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Proof. Denote by B a set of points of discontinuity of the function f from
Theorem 1. The set B is dense in R. Thus, in virtue of the corollary, there exists

R onto
a homeomorphism of the class C;, g: R — R, such that

gA) =B and =% <g'(x)<n* for xeR.

Put

for xeR.

h(x) = flg ()]

Then, the function 4 satisfies the conditions of Theorem 3. B
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Some existence and non-existence theorems
for k-regular maps

by

David Handel (Detroit, Mich.)

Abstract. A continuous map f: X — R" is said to be k-regular if whenever x,, ..., x; are
distinct points of X with j<Ck, then f(x1), ..., f(x;) are linearly independent. Using some algebraic-
topological machinery, a non-existence theorem for 2k -regular maps on a disjoint union of k closed
manifolds is obtained. In the other direction, we show explicitly that if X is a metric space and A is
a closed neighborhiood retract in X, then existence of k-regular maps X—4 —~ R™ and 4 — R"
implies existence of a k-regular map X — R™*" Some applications of these existence and non-
existence results are given.

1. Introduction. The study of k-regular maps is motivated by the theory of
Ceby¥ev approximation. In that theory, a set of n real-valued continuous functions
on X is called a k-Cebysev set of length n if these functions are the components of
a k-regular map of X into R". The reader is referred to [8, pp. 237-242] for the
significance of this concept.

Closely related to k-regularity is the concept of affine k-regularity: f: X — R"
is affinely k-regular if and only if g: X — R given by g(x) = (1,/(x)) is
(f+1)-regular. Affine k-regularity has been considered in [2], [1], and [7]. Some
previous work on k-regularity, using algebraic-topological tools, appears in [5], [3],
and [4].

The problem we consider is the following: Given X, k, and n, does there exist
a k-regular map X — R"? In Section 2 we prove the following:

THEOREM 2.4, Let My, ..., My be closed, connected manifolds of dimensions
Ny oy My, respectively. Suppose, for 1<igk, the qpth dual iriefel—Whifney class

of M, is non-zero, If a 2e-regular map of the disjoint union 11 M, into RY exists,
i i=1

k
then N22k+ Y (n+aq).
i1 , .
In [1], an affine analogue of the following is proved by geometric methods:
THEOREM 1.1 (Boltja11skiI—Ry§kov—§a§kin). Let n>l. If a 2k-regular map
of R" into RY exists, then N2(n+1Dk.
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In [3], 1.1 is improved in the case n = 2, using algebraic topology. An immediate
corollary of 2.4 is the following improvement of 1.1 in another direction:

COROLLARY 2.5. Let n21. If a 2k-regular map of a disjoint union of k copies
of S*™ ! into RY exists, then N>(n+1)k.
In Section 3, the following existence theorem is proved:

THEOREM 3.1. Let X be a metric space, and A a closed subspace of X which is
a retract of some neighborhood in X. Suppose theré exist k-regular maps of X—A
and A into R™ and R", respectively. ‘Then there exists a k-regular map of X into R™*",

Results of Sections 2 and 3 are used in Section 4 to obtain some best-possible
results for k-regular maps on certain 1-dimensional complexes. Results of 2, 3,
and 4 are used in Section 5 to obtain some existence and non-existence results for
k-regular maps on certain 2-dimensional manifolds, but there is a dimensional gap
between these existence and non-existence results.

2. A non-existence theorem. Let F(X, k) denote the kth configuration space of X,
i.e., the subspace of X* consisting of all ordered k-tuples of distinct points of X.
The symmetric group X, acts freely on F(X, k), and orthogonally on R¥, by permuting
factors. Thus, for each subgroup G of X, and each Hausdorff space X, we obtain
a real k-plane bundle F(X, k) x ¢ R*— F(X, k)/G which we denote by F(X, k, G).
The following proposition is a slight extension of Corollary 2.2 of [3]:

ProposiTioN 2.1. If a k-regular map f: X — R¥ exists, then for each sub-
group G of Xy, F(X,k,G) admits an N-k-plane inverse.

Proof. Write (x;7); for the point in F(X, k)x oR* determined by (x, 1)
€ F(X, k)x R¥. Let g: F(X,k)x gR*— RY be given by g(x(s o, Xi3 L1seer 1)g
= Z 1,/ (x;). g is well-defined, and the k-regularity of f implies that the restriction

of g to each fibre is an R-monomorphism.
We recall the following result of Wu [9, p. 380}:

THEOREM 2.2 (Wu). Let M be a closed, connected n-dimensional manifold.
Suppose q is the largest integer such that Wy (M), the g-th dual Stiefel-Whitney class
of M, is non-zero. Let v denote the first Sticfel-Whitney class of the double covering
F(M,2)— F(M,2)[2,. Then v"*" % 0, **7+1 = (.

LemMma 2.3. Let X be Hausdorff, and let L denote the real line bundle associated
withthe double covering F(X, 2)— F(X,2)/Z,. Then the real 2- plane bundle F(X,2, ¥,)
is isomorphic to the Whitney sum of L and a trivial line bundle.

Proof. The total space E(L) of L is F(X, 2)x s, R where the generator of X,
acts on R by multiplication by —1. Write [x, y; ] for the point in E(L) determined
by (x,p;7)e F(X,2)x R. Define f: E(L)x R— F(X,2)x » R by f([x, v t], 8
= (x,); s+, 5—1)y,. Then fis well-defined and is the desired bundle isomorphism.

THEOREM 2.4. Let M., ..., M, be closed, connected manifolds of dimensions
My, o5 My, respectively. Suppose, for 1<i<k, q; is the largest integer for which
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W (M) ;ék(). If a 2k-regular map of the disjoint union ]_[ M; into RY exists, then
13

=1
N22k+ Y (m+qp).
i=1

k
Proof. Write X = || M;and let G = £, x..x I, X,,, where the generator
i=1

. k
of the ith factor is the transposition which interchanges 2i—1 and 2i, 1<i<k.
k
By 2.1, it suffices to show that Ww,(F(X,2k,G)) % 0 for r = 3 (n;+¢,). We have
' ' i=1
a 'map of 2k-plane bundles

F(M (2, 5% . x F(M,, 2, £3) — F(X, 2%, G)
given by -

((Xl s Vi St rl)l‘.w mtea (xk’ Yis Sk Ik)Ez) as (Xl, Pas ey Xps Fri S15 Lys ooy Sps tk)G .

Thus, if suffices to show that the r-dimensional component of W(F(My, 2, Z,))x
X .. X W(F(My, 2, Z,)) is non-zero, where r is as above. By 2.3,
W(F(M,,2, 2)) = (L+v) ™' = va"
i

where v; is the first Stiefel-Whitney class of the double covering F(M;,2)
— F(M;, 2)/Z,. Thus by 2.2, the dimension of the highest non-zero component
of W(F(M;,2,,)) is n;+q;, and the theorem now follows.

COROLLARY 2.5. Lef nz1. If a 2k-regular map of a disjoint union of k copies
of S""t into RY exists, then Nz(n+1k.

Since the G used in the proof of 2.4 is such a small subgroup of X, it is expected
that 2.4 can be improved. However, we shall see in Section 4 that 2.5 is a best possible
result when n = 2. (It is trivially best possible when n = 1).

3. An existence theorem.

TuporREM 3.1. Let X be a metric space, and A a closed subspace of X which is
a retract of some neighborhood in X. Suppose there exist k-regular maps of X—A4
and A into R™ and K", respectively. Then there exists a k-regular map of X into R™™,

Proof Letr: U< Abearetractionof an open set Uonto 4. Choose continuous
maps «, iz X~ I such that a(4) = 0, a(X¥—4)=(0, 1], pA) =1, p(X-U) =0.
Suppose f: 4A— R", g: X—A— R" are k-regular. We can suppose f and g are
bounded (c.g. replace f(x) by £ ()11 (x)ID. Define h: X — R™*" = R"x R" by

K(./'(-\"), 0) if xed,
hY) = (B @), a@gx) i xeU-4,
[7(0, a(x)g(x)) if xeX-U.

Then /i is k-regular. .
DEFNITION 3.2. Let X be a topological space. A closed subspace.A of X is
an n-complement in X if A is a retract of a neighborhood in X, and X— 4 is topologi-

cally embeddable in R".
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We conclude this section by recalling some known facts which will be used in
Sections 4 and 5.

PROPOSITION 3.3. The maps R— R* and R* = C— R*™' =R x C*~1 given
by x— (1, x, x*, .., X*"1) are k-regular.

This is immediate from the non-vanishing of the Vandermonde determinant.

PROPOSITION 3.4. Suppose a k-regular map f: X — R" exists. Then for each
Xo € X, there exists a (k—1)-regular map X— {xo} — RL

In fact £, followed by projection on the orthogonal complement of f(x,), yields
the desired (k—1)-regular map on X—{x,}. (See [2, p. 355, [5, Theorem 2.2]).

4. 1-dimensional complexes.

TuroREM 4.1. Let X, be a one-point union of a finite or countably infinite number
of circles, 1<i<m, and let X be the disjoint union of the X;. Then for each k=1,
there exists a k-regular map of X into R™™2&k*m}  Aoreover, this result is best
possible if either a) k = 2m, or b) k>2m and at least one of the X; is a one-point
union of at least 2 circles.

Proof. X hasa 1-complement A consisting of m points (I point from each X7).
Thus there exists a k-regular map of 4 into R™ On the other hand, since 4 is em-
beddable in R, it follows from 3.3 that there exists a k-regular map of 4 into R*.
Thus there exists a k-regular map of 4 into R™™%™. Since X—4 is embeddable
in R, it follows from 3.3 that there exists a k-regular map of X¥—4 into R®. The
existence part now follows from 3.1.

Since X contains a disjoint union of m circles, the non-existence part under
hypothesis a) follows from 2.5.

Suppose hypothesis b) holds and that there exists a k-regular map of X into
RF*m=1 There exists a disjoint union of m circles Y contained in X such that X— Y
is an infinite set. In particular, X— ¥ contains k—2m distinct points. Then, by re-
peated applications of 3.4, there would exist a 2m-regular map of Y into
Ritm-1-G-2m) — p3m=1_ contradicting 2.5.

4.1 will be used in Section 5. Results on various other 1-dimensional complexes,
some of them best possible, can be obtained by the above methods. For example:

THEOREM 4.2. Let X be any countable 1-dimensional complex. Then for any
k=1, there exists a k-regular map of X into R*.

Proof. X hasa 1-complement A which is a finite or countably infinite discrete
space. Thus 4 and X—A are both embeddable in R, and so by 3.3, both admit
k-regular maps into R*. The result now follows by 3.1.

5. 2-dimensional manifolds.

THEOREM 5.1. Let My, ..., M, be closed, connected 2-dimensional manifolds,
and let M be the disjoint union of the M ;. Suppose exactly r of the M ; are non-orientable.
Then there does not exist a 2k-regular map of M into R**™"1_ If the M, are all
2-spheres, there exists a 2k -regular map of M into R3*~ . If exactly t of the M, are not
spheres and t>0, there exists a 2k-regular map of M into RS%*'~1,
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Proof. If M; is non-orientable then #,(M,) is the top non-zero dual Stiefel—
‘Whitney class of M;, while if M, is orientable then Wo(M,) is the top non-zero dual
Stiefel-Whitney class of M; ([6, p. 120, Cor. 11.4 and p. 148, Prob. 12-A]). Thus

k

the n;+q; of 2.41s 3if M, is non-orientable, 2 if M is orientable. Hence 2k + Z (n;+4q;)
i=1

= 2k-+3r+2(k—r) = 4k+r, and the non-existence part now follows from 2.4.

If the M; ate all spheres, then A/ has a 2-complement A consisting of k points
(one from each sphere). Thus there exists a 2k-regular map of 4 into R*. By 3.3,
there exists a 2k-regular map of M~ 4 into R*~*. Hence by 3.1, there exists a 2k-
regular map of M into R%*!.

If M; is not a sphere, M, has a 2-complement consisting of 2 one-point union
of a finite number of circles. Thus if # of the M are not spheres, M has a 2-comp-
lement A consisting of the disjoint union of a discrete space having k—¢ points with
a disjoint union of ¢ one-point unions of circles. By embedding the discrete part
of 4 in a circle, 4 is embeddable in a disjoint union of ¢ one-point unions of circles.
Thus by 4.1, there exists a 2k-regular map of 4 into R****, By 3.3, there exists a 2k~
regular map of M—4 into R*™*, and so it follows from 3.1 that M admits a 2k~
regular map into RS¥+'~1,

Note that any improvement of 3.3 on the existence of k-regular maps on R>
will yield a corresponding improvement of the existence part of 5.1.
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