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One-to-one Carathéedory representation theorem for
multifunctions with uncountable values

by

A. D. Toffe (Moscow)

Abstract. Tt is shown that, given a measurable set-valued mapping M from a complete
measure space T into a Polish space X such that all sets M(f) areuncountable, there are another
Polish space Z and a one-to-one Carathéodory mapping f: TXZ — X such that ft,Z) = M)
for all ¢

§ 1. Introduction. In [6] Wesley proved that, given a set-valued mapping M from 7
into I (I being the unit real interval) with Borel graph and uncountable values, there
exist a function f: Ix I— I which is Lebesgue measurable in the first variable and
Borel isomorphism from / onto M(#) in the second, Cenzer and Mauldin [1] streng-
thened this result having shown that, in the first argument, f can be chosen measur-
able with respect to the minimal o-algebra containing Borel subsets of I and closed
under A -operation of Souslin (which is a proper subalgebra of the algebra of Le-
besgue measurable sets). On the other hand, we proved in [2] that, given a multi-
function M from a measurable space (T, M) into a Polish space X with Souslin
(in an appropriate sense) graph, there are another Polish space Z and a Carathéodory
function f: I'xZ— X such that f (¢, Z) = M(t) for all 7 (such that M(t) # &).

The question arises if and how both results can be united. For instance, is it
possible to replace in Wesley’s theorem “Borel isomorphism” by “one-to-one and
continuous”? An affirmative answer will be given here even in a more general setting
that in [6] though not in so general as in [2]. The result to be proven here is stated
as follows.

TuroreM. Let (T, M, p) be a measure space. with o-finite complete positive
measure, and let X be an uncountable Polish space. Let M be a set-valued mapping
from T into X such that

(i) every M(t) is an uncountable subset of X;

(i) GrM = {(t. x) e Tx X]| xe€ M)}, the graph of M, Belongs to MRB(X).

Then M can be represented by a pair (Z,f), where Z is a Polish space,
[ TxZ— Xisa Carathéodory function and for any 1€ T, the mapping z— f(Z, z)
is one-to-one.

o
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Saying that (Z, f) represents M, we mean that M(t) = f(¢, Z) = {x| x = f(¢, 2)
for some ze Z} for any te 7. A Carathéodory function is one which is measurable
in the first variable and continuous in the second. By B(X) we denote the ¢-algebra
of Borel subsets of X and IM®B(X) is the product algebra, that is, o-algebra
generated by all products Gx B, where Ge M and Be B(X).

The theorem stated above extends Wesley’s result in two directions. The most
principal extension is that in our case continuous mappings z — f(¢, z) appear,
not Borel. The other extension is that we replace the first J by an arbitrary measure
space with complete o-finite measure. The fact that the second I is replaced by an
arbitrary uncountable Polish space is of course of no importance (in the framework
of Wesley’s result) since any such space is Borel isomorphic to 1.

However we failed to replace (T, M, 1) by a measurable space of a more general
type, say closed under 4-operation but not necessarily connected with a complete
measure. (Thus our theorem does not fully covers the theorem of Cenzer and
Mauldin.) The unsolved problem lying behind can be formulated as follows. Given
a measurable set-valued mapping from a measurable space (7, M) into a Polish
space, the values of the mapping being closed countable sets. Can it be exhausted
by a countable family of measurable selections ? As shown by Lusin [4], the answer
is yes if T itself is a Polish space and MM = B(T). This result, however, is not very
much helpful since couatably-valued mapping arising in situations similar to those
considered here are usually measurable with respect to richer algebras. The answer
is also yes in the case of complete measure space, as it follows implicitly from the
proof (Propositions (n) and (o), § 3). Observe that in both cases the proof is not
effective.

The proof of the theorem will be given in § 3. The next section contains a de-
scription of an auxiliary device.

§ 2. 7 -operation. In what follows, N = {1,2,..} and 4 = NV is the Baire
space of countable sequences of positive integers 7 = (iys iay ...). The metric

@

A - Ilk Jil
b(i,j) = 2k Lk
G/ Z fEATAY

turns 4" into a complete separable metric space. It is well known that every Polish
space is a one-to-one continuous image of a closed subset of .
For any i = (i, 1,,..) € .4 and any integer n>1, we denote
i = (i, s ).
The same symbol will be used to denote finite sequences of integers. The set
N g = {je N iln = j|n}
is called Buaire interval of rank n. Baire intervals are both open and closed in .4 and

diam "/Viin < 2-=1)
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Let A%, A%, ... be an ordering of Baire intervals of rank k. In what follows,
we shall fix such an ordering for every k. We shall consider also the set of all pairs
of positive integers together with the lexicographical ordering: (I, 5) < (k, q) if
either <k or I =k and s<g. The lexicographical ordering is complete, i.e. any
two pairs are comparable and any collection of pairs has a unique lexicographically
minimal element.

Let A=, Consider the set

L) ={k,q)) dnNE £ B, Adn CH# @)

(where CB is the complement of B), and let (k(4), g(4)) be the (lexicographically}
minimal element of L(A). We set

74 = A n JV',;Ej;’, if L) # @,
‘ if  L(d4) =
g 42140 CJV’;EQ}, it L)~ @,
T o, if L(4) =

Thus the operations & and 7, divide 4 in two parts. We shall make use of certain
properties of the operations which are listed below.
1. L(4) # & iff A contains more than one element.

L (TANT A)=@3; if L(A) # O, then (TA) (T A) =4

1MI. If A is closed (resp. open, perfect), then so are T A and T  A.

Indeed, Baire intervals are closed, open and contain no isolated points.

Let us denote I (F A4) = T34 etc.

IV. Let B= I "™ T ¥ .. T™T34. If B+ @ and my+...-+m>0, then

diamBgz—(ml-(-...-‘l-mk—l) .

Indeed, take any C. If C belongs to a Baire interval of rank », then k(C)=n-+1.
Hence I C belongs to a Baire interval of rank #-+ 1. This is also true if we gonglder N
as the unique Baire interval of rank 0. It follows that B belongs to a Baire interval
of rank w1y +...+m, which implies the desired inequality.

V. T4 4 contains at most one element.

=1

Assume the contrary: the intersection contains two different elements i and j.
Let kg = k(F571A), g, = q(75724). By definition, (k;, g,) is the minimal element
of (T~ 4) and (k. g) ¢ L(T2A). Since AT ;"' 4 and hence L(J.4)

cL(75714), it follows that

(1) (kl= ‘h) < (kz: 472) <

Since i s j, there is a pair (k, ¢) such that, say, ie 4 ',; and j ¢ A ’; Both i and j°
belong to any Jd4, hence (k,q)eL(7:4) for any s = 1,2, ... Therefore:
(ks, q) < (k, q) for all 5. It is easy to see that this contradicts to .
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Tet R be a multifunction from T into .#". Applying 7 - and 7 -operations to
every R(f), we get a pair of new multifunctions 4R and R We write

R7(4A) = {teT| R(t)n A # &}.
VI. Let M4(R) be the c-algebra generated by the sets R™(U), UcA being
open. Then
(TR~ (U) e My(R), (7 .R(U)eMy(R)
whenever Uc A" is open
Indeed, let
GYR) = R (N5 n R™(CAH),
= U GR).

@s)<$(k,0)

Then (FR)(t) = R(t) n AN '; iff te G’;(R)\T,;‘(R). ‘We have therefore
(TR)™(U) = Lk)(R"(U A N~ (GHRNTHR))).
sq

Replacing A" 'q‘ by their complements, we get the formula for (& .R)™(U). It remains
to note that GX(R), TXR), R™(U~ 4% and R(Un CA% belongs to My(R)
since Baire intervals and their complements are open.

VIL Let 72(R) = {(t, D) ie N T :R(®)}. If R is closed-valued, then

T Z(R) € My(RY@B(A)

Indeed, since R is closed-valued, so are all F 3R (according to III). By VI
these multifunctions are also M, (R)-measurable, hence Gr T 4R = {(1, )| ie TLR()}
belongs to M(R)®B(A) for all 5. But

§ 3. Proof of the theorem. We shall consider four successively extending situ-
ations, the final situation coinciding with the general setting of the statement. To
begin with, recall the following well-known fact: if (T, M, y) is a space with a complete
positive o-finite measure and R is a closed-valued multifunction from T"into a Polish
space X, then the properties

" GrRe MRB(X) and
R is 9t-measurable (i.e. R™(U)e M for any open UcX)
are equivalent.

Step 1. The theorem is true under the additional assumption that X = N and
M(¢) is a perfect.set for any te T.

icm
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Let
My = M, VYies, _
Muylt) =TT~ . TTIM@), VteT, Yie s,

Ty, = pred e {(My,)

(pry denotes projection on T), and let x;,(t) be the unique element of [} 7~ oMty
3

for teTy, (see V).

(2) My,(t) is a nonempty perfect set for all ie ¥, n=0, teT.

This follows from T

(b) My, (U) e Mp(M)=M whenever Uc A" is open.

The left inclusion follows from VI and the second from the above mentioned
equivalence (since perfect sets are closed).

(©) Ty, € M and xy,() is M-measurable.

This is a consequence of ViL

@ Myp-n® = U M) v {Xye-0D}-

jeim=-1) .

Here we have set {x;,,()} = @ if ¢ ¢ Ty,. Note also that though Baire intervals
are uncountable, any set {jln] j|(n—1) = i|(n—1)} is countable so that the union
in the formula contains countably many different members.

The very equality follows directly from II, V and definitions.

(&) If iln +# jln, then My, (t) n My (D) = G and x;,(t) # x;,(t) for any t;
Ky 1y(0) & My () Sor any i, J, n, 1.

3] diamMi[,,(t)sf("‘“.

This follows from IV.

(2) For any teT the formula

(e, i) = () My,(t)

defines a one-to-one mapping from & into N . ]

Indeed, the intersection contains exactly one element for any te T, zfe‘/V
which follows from (a) and (f). On the other hand, A(2, 1) # h(t,j)if i # j by virtue
of (e).

(h) The function i— h(t, 1) is continuous for any teT.

Tndeed, let b(jy,j,)<2~"*?". This means that j; and j, belong to the same Baire -
interval of rank n, say to A y,; hence jyln = joln =1 |n and by .deﬁmtl_o(il,_ ﬁ(t’h)
€ My, (1), h(t,j») & My,(#). Applying (f), we get B(h(t, ), h(t, ) <2 .

(i) The function t— h(t, 1) is M -measurable for any ie N
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Indeed, since Mj,(r) are closed,

{t| h(t,))eF} = QOMJ.,(FQ

nz1

whenever Fo ¢ is closed. Here F, = {j| b(j, F)<s}.

Let ¢ be a one-to-one mapping from N onto the set of all finite sequences of
integers. For simplicity, we shall write x,(.) and 7, instead x,4,(.) and Tom- Let
N@) ={keN| teT,}.

(G) For any teT,

h(t, #) = M(t)\{xe #| x = x(t) for some ke N(1)}.

Indeed, the inclusion i(z, A7) M () is obvious from (d) and (g). On the other
hand, again according to (d) and (g), if x € M (z) then either x = X;,(2) for some i|n
or there is a sequence {i*} of elements of .#" such that i**1[k = ik for all k¥ and
X € My(t) for all k. The first relation shows that {i*} converges to certain i when
k— o0 and i*|k = ijk for.all k. Hence x & My,(r) for all n which means by de-
finition that x = h(z, i).

Let us choose a countable family of different elements of 4" which we shall
write in the form i, k,r = 1,2, ..., and consider the functions

h(t, ), if t¢T,,
Yult) = xi(1), if tely, r=1,
A2, fyp—13)s if tely, r>1.

The set #™\{i;} is a Gj. Therefore it is homeomorphic to a Polish space Z'. Let
Y:Z'—> 4 Dbe the corresponding homeomorphism.  Consider the space
Z = Z' y (N N) (also Polish if ¥ is supplied with the discrete topology) and define
fi TxZ— & as follows:

_ hy@) i
A {ymct), if

Then f(., 7) is measurable (by (c) and (i), f (¢, .) is continuous (by (h)) and one-to-one

(by (&), (g) and since i, are different). Finally, ' (z, Z) = M (¢) which follows from (j)
and the definition of y,(.).

zeZ',
z=(k,r)eNxN.

Step 2. The theorem is true under the additional assumption that X = N and
M(2) is closed for any teT.

To prove the theorem in this case, we consider a transfinite sequence of triples.
(M... T, x(.)) (<L, 2 being the first uncountable ordinal) where for any ordinal «,
M, is a closed-valued 9R-measurable multifunction from T into A , T,<T and
%(.): T,— . The triples will be defined inductively as follows:

M =M,

icm
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If for a given ordinal «, M, is already defined, we set
T, = {teT| M,t) has an isolated point},
X (1) = xa(t), I teTlypN\U Ty,
s<k
where {x,1(.), X42(.), ...} is an arbitrarily chosen Castaing representation for M,

(see [5]) and for any fixed k
T = {teT| infb(xut), x5 (£))>0} ;
sk

and
Mu(’): if
MN{x,(0)},  if

If the set of ordinal which are less then « does not contain maximal element and M, &
is defined for any &<, we set

3 M,= (\M;.

E<a

t¢T,,

¥ —
)] Mo 1(2) = { teT, ;

First we shall verify that this definition is correct.

(k) For any countable ordinal o, M, is an M-measurable multi function with:
uncountable and closed values, T,e M and x,(.) is M- measurable.

Indeed, if M, is defined by (3) it is closed-valued and Mi-measurable if so are My,
¢<a; the first is obvious and the second follows from the fact that the graph of M,
is the intersection of countably many subsets of MB (A). Let M, , be defined
by (2). First we note that whenever x is an isolated point of M,(z) and

{xul(-): xaz(~), }

is a Castaing representation for M,, there is k such that x,(z) = x. It follows that
T, = U Ty e M, x,(.) is M-measurable and for any t e T, x,(f) is an isolated point
k

of M,(t) which in turn shows that M, is closed-valued and the graph of M,
belongs to MRV (A"), hence M,.., is M-measurable (thanks to the equivalence
mentioned in the beginning of the proof). .

Finally, since M (2) are uncountable and any difference M, (¢)\M,..,(#) contains.
at most one point, every M,(¢) is also uncountable.

W) If M) = M,.((t) then M) = M1) for all f>a.

Indeed, in this case, M,(¢) is a perfect set.

() x(0) # x,(6) if @ # B

() There are T'<T with w(TNI") =0 and a countable ordinal w such that
M (1) = My(t) for all p>a, teT". o

Since T'is a countable union of sets with finite measure no loss of generality will
follow if we assume that uT'<co.
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Let {x,, X5, ...} be a dense countable subset in 4", To any closed set 4=
we can assign the quantity

r(d) = k§12"kb(xk, A4).

“Since b(i; )<1, r(4)<l forany 4. If Ris a c‘].osed;valued multifunction from T
into ¥ then the real-valued function ¢ — r(R(2#)) is M-measurable and even sum-
mable since p(T)<co by the assumption. Let

y = %’ r(M())du .

‘Then r;<rp<...<r,<... (because My>M,>..). Moreover r,<r,., iff Myt)
% M, 4(t) on a set of positive measure because 4<B, 4 # B (both 4 and B are
-closed) implies r(4)>r(B).

Thus only two cases are concievable. Either thereis an o< Q such that r, = r,
-Or 1, <ty for all x< Q. The second case is impossible since only countably many
strictly increasing real numbers can exist. In the first case which is threreby the only
possible case M (1) = M,.,(¢) on a set T with uT’ = uT which in view of (1) yields
the desired result.

Let My(#) be the perfect kernel of M(z).

(0) M, is a closed-valued Wi-measurable multifunction and there is a sequence
{x()} of Mi-measurable mappings into N, each defined on a set T, M, such that
x(2) # x5(¢) for any t if k # 5, x,(t) ¢ Mo(2) and

M) = Mo(®) v {xe N x = x,(2) for some ke N(t)},
where, as before, N(t) = {ke N| teT}.

Letw and T be the same as in (n). Then Mo(2) = M, (¢) for all t e T" and hence,
-as far as u has been assumed complete, M, is an M-measurable multifunction.
Denote T'” = T\T". For any ¢t € T", the set M(#)\M,(?) is at most countable.
Numbeting arbitrarily elements of any such difference (which can be done only with
‘the help of Zermelo choice axiom), we shall find a decreasing sequence Ty =75 ...

of subsets of 7" and 2 sequence {x;'(.)} of mappings respectively from 7T}’ into 4
such that for any teT”

M) = My(t) v {x{(1)] ke N"(1)}

W)= {ke N| teT.'}). Since uI" = 0 and z is complete, every T,' and every
x;'(.) is Mt-measurable,

- Letnow ¢ be a one-to-one mapping from N onto the set of ordinals which are <.
We shall write x,(\) = X,09(.), Tp = Tpa\T"'. According to definition, for te 71"

M) = My(t) U {8 ke N()}.

icm
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It remains to set
4 17
=T, VT,

w0 = Phor

teTy ,

xt), if teTj.

According to what was proved at Step 1, My(¢t) = A(¢, ¥) where Y is a Polish
space and h(¢, y) is M-measurable in ¢ and continuous and one-to-one in y.

The situation we have now is just the same as the one we*had at the end of
Step 1. Having done the same as there, we shall find the desired Polish space Z and
mapping f (¢, 2): TXZ — N

Step 3. The theorem is true under the additional assumption that M is closed.
valued.

As well known, any Polish space is one-to-one continuous image of a closed
subset of A" Let Q.4 be closed and /: @ — X be one-to-one continuous and
such that ¥(Q) = X. We set

R(t) =y~ (M@).

Then R(#) is an uncountable closed subset of 4" for any te T. If Be A" is Borel,
then so are B Q and y(B) = (B n Q). Hence

R™(B) = (\(B ~ Q) e,

since p is a complete measure, This shows that R is M-measurable and hence the
graph of R belongs to M@B (A7). According to Step 2, there are a Polish space Z
and a Carathéodory mapping i: TxZ— A" which is one-to-one in z and such
that h(t, Z) = R(¥) for all £ It remains to set f(f,2) = W (h(t, 2).

Step 4. The theorem is true.

To prove this, it suffices to show that

(p) There are a Polish space Y, a continuous mapping r: Y— X, and an
M-measurable closed-valued multifunction R from T into Y such that

M) = U(R()).

and ) is one-to-one on every R(1).

The proof of this fact is more or less traditional; it repeats essentially the proof
of the well-known theorem that any Borel set in a Polish space is a one-to-one
continuous image of a null-dimensional Polish space (cf. [6], § 37, I). Therefore we
shall omit certain routine details in the proof to follow.

(Q) The family MOB(X) is the minimal family which contains
all sets Gx B, GeM, B=B(X);

countable intersections of its elements;

countable unions of disjoint elements.

VieT
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The proof is based on simple set-theoretic arguments repeating almost word-
to-word those which can be found in ([3], § 30, V).

Any subset of T'x X is obviously the graph of a set-valued mapping from 7
into X. We shall call the set 4 € MB(X) well-representable if there are a Polish
space Z, a closed-valued M-measurable multifunction R from E = pryA4 into Z
and a continuous mapping g: Z — X which is one-to-one on every R(z) and such
that

“) A={(t,9(2) teE, ze R()}.

To prove (p), it suffices to show that any element of MR B (X) is well-represent-
able.

(r) 4 rectangle Gx B is well-representable whenever Ge M, Be BX).

Indeed, take a Polish space Z and a one-to-one continuous mapping g: Z — X
such that g(Z) = B and set R(t) = Z for teG.

(s) 4 countable intersection of well-representable sets is also well-representable,

Let 44, 45, ... be well-representable, and let Z;,Z;, ..., Ry, Ry, ..., 91925 o
be the corresponding Polish spaces, closed-valued 9 -measurable multifunctions and
mappings. Since 4, belong to MAB(X), so does A = () 4;.

Consider the product space Z® = Z, xZ, x ... (which is also Polish) and the
set-valued mapping R™(¢) = Ry(¢)X Ry(#) ... from T into Z, Tt is easy to verify
that GrR® e MO®B(Z) (since GrR,e MB(Z,)). Consider also for any tekE
= prrd the set

Q= {z= (2,2, “EZ®| gi(z)) = galz,) = p

This set is obviously closed. It is easy to see that (z, x) € A iff thereis ze R®(1) n O
such that g,(z,) = x for all k.

The set-valued mapping ¢— R(f) = R®() n Q is closed-valued and GrR
€ MI®B(Z*), hence it is M-measurable. On the other hand, the mapping

z2=(24,23,.) > g(2) = g4(zy)

is continuous and one-to-one on @ and hence on every R(¢). It remains to observe
that (4) obviously holds for our 4 and R(z).

(t) A4 countable union of disjoint well-representable sets is also well-representable.

Let 4,, 4,, ... be well-representable, 4, A 4, =@, k,1=1,2,.., and let
Zy,Z3; s Ry, Ry ety 91105, be corresponding Polish spaces, closed-valued
M-measurable multifunctions and mappings. Let Z be the topological direct sum
ofZ,,thatis Z = Z; UZ, U ... (Z; are considered as disjoint sets) endowed with the
strongest topology in which the imbeddings Z,~ Z are continuous, and let R(z)
= Ry(t) U Ry(t) ... Again no difficulties is connected with verifying that R is closed-
valued and GrRe MR®B(Z). The mapping z— g(2) = g,(2) if zeZ, from Z
into X is continuous and one-to-one on every R(2) (since g, are one-to-one on Ry(t)

@ ©
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and g(R(t)) do not meet each other). If 4 = {) Ay, then (4) holds and hence 4 is
well-representable.

As follows immediately from (g)~(t), any element of MRB(X) is well-repre-
sentable. This proves (p) and hence the theorem.
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