ..., f(x_j)$ are linearly independent. Using some algebraic-topological machinery, a non-existence theorem for 2k-regular maps on a disjoint union of k closed manifolds is obtained. In the other direction, we show explicitly that if X is a metric space and A is a closed neighborhood retract in X, then existence of k-regular maps $X - A \to \mathbb{R}^m$ and $A \to \mathbb{R}^n$ implies existence of a k-regular map $X \to \mathbb{R}^{m+n}$. Some applications of these existence and non-existence results are given.

1. Introduction. The study of k-regular maps is motivated by the theory of Čebyšev approximation. In that theory, a set of n real-valued continuous functions on X is called a k-Čebyšev set of length n if these functions are the components of a k-regular map of X into R^n . The reader is referred to [8, pp. 237-242] for the significance of this concept.

Closely related to k-regularity is the concept of affine k-regularity: $f: X \to \mathbb{R}^n$ is affinely k-regular if and only if $g: X \to \mathbb{R}^{n+1}$ given by g(x) = (1, f(x)) is (k+1)-regular. Affine k-regularity has been considered in [2], [1], and [7]. Some previous work on k-regularity, using algebraic-topological tools, appears in [5], [3], and [4].

The problem we consider is the following: Given X, k, and n, does there exist a k-regular map $X \to R^n$? In Section 2 we prove the following:

THEOREM 2.4. Let $M_1, ..., M_k$ be closed, connected manifolds of dimensions $n_1, ..., n_k$, respectively. Suppose, for $1 \le i \le k$, the q_i -th dual Stiefel-Whitney class of M_i is non-zero. If a 2k-regular map of the disjoint union $\coprod_{i=1}^k M_i$ into \mathbf{R}^N exists, then $N \ge 2k + \sum_{i=1}^k (n_i + q_i)$.

In [1], an affine analogue of the following is proved by geometric methods: Theorem 1.1 (Boltjanskiĭ-Ryškov-Šaškin). Let $n \ge 1$. If a 2k-regular map of R^n into R^N exists, then $N \ge (n+1)k$.

In [3], 1.1 is improved in the case n=2, using algebraic topology. An immediate corollary of 2.4 is the following improvement of 1.1 in another direction:

COROLLARY 2.5. Let $n \ge 1$. If a 2k-regular map of a disjoint union of k copies of S^{n-1} into \mathbb{R}^N exists, then $N \ge (n+1)k$.

In Section 3, the following existence theorem is proved:

THEOREM 3.1. Let X be a metric space, and A a closed subspace of X which is a retract of some neighborhood in X. Suppose there exist k-regular maps of X-A and A into R^m and R^n , respectively. Then there exists a k-regular map of X into R^{m+n} .

Results of Sections 2 and 3 are used in Section 4 to obtain some best-possible results for k-regular maps on certain 1-dimensional complexes. Results of 2, 3, and 4 are used in Section 5 to obtain some existence and non-existence results for k-regular maps on certain 2-dimensional manifolds, but there is a dimensional gap between these existence and non-existence results.

2. A non-existence theorem. Let F(X, k) denote the kth configuration space of X, i.e., the subspace of X^k consisting of all ordered k-tuples of distinct points of X. The symmetric group Σ_k acts freely on F(X, k), and orthogonally on R^k , by permuting factors. Thus, for each subgroup G of Σ_k and each Hausdorff space X, we obtain a real k-plane bundle $F(X, k) \times_G R^k \to F(X, k)/G$ which we denote by F(X, k, G). The following proposition is a slight extension of Corollary 2.2 of [3]:

PROPOSITION 2.1. If a k-regular map $f: X \to \mathbb{R}^N$ exists, then for each subgroup G of Σ_k , F(X, k, G) admits an N-k-plane inverse.

Proof. Write $(x;t)_G$ for the point in $F(X,k)\times_G R^k$ determined by $(x,t)\in F(X,k)\times R^k$. Let $g\colon F(X,k)\times_G R^k\to R^N$ be given by $g(x_1,\ldots,x_k;\ t_1,\ldots,t_k)_G=\sum\limits_i t_i f(x_i).$ g is well-defined, and the k-regularity of f implies that the restriction of g to each fibre is an R-monomorphism.

We recall the following result of Wu [9, p. 380]:

Theorem 2.2 (Wu). Let M be a closed, connected n-dimensional manifold. Suppose q is the largest integer such that $\overline{w}_q(M)$, the q-th dual Stiefel-Whitney class of M, is non-zero. Let v denote the first Stiefel-Whitney class of the double covering $F(M,2) \to F(M,2)/\Sigma_2$. Then $v^{n+q} \neq 0$, $v^{n+q+1} = 0$.

Lemma 2.3. Let X be Hausdorff, and let L denote the real line bundle associated with the double covering $F(X,2) \rightarrow F(X,2)/\Sigma_2$. Then the real 2-plane bundle $F(X,2,\Sigma_2)$ is isomorphic to the Whitney sum of L and a trivial line bundle.

Proof. The total space E(L) of L is $F(X,2) \times_{\Sigma_2} R$ where the generator of Σ_2 acts on R by multiplication by -1. Write [x,y;t] for the point in E(L) determined by $(x,y;t) \in F(X,2) \times R$. Define $f: E(L) \times R \to F(X,2) \times_{\Sigma_2} R^2$ by $f([x,y;t],s) = (x,y;s+t,s-t)_{\Sigma_2}$. Then f is well-defined and is the desired bundle isomorphism.

Theorem 2.4. Let $M_1, ..., M_k$ be closed, connected manifolds of dimensions $n_1, ..., n_k$, respectively. Suppose, for $1 \le i \le k$, q_i is the largest integer for which

 $\overline{w}_{q_i}(M_i) \neq 0$. If a 2k-regular map of the disjoint union $\coprod_{i=1}^k M_i$ into \mathbb{R}^N exists, then $N \geqslant 2k + \sum_{i=1}^k (n_i + q_i)$.

Proof. Write $X = \coprod_{i=1}^k M_i$ and let $G = \underbrace{\Sigma_2 \times ... \times \Sigma_2}_k \subset \Sigma_{2k}$, where the generator of the *i*th factor is the transposition which interchanges 2i-1 and 2i, $1 \le i \le k$. By 2.1, it suffices to show that $\overline{w}_r(F(X, 2k, G)) \ne 0$ for $r = \sum_{i=1}^k (n_i + q_i)$. We have a map of 2k-plane bundles

 $F(M_1, 2, \Sigma_2) \times ... \times F(M_k, 2, \Sigma_2) \rightarrow F(X, 2k, G)$

given by

$$((x_1, y_1; s_1, t_1)_{\Sigma_2}, ..., (x_k, y_k; s_k, t_k)_{\Sigma_2}) \mapsto (x_1, y_1, ..., x_k, y_k; s_1, t_1, ..., s_k, t_k)_G$$

Thus, if suffices to show that the r-dimensional component of $\overline{w}(F(M_1, 2, \Sigma_2)) \times \dots \times \overline{w}(F(M_k, 2, \Sigma_2))$ is non-zero, where r is as above. By 2.3,

$$\overline{w}(F(M_i, 2, \Sigma_2)) = (1+v_i)^{-1} = \sum_{j \ge 0} v_i^j$$

where v_i is the first Stiefel-Whitney class of the double covering $F(M_i, 2) \to F(M_i, 2)/\Sigma_2$. Thus by 2.2, the dimension of the highest non-zero component of $\overline{w}(F(M_i, 2, \Sigma_2))$ is $n_i + q_i$, and the theorem now follows.

COROLLARY 2.5. Let $n \ge 1$. If a 2k-regular map of a disjoint union of k copies of S^{n-1} into \mathbb{R}^N exists, then $N \ge (n+1)k$.

Since the G used in the proof of 2.4 is such a small subgroup of Σ_{2k} , it is expected that 2.4 can be improved. However, we shall see in Section 4 that 2.5 is a best possible result when n = 2. (It is trivially best possible when n = 1).

3. An existence theorem.

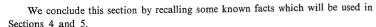
THEOREM 3.1. Let X be a metric space, and A a closed subspace of X which is a retract of some neighborhood in X. Suppose there exist k-regular maps of X-A and A into R^m and R^n , respectively. Then there exists a k-regular map of X into R^{m+n} .

Proof. Let $r\colon U\to A$ be a retraction of an open set U onto A. Choose continuous maps $\alpha,\beta\colon X\to I$ such that $\alpha(A)=0,\ \alpha(X-A)\subset(0,1],\ \beta(A)=1,\ \beta(X-U)=0$. Suppose $f\colon A\to R^m,\ g\colon X-A\to R^n$ are k-regular. We can suppose f and g are bounded (e.g. replace f(x) by f(x)/||f(x)||). Define $h\colon X\to R^{m+n}=R^m\times R^n$ by

$$h(x) = \begin{cases} \left(f(x), 0 \right) & \text{if} \quad x \in A ,\\ \left(\beta(x) f(r(x)), \alpha(x) g(x) \right) & \text{if} \quad x \in U - A ,\\ \left(0, \alpha(x) g(x) \right) & \text{if} \quad x \in X - U . \end{cases}$$

Then h is k-regular.

DEFINITION 3.2. Let X be a topological space. A closed subspace A of X is an n-complement in X if A is a retract of a neighborhood in X, and X - A is topologically embeddable in R^n .



PROPOSITION 3.3. The maps $\mathbf{R} \to \mathbf{R}^k$ and $\mathbf{R}^2 = \mathbf{C} \to \mathbf{R}^{2k-1} = \mathbf{R} \times \mathbf{C}^{k-1}$ given by $x \to (1, x, x^2, ..., x^{k-1})$ are k-regular.

This is immediate from the non-vanishing of the Vandermonde determinant. PROPOSITION 3.4. Suppose a k-regular map $f: X \to \mathbb{R}^n$ exists. Then for each $x_0 \in X$, there exists a (k-1)-regular map $X - \{x_0\} \to \mathbb{R}^{n-1}$.

In fact f, followed by projection on the orthogonal complement of $f(x_0)$, yields the desired (k-1)-regular map on $X-\{x_0\}$. (See [2, p. 355], [5, Theorem 2.2]).

4. 1-dimensional complexes.

THEOREM 4.1. Let X_i be a one-point union of a finite or countably infinite number of circles, $1 \le i \le m$, and let X be the disjoint union of the X_i . Then for each $k \ge 1$, there exists a k-regular map of X into $R^{\min(2k,k+m)}$. Moreover, this result is best possible if either a) k = 2m, or b) k > 2m and at least one of the X_i is a one-point union of at least 2 circles.

Proof. X has a 1-complement A consisting of m points (1 point from each X_i). Thus there exists a k-regular map of A into R^m . On the other hand, since A is embeddable in R, it follows from 3.3 that there exists a k-regular map of A into R^k . Thus there exists a k-regular map of A into $R^{\min(k,m)}$. Since X-A is embeddable in R, it follows from 3.3 that there exists a k-regular map of X-A into R^k . The existence part now follows from 3.1.

Since X contains a disjoint union of m circles, the non-existence part under hypothesis a) follows from 2.5.

Suppose hypothesis b) holds and that there exists a k-regular map of X into \mathbf{R}^{k+m-1} . There exists a disjoint union of m circles Y contained in X such that X-Y is an infinite set. In particular, X-Y contains k-2m distinct points. Then, by repeated applications of 3.4, there would exist a 2m-regular map of Y into $\mathbf{R}^{k+m-1-(k-2m)}=\mathbf{R}^{3m-1}$, contradicting 2.5.

4.1 will be used in Section 5. Results on various other 1-dimensional complexes, some of them best possible, can be obtained by the above methods. For example:

THEOREM 4.2. Let X be any countable 1-dimensional complex. Then for any $k \ge 1$, there exists a k-regular map of X into \mathbb{R}^{2k} .

Proof. X has a 1-complement A which is a finite or countably infinite discrete space. Thus A and X-A are both embeddable in R, and so by 3.3, both admit k-regular maps into R^k . The result now follows by 3.1.

5. 2-dimensional manifolds.

THEOREM 5.1. Let M_1, \ldots, M_k be closed, connected 2-dimensional manifolds, and let M be the disjoint union of the M_i . Suppose exactly r of the M_i are non-orientable. Then there does not exist a 2k-regular map of M into R^{4k+r-1} . If the M_i are all 2-spheres, there exists a 2k-regular map of M into R^{5k-1} . If exactly t of the M_i are not spheres and t>0, there exists a 2k-regular map of M into R^{6k+r-1} .

Proof. If M_i is non-orientable then $\overline{w}_1(M_i)$ is the top non-zero dual Stiefel—Whitney class of M_i , while if M_i is orientable then $\overline{w}_0(M_i)$ is the top non-zero dual Stiefel—Whitney class of M_i ([6, p. 120, Cor. 11.4 and p. 148, Prob. 12-A]). Thus the n_i+q_i of 2.4 is 3 if M_i is non-orientable, 2 if M_i is orientable. Hence $2k+\sum\limits_{i=1}^{k}(n_i+q_i)$

= 2k+3r+2(k-r)=4k+r, and the non-existence part now follows from 2.4. If the M_i are all spheres, then M has a 2-complement A consisting of k points (one from each sphere). Thus there exists a 2k-regular map of A into R^k . By 3.3, there exists a 2k-regular map of M into R^{5k-1} . Hence by 3.1, there exists a 2k-regular map of M into R^{5k-1} .

If M_i is not a sphere, M_i has a 2-complement consisting of a one-point union of a finite number of circles. Thus if t of the M_i are not spheres, M has a 2-complement A consisting of the disjoint union of a discrete space having k-t points with a disjoint union of t one-point unions of circles. By embedding the discrete part of A in a circle, A is embeddable in a disjoint union of t one-point unions of circles. Thus by 4.1, there exists a 2k-regular map of A into R^{2k+t} . By 3.3, there exists a 2k-regular map of M-A into R^{4k-1} , and so it follows from 3.1 that M admits a 2k-regular map into R^{6k+t-1} .

Note that any improvement of 3.3 on the existence of k-regular maps on \mathbb{R}^2 will yield a corresponding improvement of the existence part of 5.1.

References

- [1] V. G. Boltjanskiĭ, S. S. Ryškov, and Ju. A. Šaškin, On k-regular imbeddings and their application to the theory of approximation of functions, Uspehi Mat. Nauk 15 (1960), 6 (96), pp. 125-132 (Russian); Amer. Math. Soc. Transl. (2) 28 (1963), pp. 211-219.
- [2] K. Borsuk, On the k-independent subsets of the Euclidean space and of the Hilbert space, Bull. Acad. Polon. Sci. 5 (1957), pp. 351-356.
- [3] F. R. Cohen and D. Handel, k-regular embeddings of the plane, Proc. Amer. Math. Soc. 72 (1978), pp. 201-204.
- [4] D. Handel, Obstructions to 3-regular embeddings Houston J. Math. 5 (1979), pp. 339-343.
- [5] and J. Segal, On k-regular embeddings of spaces in Euclidean space, Fund. Math. 106 (1980), pp. 231-237.
- [6] J. W. Milnor and J. D. Stasheff, Characteristic classes, Ann. of Math. Studies No. 76, Princeton University Press, Princeton, New Jersey (1974).
- [7] Ju. A. Šaškin, Topological properties of sets connected with approximation theory, Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), pp. 1085-1094 (Russian).
- [8] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, 1970.
- [9] W.-t. Wu, On the realization of complexes in Euclidean space, II, Scientia Sinica 7 (1958), pp. 365-387.

WAYNE STATE UNIVERSITY Detroit, Michigan

Accepté par la Rédaction le 15. 5. 1978