36 C. A, Di Prisco and W. S. Zwicker

a<l
Pet'(f) = F(dy) (since pu(dp) =1) and so JaeP n i such that Pni¢ B,
On the otherhand V a € P, P € ¢’ o n(c), in particular for everyae P N L, Pet' o n(x)
= t'(f(e)) = F(A;) 50 P n de Ay, = By, a contradiction.
Then u(/A B;) =1, and g is normal.

<l

As At'om(n) is unbounded, take Pe/\¢'om(x) such that =~ '(f)eP, then
<l
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On saturated sets of ideals and Ulam’s problem
by

Alan D. Taylor * (Schenectady, N. Y.)

Abstract. A set # of countably complete ideals on w, is called A-saturated iff for every col-
lection {X,: a<A} € § (w,)— ) # there exists {a, B} € [A]* such that X, N X5 ¢() #. An old problem
of Ulam asks if there can exist a 2-saturated set + of size ;. We show that a weak version of
Kurepa’s hypothesis implies that if |.# |< @, then # is not even w,-saturated. This answers a question
of Prikry. Some related results are obtained and several questions are stated.

§ 0. Introduction. Over thirty years ago S. Ulam raised the following question
(see [6]). Let % be an uncountable cardinal less than the first weakly inaccessible
cardinal. What is the smallest cardinal 1 having the property that there exists a family
of A two valued countable additive measures defined for the subsets of (singletons
having measure 0 and » having measure 1 for each of them) such that every subset
of x is measurable with respect to at least one of these measures? The following
version of this question was stated as Problem 81 of [7] and will be referred to here
as Ulam’s problem.

ProsreM (S. Ulam). Can one define 8, ¢-additive 0-1 measures on @, so that
each subset is measurable with respect to one of them?

In this paper we will consider several generalizations of Ulam’s problem.
Several new results are obtained and many older results from the literature are col-
lected together. Some eighteen open problems are also stated.

We begin by establishing some notation. v will denote an arbitrary cardinal,
while 2 and p will be reserved for infinite cardinals and » for an uncountable cardinal,
We will use the phrase “ideal on x” to mean “proper uniform ideal on 57, (Anideal I
on x is called wniform iff [x]“*<1I) The (normal) ideal of non-stationary subsets
of the regular cardinal % is denoted by NS,.

If I'is an ideal on % then J* denotes 2 (%) —I (the sets of “positive I-measure”
and I* denotes {XSx: x— X e I} (the sets of “I-measure one”), If 4 e I'* then the
restriction of 7 to A is the ideal

It4d ={Xcx: Xndel}.

* Research supported by NSF grant MCS 77-04147.
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Notice that I} A4 is the ideal generated by Iu {x—d4}. If f: %~ 3 is such that
F (@) eI for every a<x then the ideal fi(I) is defined by

Sl = {Xex: fTH(X)el}.

If . is a set of ideals on % then #* = ({I*: Te S} (s0o J* = 2(w)—) F),
and if de#* then F)d = {I14: Ie F}. If fi x— % is such that /" (@) e s
for all a< then the collection fi(#) is defined by

Sl = {fl): Te F}.

The following definition is central to the considerations of this paper.

DERINTTION 0.1. A set £ of ideals on % will be called v-saturated iff for every
collection {X,: a<vic s there exists {a, B} e[v]* such that X, X,¢ s

Hence, to say that £ is not v-saturated means that there are v sets in J* such
that pairwise intersections are of I-measure zero for every Je £, In terms of De-
finition 0.1, Ulam’s problem asks if there is a 2-saturated collection # of size w,
consisting of §,-complete ideals on w;. In discussing some results and questions
concerning generalizations of Ulam’s problem, it is convenient to have available the
following notation.

NotaTioN 0.2. If Z is a set of ideals on x then the symbol
2
“ur A,y —v”
denotes the following assertion.

If #=Z and |£]| = A and every ideal in . is at least y-complete then £ is no
y-saturated.

Of course our primary interest is with the special case in which £ is the set
of all ideals on %. For this case, we suppress the “2” in the notation and simply
write

(s A,y —v.
For a regular cardinal » we will also be concerned with the relations obtainable
when one of the following two sets of ideals is playing the role of “#%”.

1. Z = A : the set of all normal ideals on %.

2. # = &: the set of all ideals on x extending NS,.

@

Notice that for a fixed set Z of ideals on %, the relation (x: A, 1y — v gets
stronger as A or v increases or u decreases. The negation of the assertion in 0.2 is
denoted by striking out the arrow.

In the way of illustration, we restate Ulam’s problem with the notation in~
troduced above.

ProBrem A (Ulam). Does {@;: w;, ©;> — 2 hold?
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In section 1 we prove some general results, the most important of which deal:
with reducing the consideration of arbitrary sets of ideals on » to just those extending
NS,. Section 2 contains the major results known to be provable in ZFC, and we
generalize (via a different proof) the Erdés—Alaoglu theorem to arbitrary successor
<ardinals. In section 3 we introduce a sequence of successively weaker axioms (ranging
from Kurepa’s hypothesis through the assumption that there is no w,-saturated
ideal on ;). These axioms are applied to several generalized versions of Ulam’s
problem in section 4. In particular, we show that KHe, implies that (0, : @, , 0;) =0
holds, answering a question of Prikry [15] and strengthening results of Prikry [15]
and Grzegorek [8]. Section 5 considers ideals on x that are not x-complete.

§ 1. General results. In this section we obtain several results that allow us to
derive “nicer” saturated sets of ideals from a given saturated set of ideals. The key
result is the following.

THEOREM 1.1. Suppose x is regular and ¥ is a set of §,-complete ideals on % such
that |.F|<x. Then there exists a<x to 1 function g: % — % such that g,(I) U NS,
generates a proper ideal for every Ie £.

Proof. If Iis an ideal on » then let <Ju NS,> be defined aé follows

XedIuNS,) iff 3YeldZeNS, (X = YuZ).

Notice that {7 u NS,) is an ideal on % iff % ¢ { U NS, iff NS, n I* = 0. Moreover,
if I'is A-complete then so is {J U NS, ). If % ¢ <7 U NS, then we will say (I U NS,>
is proper.

Let S = {fe”x: fis < to 1} and for an ideal I on % define <; on S by

{o<u: f)<g@}el*.

Theorem 1.1 is an easy consequence of the following sequence of claims. Proofs
of the easy ones have been omitted, and we fix an »,-complete uniform ideal 7 on
the regular cardinal x.

Cramm 1 (Well-known). <I u NS,> fails to be proper iff there is a set AelI*
and a regressive function fi A — x such that fis <x to 1.

f<ig iff

CLAIM 2. If I is §y-complete then < is well founded on S.

CLAM 3. If fe S then [ is <y minimal iff {f(I) U NS,> is proper.

Cram 4. Supposef, g € S and { f(I) U NS, is proper. If{¢<x: f(&)<g(O)}el
then {g4«(I) U NS,» is proper.

CLAM 5. If {f: a<#}=S then there exists g€ S such that for every a<mu
He: O <g(©} <.

Proof. For each §<x define X;=x by

teX, iff Fa<dstfH<S.
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Now define g: % — » by g(£) = inf{5: & e X;}. Since | X,| <z it is easy to see that
geS. Now fix a< and suppose &>sup () {fe2y): y<a}. Let & = fo(&). Then
8>a so £ e X;. Hence g(£)<8 = f().

To complete the proof of Theorem 1.1. Let . = {I,: a<x} be the given set
of uniform s,-complete ideals on x. For each az<x choose f, € S (by Claim 2) so that
£, is <, minimal. Now choose g € S as guaranteed to exist by Claim 5. That g is
the desired function follows immediately from Claims 1, 3, 4 and 5.

COROLLARY 1.2. Suppose # is a regular cardinal, A< x and oy v . If Coes A, iy —v
then {x: 4, ity — v.

Proof. Suppose J shows that {x: A, u) + v. Choose g as guaranteed to exist
by Theorem 1.1. For each Ie £ let J; = {g4(I) U NS,»>. Then JI is proper and

Jr2NS,. We claim that ¢ = {J,-. Ie.#} shows that (x:, up -~ v. If not then
there exists {X,: a<vd>= #* such that X, n Xye () # for a<f<v. Since p>v
we lose no generality in assuming that X, n X, =0 for a<f<v. But then
{g7UX): a<vics* and g~ X,) ng Xy = 0 for a<f<v. This contradicts
our assumption that £ shows {x: A, u> -+>v.

A well known result of Solovay [17] shows that if a regular cardinal x carries.
a x-complete %" -saturated ideal then it carries a normal x™-saturated ideal. In
analogy with this one would hope that a sufficiently saturated (“small”) set of
»-complete ideals on x would give rise to an equally saturated (“small”) set of normalt
ideals on x. In view of this (and the results in'section 4), we would be very interested
in a (positive) solution to the following:

ProOBLEM B. For a regular cardinal », does {x:%, %) »—V> 2imply {x: 3, ®p—> 2?7

Of course a consequence of Theorem 1.1 is that te answer Problem B affirmatively
it suffices to show that {x:x, x) —{ 2 implies (%, 3%y f» 2.

In order to present one other partial result related to Problem B, we need to
introduce two more sets of ideals to play the role of “4” in the notation we are
using.

1. & denotes the set of all P-point ideals on x. (A x-complete ideal T on % is
called a P-point iff for every f: » — 3 such that f~(a) e 7 for every o< there exists
Xel* such that f X is <x to 1.)

2. 2 denotes the set of all Q-point ideals on x. (A x-complete ideal J on x is

called a Q-point iff for every f: x — x such that fis <x to 1 there exists X e I*
such that £ }X is 1 to 1.)

Suppose I is a x-complete ideal on %. Then Kanamori [9] has shown that it
I=NS, then I is a Q-point and Weglorz [20] has shown that if 7 is nor nml
then I is a P-point. Hence, one 1mmed1ately obtains the fol]owmf,

@

ProrosiTioN 1.3. (i) If {x:2, %) ~> v then (x:, %) —+ v (@) If (s A, ) — v

"
then {x:A, %) — v.
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Corollary 1.2 shows that in many cases the converse of Proposmon 1.3 (i) holds.
The next corollary shows the same for Proposition 1.3 (ii).

v
COROLLARY 1.4. Suppose % is a regula; cardinal, 2<% and v<se. If {u:2, %) = v
@
then {s: A, %y — V.

®

Proof. Suppose £ shows that {x:A,3)-+v. Let £ = {Jr: I'e S} be as in

the proof of Corollary 1.2 above. Now since I € # is a P-point, it is an easy exercise

to check that g,(I) is also a P-point and therefore so is J; = {g4({) U NS,>. But

any P-point extending NS, must, in fact, be a normal ideal on x (see [3]). Again,
v

as in the proof of Corollary 1.2, we see that # shows {x:1, %> + V.

2 »
Corollary 1.2 also shows that if {x:%, %) — 2 holds then {(3:zx, %) — 2 holds.
An affirmative answer to Problem B would follow from the converse of this.

# P
ProsrLEM C. Foraregular cardinal s, does <s:%, %) — 2 imply {x:3,x>—27?

§ 2. Results in ZFC. A classic result of Ulam shows that if % is less than the
first weakly inaccessible then % does not carry a countably complete ultrafilter.
In our notation, this says {x:1, w> — 2. At the time Ulam originally ‘stated his
problem (see [6]) he was also aware. that {x:n, w,)> — 2 for every n € w. The first
extension of this was provided in 1948 by Alaoglu and Erdds [6]. Their theorem
(as stated in [6]) asserts that for.x as above one has {x:w, w> — 2, but it is easy
to see that their proof actually yields the following:

TueoreM 2.1 (Alaoglu-Erdos [6]). <(x:0,w) —w, iff (e, 00— 0.

Although our concern in this paper is with 2 valued measures (i.e. ideals),
there are several natural questions analogous to the ones we are considering but
with respect to real valued measures, or even arbitrary ¢-algebras satisfying certain
chain conditions. For example Prikry showed [15] that if {y:1, @,) — w, for every
y<w then for every countable family of countably additive real valued measures
on %, one can find &, pairwise disjoint subsets of % each of which is of outer measure
one with respect to every measure in the collection. Grzegorek [8] showed that
Prikry’s arguments even extend to the more general context of o-algebras satisfying
certain chain conditions.

The Alaoglu-Erdds argument does not generalize to A>w. Nevertheless,
a diffevent approach (suggested bq an argument in [1]) yields the following:

THEOREM 2.2. If A< then (xih, A*> — A% iff (n:1, ATy — 2%,

Proof. The implication from right to left is trivial. Suppose then that no
A*-complete ideal on xis 1*-saturated and let & = {I,: a<A}beaset of 1*-complete
ideals on . We will show that # is not A*-saturated. For each a<A let
%, = {X5: f<2A¥} be a pairwise disjoint partition of x into sets in I;. This is
possible since 7, is A*-complete (and not A*-saturated). Define a function H: 2 — 1by

H(E) = inf{a<d: {f<i¥: Xjeli} = A%},
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Notice that H(£)<¢ for every <A Choose <At such that for every £<2a if
a<H(E) and Xjel; then f<d. For each a<l let &, = {Xj: 6<f<i*}. It is
now easy to inductively construct a sequence {¥,: £<A} of distinct sets such that
for every <A Y€ Xy n If. For every £<A define Z; by

Zy = Y—U {¥,: HO)<H©}.

Then Z,€ Iy since Y;el; and we are subtracting off at most A sets each of which
is in J,. Hence {Z;: <1} is a collection of pairwise disjoint sets such that Z, e I
for every ¢ <A. Now for each &<, let {Z3: a<A*} be a pairwise disjoint partition
of Z, into sets in I7. Finally, we define 4, for each a<A* by

= {zZ: e<}.
Then {4,: «a<A*} shows that £ is not 1*-saturated.

CorOLLARY 2.3. {u*:p, p*>— u*.
Of course Corollary 2.3 suggests the following generalized version of Ulam’s
problem.

ProBLEM D. Does (u™:p*, p™> = u* always hold?

Theorems 2.1 and 2.2 show (roughly) that the only way a cardinal x can carry
-a sufficiently saturated “small” set of sufficiently complete ideals is if % in fact carries
a single ideal that is this saturated and complete. Of course “small” here means
“of size less than the completeness”, and so these results say nothing about sets
of ideals of size x. Nevertheless, by using a “normal version™ of the proof of The-
orem 2.2, the following result was established in [18], Lemma 6.5.

w
iff {x:1,5 — x™.

§ 3. From KH, to FK,. In this section we collect together several additional
axioms that are relevant to our considerations. We list these now, with the assump-
tion in each that x = u*.

1. KH, (Kurepa’s hypothesis for x): There exists F=#(x) such that [F| = x*
.and for each a<x

w
THEOREM 2.4. If x is regular then {x:%,%> — x*

{X o XeF}<]al.

2. TH,, (Transversals hypothesis for x): There exists <y such that |F| = »*
and [{a<x: f(o) = g(@)}| <x whenever {f, g} e [F]2.

3. Th, (NS,): There exists F<*u such that |F| = »* and {a<x: £ (@) = g(a)}
-€ NS, whenever {f, g} e [F]2

4. SpH,, (Splitting hypothesis for »): If I is a x-complete ideal on % then there
exists {X,: a<x*}ST* such that |X, n X;|<x for a<f<x™.

5. SatH, (Saturation hypothesis for 3): There is no »*-saturated - complete
deal on x.
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6. FH,, (Fodor’s hypothesis for s): If I is a x-complete ideal on % and
{d,: a<x}=I* then there exists a pairwise dls]omt collection {B,: a<x}sI*
such that for every a<x B,=4,.

TreorREM 3.1, KH,— TH,—TH,(NS,) — SpH,— SatH,— FH,.

Proof. The first implication is well known (see [4] where “TH,” is referred
to as “wKH,), and the second implication is trivial. The fact that TH,, implies SpH,,
is due to Prikry [14], and the following proof that Th,(NS,) implies SpH, is a modi-~
fication of his proof.

Let { f,: a<x"} beas guaranteed to exist by TH,(NS,) and let I be a - complete
ideal on . By claims 1-3 in the proof of Theorem 1.1 we can.choose g: % — x
such that g is < to 1 and such that J = {g,(Z) u NS, is a proper »-complete
ideal on x. For each a<x"* choose X,eJ* and n,epu such that f(X,) = {n}.
{Recall that » = u*). Choose Ye[x*]*" and nep such that n, = n for every
aeY. If {a, f}e[Y] lot A(x, f) = {E<u: f{E) = f(O)}. Now for each ae¥ let
Z, = X,~V{A(B, a): f<a} where “P” denotes diagonal union. Since 4(8, «) & NS,
we see that P{4(B, 0): f<o}e NS,EJ. Hence Z, e I* for each e Y and it is easy
to see that if {ot, B} e [YT? then |Z, n Zs| <x. Since g()<J the set {Z,: x € ¥}
S(gM)*, and so {g™UZ,): we Y}<I*. Moreover, since |Z, 0 Zyl<x for o« # f
and since g is <x to 1, it follows that

lg74(Zs) 0 g™ (Zp)l <

for o # B. This shows that SpH, holds.

To complete the proof of Theorem 3.1, we note that the next to last implication
is trivial while the last implication is a theorem of Baumgartner-Hajnal-Maté [1].

An unpublished result of Baumgartner shows that the first implication is not
reversible. All of the others are open, but we are most concerned with the following
ones.

ProeLem E. Does SpH,,—TH,,?

ProBLEM F. Does SatH, — SpH,,, ?

ProBLEM G. Does FH,— SatH,?

A more subtle comparison of the relative strengths of these hypotheses is given
by their various large cardinal consequences. For example Silver has shown [1]
that —JKH,, implies there is a strongly inaccessible cardinal in an inner model
{i.e. w, in L) while Kunen has shown [10] that —1SatH,,, gives 2 measurable cardinals
in an inner model, and hence 0% exists. This suggests the following,

ProsLEM H. Does —1SpH,, imply 0% exists?

Of course an affirmative answer to Problem F would give an affirmative answer
to Problem H. The following proposition, however, shows that the naive approach
to Problem F fails.

PROPOSITION 3.2. Suppose I is an w,-saturated o,-complete ideal on ;.
Then there exists an w,-complete ideal J on o, having the following properties
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(i) NS, <J.

(ii) J is not w,-saturated.

(i) If {X,: a<w,}SJT then | X, n X} = w; for some {«, f} & [w,]*.

Proof. By Solovay’s theorem [17] we can assume that I is normal. Let
{4, a<w;} be a pairwise disjoint partition of @, into sets in I™ such that
A, 0 (@+1) = 0. Let J be the ideal generated by J v {4,: a<w;}. Then J clearly
satisfies (i) and (iii). But J is clearly not a P-point so by a result in [18], J is not
,-saturated.

Kunen has shown [11] that —1SatH,,, is consistent relative to the existence of
a huge cardinal. Nevertheless the following is open.

Prosrem I. Is 71FH,, consistent?

§ 4. Sets of x-complete ideals on x. In this section we shall study the effect
of the various axioms introduced in section 3 on the saturation of sets of »-complete
ideals on x. In [13], Prikry showed (via a forcing argument) that <w,:w;, @> —2
is consistent with ZFC+GCH, and Jensen later showed (see [5]) that cw,: @y, w,>
— 2 holds if V = L. The following strengthening of these results is important
because it shows the large cardinal nature of Ulam’s problem.

TrEOREM 4.1 (K. Prikry [15]). dssume TH,,. Let 4 be a family of o-additive
real valued (proper non-trivial) measures on w, such that |J#| = w,. Then there
exists wy pairwise disjoint subsets of wy each of which is non-measurable with respect
to every measure in .

COROLLARY 4.2 (Prikry). TH,, F<w;: oy, 0> — w;.

If o is a o-algebra of subsets of , then we let I, = {Xco,: 2(X) s}
and we say that s/ is proper if o # P(w,). If o contains all singletons then o7 is
called uniform. Hence, if & is proper and uniform then I, is an w-complete ideal
on w;. To say that o/ has the x-chain condition (x.c.c.) means that if # cof/ —J &
and Fn Ge Iy for {F, G} e [#]* then |#|<x. Notice that if y is a o-additive real
valued (proper nontrivial) measure on w; and o = {Xso,: X is y-measurable}
then &7 is a proper uniform ¢-algebra on w; satisfying w,.c.c. The relevance of these
considerations lies in Grzegorek’s observation [8] that Prikry’s arguments can be
generalized to yield the following.

THEOREM 4.3 (Grzegorek [8]). Assume TH,,. Let M be a family of proper uniform
o-algebras on w, such that each of € 4 satisfies wy.c.e. Then if || = w, there
exists wy pairwise disjoint sets in P(w,)— ) .

The following is the main result of this paper. It answérs a question of Prikry [15}
and allows an immediate strengthening of the results of Prikry and Grzegorek.

THEOREM 4.4. SpH,, F{w;: 0y, ©,) — ©,.

The proof of Theorem 4.4 requires the following sequence of lemmas and de-
finitions. ‘
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Levmma 4.5 (Ulam [19]). If % = u* then there exists a “u by » matrix”
U = {U @, &): a<p, E<xySP (%), called an Ulam matrix for x, and having the
property that each row and each column is a pairwise disjoint partition of an end segment
of .

Lemma 4.6. Suppose » = u* and £ is a set of %-complete ideals on % such that
|#| = 2. Then S can be expressed as the union S = ) {£,: a<u} of u sets of ideals
on % such that each £, fails to be x-saturated.

Proof. Suppose £ is given and let % = {%(x, &): a<p, E<x} be an Ulam
matrix for % = u*. For each a<p define S, =5 by

Te d, iff Te s and o = inf{f<p: |{E<n: B, O eI} = x}.

If I is a x-complete ideal on % then every column of % contains a set of positive
I-measure, and so some row of % must contain » sets of positive I-measure, This
shows that J = {J {4, a<pu}.

Now fix a<pu and enumerate £, as {I;: f<x}. It is easy to see that we can
inductively construct an increasing sequence {&p: f<3) of ordinals such that
U, &) € I . For cach f<u let 4y = (e, &) and let {45: E<x} be a pairwise
disjoint partition of 4, into sets of positive J;-measure. Finally, for each §<x let
Be =) {d§: B<x}. Then {B;: &<} shows that £, fails to be x-saturated.

DErRINITION 4.7, A x-complete ideal 7 on » will be called splitable iff for every
XelI' there exists {X,: a<x¥}=@(X) nI" such that | X, n X,/<x whenever
a<f<nt.

DEerRINITION 4.8. Let & be a set of x-complete ideals on % such that .# is not
»-saturated. ’

@ If Xe#* then X will be called J-large if S} X is not x-saturated.

(ii) # will be called splitable iff for every .# -large set X there exists {Z,:a<x*}
S (X) such that Z, is £-large for all a<x® and such that |Z, n Zgl<x for
a<f<nt.

In terms of Definition 4.7, SpH, asserts that every x-complete ideal on x is
splitable. Tn Definition 4.8 notice that » is #-large and that every #-large set X
is in #*, In particular, if # is splitable then .# fails (badly) to be x*-saturated.

LemMa 4.9. Suppose F is a set of x-complete ideals on % such that every I
is a splitable ideal extending NS,. Suppose also that |F|<x and F fails to be
x-saturated. Then S is splitable.

Proof. Let 4 = {I,: a<x} and suppose X is S -large. The.u. F}+X is not
x-saturated so it easily follows that there exists a pairwise disjoint part%non {X,: oc<x.}
of X such that X,e " and X, n(x+1) =0 for every a<x. Smmj,r each I, is
a splitable ideal, there exists a collection {Xﬁ: [)’<x+}gﬂ(Xa)?Id such that
X'~ X" <x for B, # f,. For each B<x® let ¥, = U {Xe a<x}. Then
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Y,cX and Y,es*. Notice that if oy # o, then X'~ X2 = 0 since Xfic X,
and XPc X, and X, n X,, = 0. Thus, if f, # f, then ‘

ax =
Yy, 0 Y, e U{X5 0 X820y, 0p <} = U{x% ~ X8 a<u} .

But | X" A X*2|<x and X% A X (a+1) =0 (since X, n (x+1) = 0). Thus
Yp, 0 ¥, €NS,.. Now, for each a<x® let Z, = Y,—V{Y,nY,: <o} Since
Y, e #* and NS,=().# we have that Z,e S+ and |Z, n Zy|<x for a # B.

It remains only to show that Z, is J-large. But ¥, =U {Xﬁ T a<x} and
X e I}. For each a<x let 4, = X! N Z;. Then {4,: «<ux} is a disjoint partition
of Z, such that 4, e I for each x<x. Let {45: £<x} bea disjoint partition of 4,
into sets in I¥ and for each &<x let B, = U {4&: a<x}. Then {By: &<} is
a disjoint partition of Z; such that By;e S * for every ¢é<x. Hence S Z, is not
x-saturated so Z, is #-large as desired.

Lemma 4.10. Suppose that for each ne w £, is a set of %-complete ideals on x
such that |#,|<x. Suppose S, is splitable and X is S -large for every ne w. Then
there exists a disjoint partition X = X, u X such that X, is Fo-large and X is
S,-large for every ne .

Proof. Since £, is splitable and X is .#-large there exists (by Definition 4.8)
{Z,: a<x*}cP(X) such that Z, is Fo-large for every a<x® and such that
|Z, 0 Zy| < for a<f<x’. Since X is #,-large for each n>0 we can choose a pair-
wise disjoint partition {X§: a<} of X into sets in .7, . Let # be the following set
of ideals.

J={ItX;:Ie | J; new; aexn and Xiel*}.
JEQW

Notice that | #|<x. For each a<x™ at most one of the sets Z, can be of J-measure
one for any single J € #. Hence, we can choose f§ such that Z is not of J-measure
one for any Je #. Let X, = Z; and X; = X—X,. Then X, is clearly J,-large.
Now fix 7 € w. We claim that {X} n X;: a<x} shows that X, is f,-large. If not,
then for some a<x we have X' n X, ¢ #. Hence X n X, eI for some IeJ,
so Xpe(It X0)*. But X, = Z; and this contradicts our choice of .

Temma 4.11. Assume that every w,-complete ideal I on oy such that NS, &1
is splitable. Then every set F of w-complete ideals on w, such that |\F|< oy fuils
to be w-saturated.

Proof. Suppose the conclusion fails. Then <(w;iwy, ;) +> @y, 80 by
13

Corollary 12 {w;:0;, 0y +> ©,. Hence there is an wy-saturated set S of
w,-complete ideals on @; extending NS, such that |#| = w,. By Lemma 4.6
% can be expressed as aunion = |J {£,: n e w} such that for each n € ® 4, is not
,-saturated.

‘We now inductively construct a decreasing. sequence {Z;: je w) of subsets
of @, so that for each je w Z; is /,-large for all n and Z;—Z;, ( is S -large. Set
Z, = o,. Then Z, is J,-large for all n since £, is not w,-saturated. Suppose Z;

icm

©
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has been constructed and Z; is #,-large for all #. Consider .#;. Since |.#;|<w; and
every Ie J; is a splitable ideal extending NS, , and .#; is not o,-saturated we can.
appeal to Lemma 4.9 to conclude that ; is splitable. Since Z; is .#,-large for all #,,
Lemma. 4.10 yields a disjoint partition Z; = X, U X; such that X, is .#; large and:
X, is S,-largefor all n. Set Z;, . = X;. ThenZ;~Z;. = X850 Z;—Z;, 4 is S large
as desired. This completes the construction of <Z;: je w).

For each new let X, = Z,~Z,,;. Then {X,: ne o} is a pairwise disjoint
collection such that X, is J,-large. Hence #,} X, is not w,-saturated. For each.
neow let {X5: a<w,} be a pairwise disjoint partition of X, into sets in S For
a<wg let ¥, = ) {X5: ne o} Then{Y,: a<o,} shows that £ is not w,-saturated
and this contradiction completes the proof.

Theorem 4.4 is now an immediate consequence of the following.

TuEOREM 4.12. Assume that every oy-complete ideal I on wy such that NS, =T
is splitable. Then every set I of wy complete ideals on w, such that |5 | =y is
splitable.

Proof. It follows from Lemma 4.11 that under the assumptions of the theorem
no set . such that |#] = w, can be o,-saturated. Hence, X is S-large iff Xe S +
so to prove 4.11 it suffices to show that if .# is a set of @, complete ideals on o,
and |.#| = w, then there exists {X,: a<w,}=S™ such that [X, n Xjl<w, for
< f<w,. (Then for a given set X e * we can apply this to J} X).

Suppose then that |#] = w;. By Theorem 1.1 there is a <, to 1 function
g: w;— oy such that for every I € # theideal J; generated by g,(I) U NS, is proper..
Let # = {J;: IeJ}. By Lemma 411, # is not o,-saturated. Moreover, each
Jre ¢ is asplitable ideal extending NS, so Lemma 4.9 guarantees that ¢ is splitable.
Let {Z,: u<w,}sf* be such that |Z, nZyl<w, for a<f<w, and for each
a<w, let X, = g74(Z,). If Ie S then Z,¢ (J)Fsgs)* so X,eI*. Moreover,
if o« 5 fthen X, n X, = g~ (Z,n Zy) and this set is countable since g is <y to 1.

Hence {X,: a<x™}=S™ is such that | X, 0 Xyl<ay for o # B as desired.

A consequence of Theorem 2.4 s that {w;:@y, [O7)3 ﬁ w, iff {oy:1, o) ﬁ ;.
Notice that Theorem 4.12 yields a result of the same spirit. That is, @, carries a non-
splitable set J of size w, (consisting of w,-complete ideals) iff it carries such a set
of size one.

The following corollary of Theorem 4.12 strengthens the results of Prikry and
Grzegorek (stated previously as Theorems 4.1 and 4.3).

COROLLARY 4.13. Assume SpH,,. Let M be a family of proper uniform
o-algebras on w, such that each o € # satisfies @q-c.c. Then if |#| = oy there
exists w, sets in P(w)—\) M such that pairwise intersections are countable.

Proof. We apply Theorem 4.12 to the collection {I: o/ € A} to obtain
{X,: a<w,} such that [X, n Xzl<w, for a< f<w, and such that for every a<w,
and every &f € M, X, ¢I,. Since each o € A satisfies w,-c.c., at most ey of the:
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sets {X,: a<w,} can be in & for any single o e .#. Hence, if
Y= {u<w,: 3L e M (X, e)}

theil |Y]<wy, so {X,! wew,— Y} is the desired collection.

Notice that our proof of Theorem 4,12 does not seem to generalize from [N
to %*. Hence, the following remains open.

ProsLEM J. Does SpH,+ F (ot ix®, 2™ — ™9

An affirmative answer to Problem F would also yield an afirmative answer
‘to the following.

ProBLEM K. Does SatH,, F {w 0, @;> — 0,7
ProBLEM L. Does {@;:wy, w;) + 2 imply 0% exists?

The weakest axiom from our list in section 3 is FH, . This hypothesis was our
primary concern in [I8], and we refer the reader there for more information on
(and motivation for) FH,. To conclude this section however, we will extract a few
results from [18] in order to motivate some additional problems that we are inter-
ested in. The first one we state emphasizes the relevance of SatH, and FH, to our
present considerations. For uniformity, we chose to state all the axioms in section 3

for successor cardinals, but it is easy to see that SatH, and FH, are meaningful
for any regular cardinal .

THEOREM 4.14 [18). If % is a regular cardinal then:
-
() SatH, holds iff (s:x, x> — x".
w
(i) FH, holds iff (s:%,3%> — .

We say that an ideal I on w, has a dense set of size o, iff #(w,)/I has a dense

set of size w, in the “forcing theoretic” sense. Two other results from [18] are the
following.

: Ve
THEOREM 4.15 [18]. {wy:my, ) +> w, iff some wy-complete ideal on o,
has a dense set of size w,.

N o
CorOLLARY 4.16. (w;:0,, > — oy iff (om0 - 2.

It is easy to see that if <w,:0,, ®,>— 2 then {wiiwy, 0 — w,. Never-
theless, we have been unable to settle the following

PrOBLEM M. Does {w,:w;, o — 2 imply {wiwy, 0> — wy?

. . v
It is also shown in [I8] that MAy, F{w;:0,, ;> - ;. This suggests the
following two problems

ProsrLEM N. Does MAg, FLoy:0, 0> — 27
ProBLEM O. Does MAg, + SatH,, ?
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§ 5. Sets of countably complete ideals. In this section we turn our attention to
sets of ideals on % that are only countably complete. Results of the form {x:%, A)—2 -
pecome more difficult to obtain when A is less than x, and this is perhaps best empha-
sized by the following.

TueoreM 5.1 (Magidor [12]). Assuming the consistency of a huge cardinal one
obtains the consistency of {ws:ws, ;) +> 2.

There is a rather large gap between Magidor’s negative result above and'the
positive results we have been able to obtain. In fact, the following question of Prikry
is still open.

ProsLEM P (Prikry [15]). Does TH,, b {w,: @, ©1> — ©,?

The partial solution to Problem P that we have been able to obtain mvolyes
consideration of the following class of ideals to play the role of “%” in our notation

R
iy 1y = V. ‘ _ -

4 denotes the set of all weakly normal ideals on x. (1 is weakly normal iff every
tegressive function defined on a set of positive J-measure is bounded on a set of
positive J-measure.) .

THEOREM 5.2. Suppose that for every countably complete weakly nort'na'l ideal T
on %" there are ™ pairwise disjoint sets in I *. Then for every set ;f co'nsttvtmg_ o:f .at
most % countably complete weakly normal ideals on w* there are x™ pairwise disjoint
sets in ST 1

Proof. Let # = {I,: «<x} be a set of countably complete weakly norma
ideals on x™. We will inductively construct {%,: a<x} satisfying the following,

(2) %, is a collection of %" pairwise disjoint sets in I .

(b) If a<f then either &,2%, or

HXe%,: AYeZ(XnY# 0}<x.

B (& -
©) If Ya<p &, 2%, then &, = {Xf: £<x’} and Xz 0 (C+1) 0.
Suppose f<x and %, has been constructed for all a<f. Let 4 be defined by
A = (B<p: Vo' <P TuBZp} -
Intuitively, {&,: «& A} is a collection of partitions of “essentially disjoint” sets
and every other &, for a<f is a subcollection of one of these. - .
If %, 1| = x* for some a<f then we simply set 25 = &, 0 Iy and we a|
Z, n
done with the fth step of the construction. . )
Suppose then that |#, N I,f | < x for every o< . Choose y<x bsu:ixszhgtf 1£ ;xl ; 1[}
. - Moreover, bec -
and &, = {X§: E<u™} then Xt eI, for every E>. [ ;
tion (b‘; we cz:n assume that 'y is large enough so that if {B, 8} [4] and &, >y
then X{ n X7 =0.
Define f: {J {X§: ae 4; E>y}—x* so that
FU{XE aed)) = {&}.

4 — Fundamenta Math, T. CIX, z. 1
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Then f is well defined since {X7: a€ 4, &>y} is a collection of pairwise disjoint
sets. Moreover, because of (c) we have that # (&) n (¢+1) = 0, so [ is regressive,

If domain (f) € I, then we simply choose %, to be a collection of subsets of
»*-domain (f) satisfying (a) and (c).

If domain (f) € I; then we appeal to the weak normality of I, to obtain a set
Bcdomain (f) and <" such that Be I, and f(B)<é. Hence if ¢>8 and g A
then X7 N B = 0. Now let &, be a pairwise disjoint partition of B into sets in Iﬂ+
such that (c) is satisfied. )

This yields {%,: a<x} satisfying (a), (b) and (c). By deleting initial segments
of each %, we can clearly assume (because of (b)) that if o< B then either Z.2%,
or every set in %, is disjoint from every set in &y An easy inductive construction
now yields a pairwise disjoint collection {¥,: a<x} such that ¥, el for every
<. As usual, we now let {¥§: £<x*} be a pairwise disjoint partition of Y, into:
sets in 7" and for each &<x* we set Z; = J {¥}: a<x}. Then {Zy: E<utiest
is a pairwise disjoint collection.

Theorem 5.2 is another result that essentially says that the only way a “small”
set of ideals can have a certain saturation property is if a single ideal has this same
property. An affirmative answer to the following question would let us conclude

w w
from Theorem 5.2 that (x*:x, w,>— x* iff il w) =t
ProBLEM Q. Suppose 7 is a weakly normal countably complete ideal on x™*
that is not »*-saturated. Can one then find »* pairwise disjoint sets in J*? -

Nevertheless, if we return to our list of axioms in section 3, then Theorem 5.2
will allow us to conclude the following,

<"
TeEOREM 5.3. TH,, F<{@,:0, 0> — @;.

. Proof. Let{f,: a< ®3} show that TH,, holds and let I be a countably complete
ideal on w,. By Theorem 5.2 it will suffice to show that there are w, pairwise disjoint
sets in T+,

Define a relation R on {f,: a<w;} by
LRfy if {f<w,: FO<fOyel™,
Then for « # B 'we have Je RSy of f3 Rf, so standard arguments produce a f<aw,
such that [{x<cwy: Ja Rf3} = w,. For each S<w, let hy: 5~ |5] be one to one.
Let A = {a: f, Rf,} and for each ae 4 let A, = {E<wy: f(E)<fE)}. Now since
Jpt w,— @, we can define a function 9ot A;— o for each ae 4 as follows.

If ¢ed, ind o) =6 then set gy (&) = h( £(8). For each oA choose
B,eP(4,) nI* and n, e » such that 9uB,) = n,. Choose A'c A and ne w such
Fhat |4') = @, and 7, = n for all we A, Now it is easy to see that {B,: acd’}
1s 2 set of w, sets of positive 7-measure such that |B, n By|<w, for o 5 . For
each e A’ lezt C, = B,—U{B;: Be 4’ and B<a}. Then {C,: & A’} is the desired
set of w, pairwise disjoint sets in J*.

I'Theorem 5.3 is the partial solution to Prikry’s Problem P that we referred to
earlier. '

On saturated sets of ideals and Ulan’s problem 51

Our final consideration of this section is motivated by Solovay’s theorem [17]
that it is consistent (relative to the consistency of a measurable cardinal) that 28
be real valued measurable. Of course (2%, 1, ;) —> 2. Nevertheless, the following
is open.

ProsrEM R. Does 2%, o, 0,> — 2 hold?

An ideal T on x is said to have a dense set of size ) if there exists {X,a<t}It
such that for every Xe It there exists a<1 such that X,—Xel It is easy to see
that if I has a dense set of size A then Jis A*-saturated. A consequence of the results.
in section 4 is the following.

w
L oo, 0;) — @, iff there is no w,-complete w,-saturated ideal on .

2. {oyrwy, 0 -—V» w, iff there is no w,-complete ideal on e, having a dense
set of size w,.

These should be compared with the following.

THEOREM 5.4. 1. {x: w, ;> — , iff there is no wy-complete w,-saturated
ideal on . )

2. {ni @, w> — o iff there is no w,-complete ideal on » having a dense set
of size w.

Proof. Part 1 follows immediately from Theorem 2.2. For part 2, notice
first that if {X,: ne w} is a dense set for the w,;-complete ideal 7 on x then
J = {I} X,: new)} easily shows that {x:, ®;) + 2.

For the converse of part 2, suppose that no w,-complete ideal on » has a count-
able dense set. Let ./ = {I,: ne o} be the given set of w,-complete ideals on .
To show that .# js not sp-saturated we need the following two lemmas.

Lemma 5.5, Suppose that S is a countable set of nowhere w,-saturated countably
complete ideals on x. Then S is not w,-saturated.

Proof. This is an immediate consequence of (the proof of) Theorem 2.2.

LeMMA 5.6. Suppose that no w,-complete ideal on » has a countable dense sett
Then if S is a countable set of w,-saturated countably complete ideals on %, then £ is no.
wq-saturated.

Proof. Let # = {I,: ne w} and let I = () {I,: n e w}. Then it is easy to see
that I must be w-saturated since I is countably complete and each T, is cy-saturated.
Now, for each n let «/, be a maximal collection of sets in I,—I that are almost
disjoint (modJ). Then |oZ,|<w, so 4, = s, is in I,. Hence B, = x—d,el*
and it is easy to see that I, = I} B, (cf. Theorem 3.1 of [2]). We now construct
a pairwise disjoint refinement {C,: ne w}=I* of {B,: new} as follows. Sinc:-
{B,: n>0} is not a dense set for It B, we can choose Co =B, such that Cy el
and such that for each n>0 By = B,~Co e I*. If C; has been defined and for each
n>j we have Bi e I then we can similarly choose C;,; S.Bj4, such that C;, €7 *
and such that for each n>j+1 Bi*! = Bj—C;,, € I"*. This yields {C,: n € w}g‘l'*
such that C,e #(B,) nI* for each n and {C,: new} is pairwise disjoint. Slnce

4%
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C, € I for each n, the desired collection of %, pairwise disjoint sets in £ follows
easily since I} C, is definitely not 8,-saturated. (L.e. if I+ C, is 8o-saturated then %
must carry a countably complete ultrafilter % in which case #* has a dense set
of size one.)

To return to the proof of Theorem 5.4, we have our given set = {I,: ne w}
of w;-complete ideals on ». We define sets S, .#; and £, as follows.

Zo
Fy={Ies: A4;eT% s.t. I} 4, is 0, -saturated),
Sy = {1y Te 5).

1

{Ie #: I is nowhere w;-saturated}.

By Lemma 5.5 there exists a set {¥,: a<w,} of pairwise disjoint sets in %]
{(This uses the fact that each Ie.# is countably complete in order to get the sets
disjoint). At most one Y, can be of J-measuie one for any single J & £, s0 we can
choose y<w; such that ¥, ¢J* for any Je.f,. Let 4 = Y, and let B = x—Y,.
Then 4e.#3 and Be.f3 and 4 A B = 0.

Applying Lemma 5.6 to {J} B: Je.# 2} vields a pairwise disjoint partition
{B,: new} of B such that for each new B, e} <o}, Similarly, if we apply
Lemma 5.5 to {I} 4: Ie #,} we obtain a pairwise disjoint partition {4,: ne w}
of 4 such that for each new 4,e .. But now {B, U A4,: new} shows that
F = Fyu S, is not sg-saturated.
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