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Commutative quasi-trivial superassociative systems
by

H. Linger (Vienna)

Abstract. In this note we give a classification of a certain class of algebras (4, f) with one
commutative (n+1)-ary operation (n3>1) such that any subset of A is a subalgebra of (4,f) and
such that f satisfies the “superassociative law”

f(f(xo, wes Xn), PUES PR xsn) =f(xu:f(x1: Xpg1y vees Xon)s ooy S (Xny oeny xzn))
for any xy, ..., Xon € A.

1. Introduction. Quite a natural generalization of the concept of a semigroup
is that of a superassociative system, the latter being an algebra with one (n+1)-ary
operation (n3>1) satisfying some law which in case # = 1 reduces to the well-known
associative law.

Superassociativity turns out to be the essential property of composition of
functions since for superassociative systems there holds some sort of Cayley-rep-
resentation theorem generalizing that one valid for semigroups. Superassociative
systems have already been considered e.g. by R. M. Dicker ([1]) and K. Menger ([3],
[4]). K. Menger was the first to fully realize the significance of the concept of super-
associativity. Some material concerning superassociative systems can also be found
in a book by H. Lausch and W. N&bauer ([2], chapter 3). In [5] H. Skala investigated
quasi-trivial superassociative systems, i.e. superassociative systems, any subset of
which being a subalgebra. The present paper is devoted to the study of such algebras,
too. Our motivation is the following: In lattice theory, operations my g, 1<ignt-1,
n some fixed positive integer, of the following kind are considered:

My e(Xgs s %) 1= A\ {V {x)| jeI} I={0, .., n}, 1| =i}

(o5 s Xy €L, (L, <) = (L, v, A) being some distributive lattice). The operations
mi<, 1<i<n+1, on L turn out to be commutative and superassociative and in
case (L, <) is a chain th;y are quasi-trivial, too (the latter means m; <(xq, <., %)
€ {xg, -we» X,} for any xq, ..., x, € L). Hence, the problem of classifying all (n+1)-ary
commutative quasi-trivial superassociative operations arises. In our paper we give
a complete solution of this problem in case 7 is odd and a partial solution in case n
is even. Moreover, we gi\ve a characterization of the operations m; ¢, 1<i<n+1,
i# tn+1, on chains (L, <).
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2. Definitions and basic results. In the following let » be some fixed positive
integer.

DerINITION 1. Let (4, f) be some algebra with one (n+1)-ary operation.
f is called commutative if
) f(an’ : xvm) = f(xOS bS] JC,,)

for any xg, ..., X, € A and for any = e Sym{0, ..., n} .

fis called quasi-trivial if
for any xg, ...

F (o, oevs Xu) € {Xgs ves Xn} ,x,€4.

f is called superassociative if

J(f Ges oon

» Xz,,) =f(x0:f(x1’ Xyg1s oees x2n): ---:f(xun sery x2n))
for any x4, ..., Xp,€4.

S xn): Kpek 12 ot

(4, f) is called commutative, quasi-trivial or an n-dimensional superassociative
system, respectively, if f has the corresponding property. ‘

In the following let (4, f) be some fixed n-dimensional commutative quasi-
trivial superassociative system. If 7 is some non-negative integer and if a is an element
of some algebra then a(i) will stand for the sequence a, ..., @ of length i.

LEMMA 2. F(f (Xos cres Xn)s Xgy vers %) = (X0, wons X,) fOF any xo, ...
Proof. Suppose, Lemma 2 does not hold. Then there exist a,, ..., @, € 4 such
that f(f(@os s @)y @ys s @) # f(@gs wnn ). Let g denote the mapping

x5 f(x, ay, ..., a,) from 4 to A. Then g2a, # ga, whence

) X, € 4.

o do # gty # g°dp .
Using commutativity and superassociativity of /' we obtain
) GF (%05 s %) = GF (Xi5 Xy eves Xim1s Xiggs oees Xn)

= f (X1, GX0s wers GXim 15 GXit 15 -ors %)
= f(gX0s o5 GX1-15 Xis GXit 15 wves GX)
for any xg,.,x,64 and i=0,..,n

Using quasi-triviality of f together with (24)~(2,) we conclude

g ey = g f (ags oy ag) = (g g, s §"00) = g"ay -
Now put j:= min{i| i20, g"*la, = ¢ do}. Because of (1) we have j>1. Put
a:=g"%a,, b:=g'"ta, and c:= ¢’ "ay. Then from the definition of j it follows
® a#tb#ec.

Now f(b,a, ..., a) # a would imply f(b,a
whence b = f (b, ...
tion. Hence,

@ f@,a,..,d)=a.

, o @) = b (by quasi-triviality of f)
,b) = ¢ # b (by quasi-triviality of £, (2,) and (3)), a contradic-

icm

Commutative quasi-trivial superassociative systems 81

Now let us consider the case n>1. Let 0 <k <z and assume f{c(k—1), b, a, ...
already proved. Then

©) f(e®, a,b,...,b)=b

by (2. Now f(c(k), a, ..., a) # a would imply f(c(k), a, ..., @) = ¢ (by quasi-

triviality of f) whence b = f(c(k),a,b,...,b) = c# b (by (5), (2) and (3)),

a contradiction. Hence f(c(k), @, ..., @) = a and therefore

©) S(e(®), b, ...,by = b

(by (2-1)). Now f(c(k), b, a, ..., a) # a would imply f(c(k), b, a, ...,a)e {b, c}

(by quasi-triviality of /) whence b = f(c(k), b, ..., b) = ¢ # b (by (6), (2,) and (3)),

a contradiction. Hence f(c(k), b, a, ..., a) = g. By induction argument,
fl,,e,b,a)=a

which also holds in case n = 1 because of (4). Therefore, in any case (n>> 1) we obtain

{a, c}af(c, ..., c,a) = b¢ {a, c} (by quasi-triviality of £, (2,) and (3)) a contra-
diction. This completes the proof of Lemma 2.

Remark. Using commutativity of f together with Lemma 2 we obtain
f(xo= wes X 19 (Ko s Xods Xia1s -~-,xn)
= L (S Gos ever Xn)s Xos evs Ximts Xipgs eoes Xp)

=f(f(xi: Xgs ey X o xn), X wees Xjmgs X1 oo xn)

,d)=a

i1 Xik1s o

= (X5 X5 wves Xim1s Xig1s cers X = S (X5 ooy X))
for any x, ..., x, € A and i = 0, ..., n. Applying this result finitely many times one
obtains '
@) F({x0s /(o coos X)) X oo X {3, F (X s X)}) = F (K05 wrvs %)

for any xg, .., x,€4.

This important property of f will often be used in the sequel.

In the following put p:= [(n+1)].

DEFINITION 3. For any i=1,..,p we define a binary relation <; on 4 as
follows:

x<,y ff f(x(), v,

Remark. From (7) immediately follows <;S..S<,.

LemMA 4. (4, <)) is a poset for any i =1, ..., p.

Proof. Let 1<j<p. Reflexivity and antisymmetry of <; follow from quasi-

triviality of f and from (7) and commutativity of f; respectively. Now assume <;
not to be transitive, Then there exist a, b, c€ 4 such that

o) =x (x,yed).

® a<;bg;c and  akje.
Of course,
® a#xb#cs#a.
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Now put a;:= f(a(i), b(j—i), ¢, ..., ¢) for any i = 0, ..., j. Because of (8) and (9)
we have a, = b # a, c. Now let 0<k<j and assume a,_; # a, ¢ already proved.
Then

(10) @y =Db

(by quasi-triviality of /). Now a, = a would imply a<;c¥;a (by (7) and (8)),
a contradiction. Hence,

an G Fa.
On the other hand, ¢, = ¢ would imply
e =f(f(a(), b, . b), alk=1),b(j=F), c, ... ¢) = f(a, e(j~1), D, ..., b)

(by (8), superassociativity and commutativity of f and (10)) whence e<;b (by (7))
which together with (8) and antisymmetry of <; yields b = ¢ contradicting (9).
Hence g, # ¢ which together with (11) yields g, # @, ¢. By induction argument,
a; # a, ¢ contradicting quasi-triviality of f. Therefore <; is transitive and thus
(4, ;) is a poset. This completes the proof of Lemma 4.

3. Main results
LeMMA 5. Assume |A|>2, let B€ A, |B| = 3, and let 1<k<p. Then the Hasse-

diagram of (B, <) is of the type oco or o\/o or ¢,
k

° )
Proof. Let B = {a,b,c}. First assume ;T b
(<X~}
(B, <. Then f(a(k),b, ..., b) # b would imply f(a(k), b, ...,b) = a (by quasi-
triviality of f), i.e. a<;b contradicting our assumption. Hence,

(12) ‘ flak),b,..,b)=b.

Put a;:= f(a(D), b(k—i), c, ..., ¢) for any i =0, ..., k. Now a, # ¢ would imply
ap = b (by quasi-triviality of f), i.e. b<;c contradicting our assumption. Hence,
ay = ¢. Now let 0<I<k and assume g, = ¢ already proved. Then a; = b would
imply < c (by (7)) contradicting our assumption. Hence,

(13) a#b.
On the other hand, @, = a would imply

e =f(flatk), b, ..., B), al=1), b(k—1), ¢, ..., ¢) = fla(k), ¢, .., Q)=a#c

(by (12), commutativity of f; induction hypothesis, superassociativity of f and our
assumption), a contradiction. Hence @, % a which together with (13) and quasi-
triviality of f implies ¢, = ¢. By induction argument and our assumption we obtain

¢

¢ =a,=a# c, a contradiction. Now assume °\
as b
(B, <y). Put ay;:= f(a(@), b(j), ¢, ..., c) for any i =0, ..,k and j = k, ..., 2k~1.

to be the Hasse-diagram of

to be the Hasse-diagram of
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Then ay; = b for any j = k, ..., 2k (by our assumption and (7)). Now let 0<m<k
and assume a,,_y,; = b for anyj = k, ..., 2k—m+1 already proved. Further assume
k<q<2k—m. Then a,, = ¢ would imply b = f(b(k),c,..,c)=c# b (by our
assumption, (7) and commutativity of f), a contradiction. Hence

(149 Qg # C.
On the other hand, a,, = a would imply

a = f(f(am), b(q), c, ..., ¢), a(m~1), b(g), ¢, ..., ¢)=f(a@m),b, ..., b)
(by superassociativity and commutativity of f and induction hypothesis) whence
a<;.b (by (7)) contradicting our assumption. Hence G,q # a which together with (14)
(and quasi-triviality of f) implies a,,, = b. Since g was an arbitrarily chosen element
of {k, ..., 2k—m} we have proved a,; = b for any j = k, ..., 2k—m. By induction
argument, ay, = b and hence by symmetry argument, @, = a, a contradiction. This
completes the proof of Lemma 5.
DEerFINITION 6. For any i = 1,...,p put

M;:= {xe A] x is maximal with respect to <;} and K;:= AXM;.
Remark. Let 1<j<p. Then
M;={xed| f(x(j).»,..,») =y for any ye 4} and M,2..2M,
(cf. remark after Definition 3). From Lemma 5 it follows that (X;, <;) is a chain as

well as that x<;y for any x e K; and for any y € M;. Hence (4, <)) is a chain iff
|M;|<1. Finally, let aq, ..., a,€ 4. Then

flai. f(ag, o @), .., f@gs oes @)

=f((f (@0, -» @) (@), @iy F(@gs woes @)y wnvs [ (Ggs oovs @)

= f(ag, .-, Q)
for any i = 0, ..., n (by commutativity of f and (7)) whence for any i = 0,...,n
either f(ao, ..., a,) = a; or a;%, f(ap, ..., @,). From this and from the fact that
all elements of K, are comparable with all elements of 4 with respect to <, we
conclude f(aq, ..., a,)<;x for any xe{ay,...,a,} nK,. Hence (using quasi-
triviality of f) we see that

S(@gy oo ) = ming,({dg, s @} N Ky)  if (ags ey @) € AWMLY

Thus we obtain

THEOREM 7. If [M,|<1 then (A,<;) is a chain and f{x, .., x,)
= My, (Xps ooer X) SO any xo, ..., %, € 4.

COROLLARY. Let n be some positive integer and let (B, g) be some algebra with
one (n+1)-ary operation. Then t.f. a.e.:

() (B, g) is an n-dimensional commutative quasi-trivial superassociative system
and there exists at most one x € B such that g(x,¥,..,y) =y for any y € B.
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(i) There exists some total ordering < on B such that g(xq, .., x,)
= my, <(Xg, ..., X,) for any xo, ..., x, € B.

Remark. This corollary characterizes the operations my <, #,..1,< on chains
(L, <)

THEOREM 8. Assume |My|>1 and M, # M, and put k:= min{i| 1<i<p, M,
# M} Then (My, <)) is a chain and f(xo, ..., %,) = my ¢, (Xq, .-, X,) for any
Xg, s X, €My

Proof. Applying the remark after Definition 6 we obtain

(15) Flx®=1,y,..,y)=» forany x,yeM,
and there exist xje M, and y;e 4 such that
(16) f(xtll(k)a th “wy(')) = X6 # yi)

(here also quasi-triviality of # was used). Now yo ¢ M, would imply y, € K; whence
yo<1xp (cf. remark after Definition 6) which implies yg<,xg (cf. remark after
Definition 3) whence yu<pxo<;yo (by (16)), a contradiction. Hence,

an , YosMy.
First consider the case [M;| = 2. Then (16) together with (17) implies M, = {x{, o}

and xg<;yo. Hence (M,, <;) is a chain. Moreover,

S (Xgs ooy %) = My <, (Xq5 -5 X,)  for any xo, ..., x,6 M,

because of (15), (16), (7) and commutativity of f. Therefore Theorem 8 is proved
in this case. Thus, for the rest of the proof suppose |M,|>2. Now let B&M,,

bo 'oc
|B} =3, say B={a, b, c}. Assume \o/ to be the Hasse-diagram of (B, <;). Put
a

a;:= fla@), bk—i), ¢, ..., €)

Now a, # ¢ would imply ay = b (by quasi-triviality of f), i.e. b<, ¢ contradicting
our assumption. Hence a, = ¢. Now let 0</<k and assume a;_; = ¢ already
proved. Then a; = b would imply b<,c (by (7)) contradicting our assumption.
Hence,

(18) a#b.

On the other hand, 4 = a would imply

a=f{flad), blk=1D),¢c, ..., ¢), al—1), blk—1), ¢, .., c)
=fla, ¢, c)=c#a
(by superassociativity and commutativity of f, induction hypothesis, (7) and (15)),
a contradiction. Hence 4, # a which together with (18) and quasi-triviality of f
implies a; = ¢. By induction argument,
(19 a;=c¢

for any i =0,..,k—1.

for any
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Now f(b(k), ¢, ..., ¢) # ¢ would imply f(b(k), ¢, ...,c) =b (by quasi-triviality
of f), i.e. b<;c contradicting our assumption. Hence f(b(k), c, ..., ¢} = ¢. Put
m:= max{i| 0<i<n+1,(b@), ¢, ... c) =¢}. Now m>n—k would imply
e, b, ., b) = f(B(n—k+1), ¢, ..., ¢) = ¢ (by commutativity of f, definition
of m and (7)), i.e. e<;b contradicting our assumption. Hence,

(20) m<n—k.

Therefore f(b(m+1), ¢, ..., c) is well-defined and f(b(n+1),¢,...c)# ¢ (by
definition of m) whence

@D fBm+D,c,.,c)=b

(by quasi-triviality of /). Now put d:= f (a,b(m), ¢, ..., ¢). Then d is well-defined
because of (20). Now d = a would imply

a=f(flablm),c,....c),alk=1)c, ..., d=f@c ...0)=c#a
(by our assumption, superassociativity and commutativity of £, (19), (15) and (7)),
a contradiction. Hence,
(22) d#a.
Now d = b would imply
b =f(f(a), ¢, ., ) b(m), e, ., ¢)=f(a.bk=1),c,..,c)=c#b

(by our assumption, (21), superassociativity and commutativity of f, definition of
mand (19)), a contradiction. Hence d # b which together with (22) and quasi-
triviality of f yields d = ¢. But now

c=f(/(a), b, .., B), bim), ¢, ..., c) = f(a, c(k—1),b, ..., b)

(by our assumption, superassociativity of f and (21)) whence ¢<,b (by (7)) contra-
dicting our assumption. Thus, using (16), (17) and Lemma 5 we conclude that

(23) (M,, <;) is a chain.

Now let by, ..., b, € M, such that

(24) oo Kby -

Since f is quasi-trivial there exists some g, 0<q<n, such that
@5 fbo, s b)) = by

First suppose

(26) by<pbp_y -

Let r be some fixed integer, k—1<r<n, and put

ij = f(bq(i)i b(7)s b1 -5 by 1)
Using (24) we conclude
@7 B JAPE ST, A

for any i=0,..,k—1 and j=1,.... k—i.
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Hence ap; = by, for any j = 1, ..., k (by (7) and commutativity of ). Let O<s<k
and assume a,_; ; = b, foranyj = 1, ..., k—s+1 already proved. Further assume
1<t<k—s. Then ay ¢ {b,, b;_,} would imply a, = b, 5 by1 (by quasi-triviality
of f) whence b,<;b,_; <, (by (7) and (27)), a contradiction. Hence,

(28) ‘ dy € {bq! bk—-l} .
On the other hand, 4, = b, would imply
b, =f(f(bq(s), B(t), B g5 evvs By—y), by(s—1), by(2), byqy eons bk-—l)
=f(bq(s): bk—l) () bk—l) = bk—1>kbq

(by superassociativity and commutativity of f; induction hypothesis, (15), (7) and (26)),
a contradiction. Hence 4, # b, which together with (28) yields ay = b,_,. Since ¢
was an arbitrarily chosen element of {1, ..., k—s} we have proved ag; = by, for
any j =1, .., k—s. By induction argument, Aoy, = by—y, .6

Fb =1, b,, by—y, ..., be—q) = by .
Since r was an arbitrarily chosen element of {k—1, ...,n} we have proved
SO~ b, by ey byy) = by for any i = k—1, B
Therefore
by = f(b,k), by von, b_y)
=SSOk~ 1), Byey,s s b), bylk—1), by y s ..., By-y)
= f{bk—1), by, ..., byq) = by-1>yb,

(by (26), (25), (7) and superassociativity and commutativity of f), a contradiction,
Hence,

(29 b=y
(by (23)). Finally suppose

(30) o by> by .
Put

1= f(Byeiy iy bpes, by (e =i+ 1), bn—k+1)) foranyi=1,..,k.

Then ¢; = f(by_1(k), by, oo, by) = byy # b, (by (30)). Now let l1<u<k and
assume ¢,y % b, already proved. Then ¢, € {bp—s1s s By} (by quasi-
triviality of f) and hence

(3D Cu-1 Siebpe—y
(by (24)). Now ¢, = b, would imply
bq =f(f(bk—u(k)a bk—-l: e bk—l): bk—-u+1’ LRl ] bk—Z: bk—l(k_u_"l)a bq(l'l—k—i— 1))
=-f(bk~u5 bq(k—’l): Chmts ovns cu-—l)

(by (24) and superassociativity and commutativity of /) whence b,<peum 1< by
<ibg (by (1), (31) and (30)), a contradiction. Hence, ¢, # b,. By induction argument,
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(25) and (7) we obtain b, # ¢, = b,, a contradiction. Hence, b,<;b_1 (by (23)
which together with (29) yields by = by_y. Therefore, by (23). and commutativity
of f we have

S Xy oees %) = my < (%0, ..., x,) for any Xgs ey Xy € My .
This completes the proof of Theorem 8.

COROLLARY. Let n, i be positive integers such that 1<i <i(n+1) and let (B, g),
|BI>1, be some algebra with one (n+1)-ary operation. Then t.f. a. e.:

() (B, g) is an n-dimensional commutative quasi-trivial superassociative system,
g(x(-1), y, wY) =Y for any x,yeB and there exist a,be B such that
g(a(i), b, ..., b) # b.

(ii) There exists some total ordering < on B such that

(o, s X)) = My <(Xg, oy X)) for any xg, ..., x,€B.

Remark. This corollary characterizes the operations m; g, 1<i<n, i # tn+1,
on chains (L, <).

From the remark following Definition 6 and from Theorem 8 we conclude

PROPOSITION 9. Assume |Mi|>1 and M, # M, and put j:= min{i| 1<i
<p, M; # M,}. Further, define a binary relation < on A as Sfollows: For any x, ye A
let x<y iff one of the following conditions (i)(iii) is satisfied:

() x,yekK, and x<,y.

(i) xe K, and ye M,.

(i) x,ye My and x<;y.

Then (A, <) is a chain and

m; <(xg, .., X, if (Xg5 ey X € MPHL,
S5 s %) = {m::ExS, ...,xg g:‘h(erc;vise’ ) '
(Xg5 -ns X, € A).

Remark. Until now we have considered the cases |M;|<1 (Theorem 7) and
|My|>1, M, # M, (Proposition 9). Further note that in case nis odd quasi-triviality
of f implies connexity of < g1y

Now we are able to formulate our main results:

Treorem 10 (Classification Theorem for commutative quasi-trivial super-
associative operations of even arity). Let n be some odd positive integer and let B,9)
be some algebra with one (n+1)-ary operation. Then t.f. a.e.:

() (B, 9) is an n-dimensional commutative quasi-trivial superassociative system.

(i) There exists some total ordering < on B, there exists some final segment C
of (B, <) and there exists some integer i, 1<i<3(n+1), such that

o %) = my <(Xgy vy X) I (Xgs v, )€ CFL,
9805 s X) = my,<(Xg, s X,)  Otherwise

(xp5 .05 X, € B).
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Hence, for any positive integer m, up to isomorphism there exist exactly
1+3(m—1)(n—1) m-element n -dimensional commutative quasi-trivial superassociative
Systems.

TueoreM 11 (classification of a certain class of commutative quasi-trivial super-
associative operations of odd arity). Let n be some even positive integer and let (B, g),
|B|>1, be some algebra with one (n+1)-ary operation. Then t.f. a.e.:

(@) (B, g) is an n-dimensional commutative quasi-trivial superassociative system
and there hold (a) or (b):
(2) There exists at most one x € B such that g(x, y, ...,y) = y for any y e B.
(b) There exists some ae B such that g(a,y, ...,y) =y for any ye B and
such that there exists some be B with g(a(}n), b, ..., b) # b.
(ii) There exists some total ordering < on B, there exists some final segment C
of (B, <) and there exists some integer i, 1<i<%n, such that
My, (X s X)) U (Xgs wees X) € CPFL,
9605 s ¥a) = {ml,s(xo, vy X,)  otherwise
(Xgs «rr Xy € B).

Remark. The following example shows that there exist n-dimensional com-
mutative quasi-trivial superassociative systems, n even, neither satisfying (i) (a)
nor (i) (b): Put B:={0,1,2,3}, n:=2, g(x,x,3) = g(x, », x) = g(y, x, X)i=x
for any x,y e B and g(x, y, z) = —(x+y+z)mod4 for any three mutually distinct
elements x,y, z€ B.
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On vertices and edges in maximum path-factors of a tree
by

Zdzistaw Skupien and Wiadyslaw Zygmunt (Krakéw)

Abstract, The paper presents proofs for part of the results announced in [11]. It develops
a method of classifying the edges and the vertices of a tree T with respect to their appearance in
maximum path-factors of T.

1. Introduction. Since Ore’s pioneering work [7] in 1961, different publications
concerning Hamiltonian graphs have dealt with the covering of vertices by (or
partition of vertices into) disjoint (possibly trivial) paths in an ordinary graph, say G.
Most of these papers deal with the invariant of G introduced by Barnette [1]. Follow-
ing Skupien [8] we will denote this invariant by 7y(G), and call it the vertex-path
partition number of G, where 7y(G) is the minimum number of paths among the
path partitions of vertices of G.

Recently, new related invariants, namely Hamiltonian completion number
hc(G) and Hamiltonian shortage sy(G), have been independently introduced by
Goodman and Hedetniemi [3], and Skupieni [8], [9]. In general, these new invariants
coincide. Namely, both equal 0 when G is Hamiltonian, and both equal 74(G)
when G is a non-trivial non-Hamiltonjan graph. Only for G = K; we have 74(K;)
= he(K)) = sy(K))—1= 1.

In a series of papers sufficient conditions have been found for either #,(G)<s
or sy(G)<s, where s is an integer.

The problem of determining mo(G) or sy(G) is considered independently in [2],
[3], and [8]. In each of these papers algorithms for determining 7o(G) in the case
where G is a tree or forest are developed. Algorithms presented in [2] and [3] are
very similar to each other. Two other algorithms, based on labelling the vertices
of a tree, are presented in [8].

Evaluating n, for trees is of special importance. Namely, in [2] and [3] it is noted
that, for a connected graph G,

mo(G) = min{r(T): T is spanning tree of G}.
In general (cf. [10]),

7o(G) = min{ny(F): F is a spanning forest of G, with components which are
spanning trees of components of G}.
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