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Remark. The results of Theorem 1 and Theorem 2 can be applied to the notion
of representable spaces. A space X is said to be representable [6, p. 263] if for every
x € X and every open set U containing x there exists an open set V< U containing x
and such that, for every y e V there exists a homeomorphism of X onto X which
carries x onto y and which leaves fixed every point in the complement of U. Theorem 1
implies that M x X is not representable if X is a nondegenerate continuum as in
Theorem 1, and Theorem 2 implies that M x M is not representable.

4. Problems.

(1) Does there exist a number » (finite or countable) such that the Cartesian
product M" of n copies of the Menger universal curve is 2-homogencous?

(2) Does there exist a non-degenerate continuum X such that M x X is 2-ho-
mogeneous?

(3) Suppose that X;, X,, ..., X, are l-dimensional locally connected continua
such that the product X, x X, x...x X, is 2-homogeneous. Is it true that every X;
is a simple closed curve?
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Topological contraction principle
by
Pedro Morales (Sherbrooke, Québec)

Abstract. A quite general fixed point theorem for functions in a quasi-uniform space and its
converse, in the compact Hausdorff case, has been presented in this paper.

Let f be a function on a metric space X = (X, d) into itself. It is called a Banach
contraction if there exists Ae[0,1) such that d(f(x),f(»)<Ad(x,y) for all
(x, ) € Xx X. In this case, according to the Banach contraction principle [1, p. 160],
if X is complete, then f has a unique fixed point » and lim f"(x) = u for all x e X.

n

The primary purpose of this paper is to establish a generalization, in quasi-uniform
context, of the Banach contraction principle, and to show that it contains, among
others, the results of Davis [6], Edelstein [7], Janos [10], Keeler-Meier [12], Knill [14],
Naimpally [16], Reilly [20], Tan [22], Tarafdar [23] and Taylor [24]. The secondary
purpose is to establish, in the compact Hausdorff case, the converse theorem. We
note that in the non-compact case, because of the multiplicity of uniformities (or
quasi-uniformities) defining the same topology, the notion of a converse theorem has
no unique sense.

1. Contraction theorem. We begin with pertinent definitions specifying our
context. A guasi-uniformity ou a set X is a filter % on X x X satisfying the axioms
of a uniformity, with the possible exception of the symmetry axiom. As in the case
of a uniformity, it induces a topology T4 on X such that, for x.eX, the se?s
Ulx] = {ye X: (x,¥)e U}, Ue%, form a tq-neighbourhood basis of x. 'I:hlS
generalization of uniformity owes its importance to the fact that every topological
space is quasi-uniformizable ([4, p. 171], [5, pp. 886-887], [17, p. 316)). _

Henceforth in this section X = (X, %) is a quasi-uniform space. Accordmg. to
Davis [5, p. 892], a filter & on X is “Cauchy” if, for every Ug%, there exists
x = x(U) € X such that U[x]e #. We define a Cauchy sequence in X to be a se-
quence {x,}7 in X whose corresponding Fréchet filter is Cau'chy, that is, such that,
for, every Ue %, there exists x = x(U) e X and a positive integer n= n(U) such
that x,, € UJx] for all m>n. Every convergent sequence inX i.s Cauchy ;'1f, conversely,
every Cauchy sequence in X converges, we say that X is sequen-tzu'lly cm‘nplete.
(For a uniform space the above definition of “Cauchy sequence.” coincides with th.e
usual definition. If, however, the usual definition were carried over the quasi-
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uniform context, there would exist non-Cauchy convergent sequences [13, p. 88]).
Following Wilansky [25, p. 262], we say that a topological space is US if every
convergent sequence has a unique limit. A US space is T [25, p. 262] but may be
non-Hausdorff [21, p. 777].

If 4, B are binary relations on X their composition is defined by the formula

AeB={(x,y))e XxX: (x,z)e B aud (z,y) € 4 for some ze X} .

We treat a function f on X into itself as a special binary relation on X. Its kth iter-
ate f* is defined inductively: £ is theidentity, f* = fof*~* for k1. We note that

Sodof ' ={(f(),f): (x,)ed} forall A=XxX.

Let f'be a function on X into itself. We say that fis contractive, or is a contraction,
if, for every U e %, there exist V' = V(U), W = W(U) e ¥ such that fo Vo Wof~?
EVcU. We say that it is occasionally small if, for every ordered pair (x, y)e Xx X
and every Ue®, there exists a positive integer n = n((x, ¥), U) such that

(f" ). f"(») e U.

1.1. THeEOREM. Let X = (X, %) be a sequentially complete US quasi-uniform
space and let f be a function on X into itself. If at least one iterate f* is an occasionally
small contraction, then f has a unique fixed point u. Moreover, for arbitrary X0 € X,
Tim £*(x,) = .

"

Proof. It will be shown that 7 = f* has at most one fixed point. Let u, v be
fixed points of 4. Let Ue % be arbitrary. Since 4 is occasionally small, for some posi-
tive integer n, (u,v) = (A"(u), h'( v)e U. Since X is Ty, it follows that u = v,

Let xo € X. It will be shown that {#"(x,)}7 is Cauchy. Let Ue % be arbitrary.
Since / is contractive, there exist ¥, We % such that ho Ve Wo h~'c V< U. Then,
since % is occasionally small, there exists a positive integer n such that

(B'Gxo), "4 (x0)) = (Bxo), H'(h(x0)) € W .

It will suffice to show that

H"(xo) & V[F" (x)]  for all mzn+1,

This being so for m = n+ 1, we suppose it for an ai*bitrary mzn+1. The inductive
assumption  (K"**(xo), A"(x,)) € ¥, together with (B"(x0), K" Y(xp)) € W, implics
(H"(xo), B™(xp)) € V o W. Tt follows that (B (%), A"+ Yx)) € ¥, s0 the induction
is complete. M

Since X is sequentially complete there cxists u = u (o) € X such that A"(xg) — .
Being contractive, k is, in particular, continuous, so A(u) = lim B(H"(xe)) = u.

Thus u is a fixed point of 4, therefore the unique fixed point of A. In particular,
u is independent of x,. Since A(f (W) = f () = f@), F() is a fixed point of &,
therefore f (u) = . But a fixed point of fis also a fixed point of %, so u is the uniqué
fixed point of f. '
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In the remainder of this section we deduce from Theorem 1.1 a corollary gener-
alizing several fixed point theorems in quasi-uniform context. We recall some: ter-

‘minology of the authors.

A quasi-pseudo metric on a set X is a non-negative real function p on Xx X
such that p(x, x) = 0 and p(x, »)<p(x, 2)+p(z, »). A real function f on a quasi-
uniform space X = (X, %) is quasi-uniform lower semi-continuous if, for >0, there
exists Ue% such that (x,y)e U implies f(»)>f(x)—e. It has been shown by
Reilly [19, p. 318] that if X = (X, %) is a quasi-uniform space, % is generated by
the family = of all quasi-pseudo-metrics on X which are quasi-uniform lower semi-
continuous on (X x X, % x%™"), where %~ = {U~': Ue%). In this case, % has,
as subbase, the sets of the form U(p,e) = {(x,y)e Xx X: p(x, »)<e}, pen,
£>0. Let 7 be a family of quasi-pseudo-metrics on a quasi-uniform space X = (X, %)
which generates %. A function f of X into itsclf is a - contraction or n-contractive
if, for each p e m, there exists ¢, € [0, 1) such that p(f(x), f(»))<c,p(x,y) for all
(x,») € Xx X. The following result gencralizes the theorems of Janos [10, p. 69],
Reilly [20, p. 361], Tan [22, p. 832] and Tarafdar [23, p. 212].

1.2. CoROLLARY. Let X = (X, %) be a sequentially complete US quasi-uniform
space and let © be « family of quasi-pseudo-metrics on X which generates %U. Then
every m-contractive function f on X into itself has a unique fixed point ue X. Moreover,
for all xe X, f"(x)—u in the 1, topology.

Proof. It will suffice to show that f i$ occasionallyk small and contractive.

Let U & %. There exist p, € m, £,>0, 1 <iksuch that ¥ = iﬂ U(p;, &)< U. Since fis
' =1

n-contractive, for i = 1,2, ..., k, there exists ¢, €[0, 1) such that

pfG), F(M)Seppix,y)  for all (x,)e XxX.
Let & = min ¢;. Let (xp,y0)e XxX. Fori=1,2,..,k v

lglek ) .
I’i(f"(xo),f'(yo))gcmPs(xm Y)¥0  (n— ).

Hence there is a positive integer n such that :

P xe), fo))<e for i=1,2,...k

Then .
(/"0 f" (o)) & lDl U(p, &)=V = U,
proving that f is occasionally small. Now choose d;>0 such that 5i011g<€i—cpi&i’
Igigk. Let W= (’% U(p,, 5). Let (x,y)e Vo W. There cxists ze X such that
(x,2e W and (z,i;)le V. Let i=1,2,..,k be arbitrary. Since pfx,z)<6;,
piz, ) <e; we have p(f(x),f(2D)<e,ds P f(2).F (3)Seps: so that
p{fG), S ()<, Bi+e)<ei,
that s, (£ (x), f(5)) € U(py, &). Therefore fo Vo Wef ~“1g ¥V'c U, so fis contractive.
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2. Well-chained spaces. A quasi uniform space X = (X, %) is said to be well-
chained if, for every ordered pair (x, ) € X x X and every U e % there exists a positive
integer n = n((x, ), U) such that (x,y)e U" [6, p. 982]. For example, a con-
nected uniform space is well-chained. It will be shown that a version of Theorem 1.1
for well-chained spaces contains the results in this context of Taylor, Knill and
Davis.

2.1. LeMMA. Let (X, %) be a well-chained quasi-uniform space and let f be a func-
tion on X into itself. If f is contractive, then f is occasionally small.

Proof. Let We%. It will be shown inductively that fo Wof ‘oW
implies fo W"of 'cW" for all n=1,2,.. The implication being trivial for
n = 1, we prove if for n-+1, assuming it for n. Let (x, y) € W"*1, There exists ze X
such that (x, z) € W" and (z, ) e W. Then (f(2),f( y)) e W and, by the induction
hypothesis, (/' (), (2)) € W", 50 (f(x), /() € W"**. This shows that f o "+t =1
= Wn+ 1'

Let Ue%. Since f is contractive there exists V = V(U), W, = W (U)e¥
such that foVoW;of 'cV<cU. Then f being contractive, there exists
W=WW,)ed such that foWef *cWcW, Then foVeWef lcvcU.
It will be shown inductively that f"o Ve W"of "c¥ for all n = 1,2, .. This
being true for n = 1, we prove it for n+1, assuming it for n. Note that, for
A,BSXxX,AoBcAof ofo B, hence, applying the result of the first paragraph
and the induction hypothesis, we have

fn+1 o Vo Wt of—-(n+l) =f" ufn VoWoWr" of‘l of“"
Sfro(foVeWof ™o (foW of M)of™
ESffoVeW'af eV,
This established, let (x, y) € X x X. Since X is well chained, there exists a positive
integer n = n{(x, ), W) such that (x, y)e W"S Vo W", so (/"G (M) eveU,
Theorem 1.1, with Lemma 2.1, yields the following result:
2.2. THEOREM. Let X = (X, %) be a sequenticlly complete US well-chained
quasi-uniform space and let f be a function on X into itself. If at least one iterate £* is

contractive, then f has a unique fixed point u. Moreover, for arbitrary x,e X,
lim f*"(x,) = .
L]

Let X = (X, %) be 2 uniform space and let # be a basis for %. According to
Taylor [24, p. 165], a function f on X into itself is a 48-contraction if, for every
Ue# there exists W = W(U)e# such that fo Uo Wof~1cU. It is clear that
a Z%-contraction is a contraction. Conversely if f is a contraction,

B={VeW: foVeWosf'cV for some We)}

is a basis for % and fis a #-contraction. Consequently Theorem 2.2 generalizes
the Basic Lemma of Taylor [24, p. 166].

Let X = (X, %) be a uniform space. According to Knill [14, p. 450], a function f°
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on X into itself is a uniform contraction if, for every U e %, there exist ¥ = v (0),
W= W(U)e¥ such that foeVof™eWcVcU In this case there exists
Wy=W((W)ed such that foW,of 'SW, =W, then foVo Wyof1
e(feVof ™ No(foWyof )SfoVof™ o WS¥cU, so f is a contraction.
Consequently Theorem 2.2 generalizes the Uniform contraction principle of Knill
[14, p. 451].

Let X = (X, %) be a quasi-uniform space and let f be a function on X into
itself. Let r, s be positive integers. According to Davis [6, p. 982], fis an (r/s)-map
if for every Ue®, fo U f~ < U'; and fis an eventual contraction if some iterate f*
is an (r/s)-map with r<s. In this case we may choose U, € % such that U< U and
then ffo Uy e Ui™ o f " = f*o Ui o f~*cUcU, so f* is a contraction, Con-
sequently, Theorem 2.2 generalizes Theorem 2 of Davis [6, p. 984] (with a cor-
rection, because, to assure the uniquencss of the scquential limit, his condition T,
should be replaced by US).

3. Metric spaces. In this section X = (X, d) is a metric space.

Let & > 0, 1€ [0, 1). According to Edelstein [7, pp. 7-8] a function f on X into
itself is an (g, A)-uniformly local contraction if d(f(x),f( »)<Ad(x, ) whenever
d(x,y)<s. According to Edelstcin [8, p. 78], X is e-chainable if, for every
(x,y)e Xx X, there cxists a finite sequence {z;}§ in X such that x = z,, z, = y
and d(z;-q, z))<e for 1<ign. To prove that the fixed-point theorem of Edelstein
[7, p. 8] is a corollary of Theorem 1.1, we will show that an (¢, A)-uniformly local
contraction f on an g-chainable metric space X is occasionally small and contractive,
relatively to the uniformity %, having as basis the sets

Uy = {(x, e XxX: d(x,y)<e}, &>0.

Let Ue,. Choosc a positive integer n>2 such that ¥ = U,,cU. Let

. fe—=2e n—1
0<d<min{——, —¢
ni n
and set W = Uj. It is casy to verify that fo Ve Wof~*c¥<U, so fis contractive.
Now let (x, ) € Xx X choose a finite sequence {z,}5 in X such that x = z;, z, = y
and d(z;.;, z)<e for 1<ign. Then d(fiz;-0), f(z2))<Md(z;-y, 2)) s0

d(f"(z1-0), S @) < A"

(I<i<n),
therefore

AN X, erm ) E) <Hen 0 (msco).

Let §>0 be such that U< U and choose m so that A" en<d. Then (S™(x),/™(»)
e U;c U, proving that f is occasionally small.

Recall that a function f on X into itself is a strict contraction if d(f (x),f (%))
<d(x, y) whenever x # y. According to Keeler and Meier [12, p. 326] it is a weakly
uniformly strict contraction if, for >0, there exists & = (g)>0 such that

5 — Fundamenta Mathematicae CX/2
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e<d(x, y)<e+9 implies d(f(x),f (3))<e. In this case, supposing xg # y,, set
& = d(x,, yo), and choose §>0 such that e<d(x, y)<d+¢ implies d(f (x), f (1)) <e.
Then, in particular d( F(x0), f(3a)) <8 = d(xo, ¥o). Thus, a weakly uniformly strict
contraction is, in particular, a strict contraction.

3.1. LEmMA. A function f on X into itself is a weakly uniformly strict contraction
if and only if, for £>0, there exists & = 5(e)=>0 such that d(x, yY<e--6 implies
d(f ), F () <e

Proof. It suffices to show that the condition is necessary. Suppose that f is
a weakly uniformly strict contraction not satisfying the condition. Then, for some
6630, there exists for every 630 a point (x;, y;) of X'x X such that d(x;s, ys) <eg+8
and d(f(xs),f (ys))=e. Then, in particular, x; # y;. Let d,>0 be such that
g <d(x, ¥) <o+, implies a(fix),1( y))<so. Since f is a strict contraction

go+00>d(x;,, yau)>d(f(xao)sf(ydo))>30 .

therefore d(f (x5),f (¥s))) <8, which is a contradiction.

Following Geraghty [9, p. 811], we consider the class T of all functions
@: (0, 00) — [0, 1) such that, if {¢,};" is a decreasing sequence in (0, co) and a(2,) — 1,
then #,4 0.

3.2. Lemma. Let aeT. For every &>0 there exists & = 6(¢)>0 such that
sup{a(t): ee<e+8y<1.

Proof. Assuming the lemma to be false, there exists ¢>0 such that, for all
§>0, sup{a(t): ep<t<ey+8} = 1. We will deduce a contradiction by proving
inductively the existence of a decreasing sequence {#,};° in (gp, o) such that

2" —1+ale) . 1—a(ep)

1>Oﬁ(tn)> 211'*1 - 211"1

Since sup{«(z): go<t<ge+1} =1 and a(g)<1, there exists #, € (g, g+ 1) such
that 1>a(t;)>a(ee). Thus the first term is established so we may suppose the first
terms established: #;, 1,, ..., ,. Since

C 2" 1 ae
sup{a(t): eo<t<t,} =1 and 1> —w«mi;%f«?z,

there exists ¢,, € [¢, #,) such that

ot )-1 1+ a(sg)
1>ty 0>~y
If #,., =g, then

2"~ 1 4ai(ey)

a(gg)> o ,

that is, a(gg)> 1, a contradiction. Thus #,,, € (g, #,), and the induction is complete
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3.3. LeMMA. Let f be a function on X into itself. If there exists we T such that
a(f @), f (M) a(dx, W)d(x, y) whenever x # p, then S is a weakly uniformly strict
contraction.

Proof. Let &>0. By Lemma 3.2 there exists 4 = 5 (¢)>0 such that
sup{a(t): est<e+n) = e(e)<1.
Let >0 be such that d<n and de(e)<s—zc(e). If e<d(x, y)<e+4 then

d(S(x), f (D) <Sa(d(x, ))dCx, p)<c(e)(e+d)<e .

3.4, LemmA. If a function f on X into itself is a weakly uniformly strict contraction,
then f is occasionally small and contractive relatively to Uy.

Proof. Let (x,y) e Xx X. Write ¢, = d(f"(x),f"(0), n = 1,2, ... Since f is
a strict contraction ¢, 4 £20. To prove that fis occasionally small, we will show that
& = 0. Suppose, on the contrary, that ¢>0. Let § = §(¢)>0 be such that e<d(x, y)

<g+6 implies d( f (x), f () <e. There exists a positive integer m such that Cn<E+6.
Then we have

8y = (/"N = d(F(S"@), S (S"OY) <,
a contradiction.

Let Ue%,. Then U,s U for some ¢>0. By Lemma 3.1 there exists § = §(8)>0

such that d(x, y)<¢+38 implies d(f(x), f(»))<e. Since
Ua° UJQUH-I-M f° Uc° U6°f~1§f° Un+b°f‘IEUu§U-
This proves that f is a contraction on X = (X, %,) into itself.

By Lemma 3.4, Theorem 1.1 contains the Keeler-Meier fixed point theorem
[12,p.326], which in turn, by Lemma 3.3, contains the theorem of Geraghty [9, p. 811
and its corollaries 3.1 (Rakotch), 3.2, 3.3 (Boyd-Wong), 3.4 (Browder). We note
also that the Keeler—Meier fixed point theorem, apart from generalizing the Banach
Contraction Principle, contains the fixed-point Theorem 3.1 of Edelstein [8, p. 75].

The Banach contraction principle has been generalized by means of the following
generalization of the notion of metric space: Let I = (I, <) be a partially ordered
setandlet R = [T Ry, where each R, is a copy of the real line. Let each R; be endowed

iel

with the usual {opology and let R be assigned the product topology. Let R be partially

ordercd by the lexicogranhic formula: (r)<(r) if, whenever r;>r; for some j, there

exists k<j such that r,<r, and r,<r, for all mgk. Defining (r)+(r) = (r;-+r)

and A(r;) = (Ar,) where A is rcal, R is a rcal partially ordered vector space. A genera-

lized metric on a set X is a function g: Xx X— R = H;Ri satisfying the usual
ie

axioms for a metric (where 0 is the neutral clement of R) [11, p. 936]. The subsets
of R of the form

N = N(&, iy, s ) = {(r: Iyl <e for j=1,..,n}, &>0,

{igs s i,} being a finite sequence in I, constitute a basis of the neighbourhood ﬁltexj
of 0 in R; and the sets of the form U(N) = {(x, ) € Xx X: o(x, y) € N} constitute

R
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a ‘basis for a Hausdouff upiformity % on X, which we will say is induced by ¢. The
uniformity of a Hausdorff uniform space X = (X, %) is induced by a generalized
metric ¢ on X [11,p. 937]. . o

Let X = (X, %) be a Hausdorff space, where the uniformity % ]‘S- induced by
a generalized metric g. Let A€ [0, 1). According to Naimpally [16, p. 479] a function f
of X into itself is A-globally contractive if Q(f @), /()< A(x, y) for all
(x,y)e Xx X.

3.5. LeMMA. In the context of the preceeding paragraph, let f be a function of
X = (X, %) into itself. If f is A-globally contractive, then f is an occasionally small
contraction.

Proof. Since o(f"(),/"(M)<Me(f(),f(») f is occasionally small. Let
Uec®. There exists a neighbourhood N = N{g, iy, «., 1) of 0 in R such that
U(N)=U. Let N'(8, iy, ..., i,) where §>0 and A§<a—le. Let (x, y)y € U(N) o U(N').
There exists ze X such that (x,z)e U(N") and (z, y) € U(N). Then o(x,z)e N,
o(z, ) e N so0 o(x,y) e N = N"(e+6, iy, ..., ,). Hence

o(f (0,7 (M)<Aax, ) e N = N"(Ae+8), iy, o i) SN -

It follows that ¢(f(x),f(»))eN so that (f(x),/f( ) € U(N). This shows that
foUN) o UNNof e UWMN)EU.
By Lemma 3.5, Theorem 1.1 contains Theorem 2.12 of Naimpally [16, p. 479].

4, Converse theorem for a compact Hausdorf space. If X is a compact Hausdorff
‘space, it is a uniform space X = (X, %), with unique uniformity %.
4.1. THEOREM. Let X be a compact Hausdorff space. For a continuous function [
on X into itself, the following statements are equivalent:
@) f is an occasionally small contraction.
(i) f has a unique fixed point u e i’ and li”m (%) = u for all xe X.
(ili) There exists ue X such that () 6f X) = {u}.

(iv) The filter basis B, = {f"(X): n =0,1,2,..} converges.

Proof. (i)=>(ii). Theorem 1.1.

(ii)=(iv). Using the argument of Meyers [15, p. 74], we will show that %, — u.
Let ¥ be an open neighbourhood of u. For x € X let n(x) be the first positive integer
such that f*(x)e ¥ for all nzn(x). The conclusion will follow if we show that
sup n(x) < co. Supposing the contrary, there is a sequence {x}y" in X such that
;E(i{'k)>lc and x, — y for some y & X. Since f*(y) e ¥ and " is continuous, there
is a neighbourhood U of y such that f"O%z) e ¥ for all ze U. Thus z e U implies
n(z)<n(y). But x, e U eventually, which is a contradiction.

o0

NSfUX) # @, Let

n=0

(iv)=(iii). Suppose that %,— u. Since X is compact,

n=

® )
ve () fX) and suppose v % u. Let U, ¥V be disjoint neighbourhoods of u, v,
: 0

icm

Topological contraction principle 143

respectively. For some positive integer n, SUX)ESU, so (XA V = @, a contra-
diction.

(iv)=(D). Suppose that &, — u. This implies, in particular, that S(x) — u for
all xe X. Let (x,»)e Xx X and let Ue%. Choose a symmetric member W of %
such that W2< U. There exists a positive integer n such that S, ') e W)
so (f"(x),f"(»)) € W2S U. This shows that f is occasionally small. ’

By the argument of Knill in the second part of the proof of his Theorem 2.7
[14, pp. 453-454] — where the connectedness of X is not applied — for every Ue %
there exists a closed member ¥ of % such that fo. Vo f~lcPc U, where ¥ denotes
the interior of Vin X'x X. Since ¥ is closed, ¥V = ({Wo Vo W: Wisa symmetric
member of %}. By the compactness of X, the sets of the form Wo Vo W, where Wis
a symmetric member of %, constitute a basis for the neighbourhood filter of ¥,
Then, since f ™o Vo Jfis open ancz Vef-tebo J; there is a symmetric member W
of % such that We Ve Waf~'o Vo f, s0, in particular, fo Vo Wof~1c Veveu.
This shows that f is contractive. .

(iD= if). Since {u} = O/ X)21( 50f"(X)) = {fW}f@)=uLetxeX.

Since X is compact, the set L(x) of cluster points of { f"(x)}¥ is non-empty. Suppose
the existence of ve L(x) such that v s u. Then there is a positive integer n, such
that v ¢ f"(X) for all nzn,. Since /™(X) is closed, U] nf"(X) = & for some
Ued. On the other hand, since v & L(x), f'(x) € U[s] for an infinity of the indices n,
s0 we have a contradiction, proving that L(x) = {u}.

Suppose that { f(x)}¥ does not converge to u. Then, since X is compact, some
subsequence of { f"(x)}7 converges to some point w 5 . But then w e L(x), a con-
tradiction. Therefore f"(x) — u. Finally, let z be any fixed point of 7. We have
f'(#) = z for all n = 1, 2, ... But since /"(z) »u, z = u.
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On pormality and countable paracompactuess
by
G. M. Reed (Providence, R. L)

Abstract. The purpose of this paper is to present certain construction techniques developed
by the author in the study of the relationship between normality and countable paracompactness.
Based on these techniques, the following results are obtained: (1) (MA+7ICH) There exists
a countably paracompact, separable, non-normal Moore space. (2) (MA+"JCH) Theére exists
a countably paracompact, screenable, non-normal Moore space. (3) There exists a pseudo-normal,
separable Moore space which is not countably paracompact. (4) There exists a perfect, continuous
map from a screenable Moore space onto a non-screenable Moore space. (5) (V = L) Each normal,
first countable 7,-space in which each subset is an F,-set is o-discrete, These results were obtained
by the author in the period 197475, and all have been previously announced in the literature and
presented at various mathematical meetings (see [Ry], [R], [R;], [WFR], and [Ru,]).

Motivation. It was established in 1951 by Dowker [D] that in perfect spaces
(i.e. spaces in which closed sets are G-sets), normality implies countable paracom-
pactoess. The extreme usefullness of this result led quite naturally to the search
for (i) a Dowker space, a normal T,-space which is not countably paracompact,
and (ii) a countably paracompact, perfect, non-normal T;-space. In particular, the
relationships between normality, countable paracompactness, and pseudo-normality
in Moore spaces have been of considerable interest (Y], [Z], [P, [Rs], [T,], and [K],
for examples). Dowker spaces were finally constructed by M. E. Rudia in [Ru,].
More recently, Wage in [W,] developed an elegant construction technique which
produced an example of a countably paracompact, perfect, non-normal T;-space,
and, under (Ma+ 1CH), an example of a countably paracompact, non-normal
Moore space. Furthermore, in [F,], Fleissner showed that, under (CH), each coun-
countably paracompact, separable Moore space is metrizable. In this paper, the
author presents a basic construction technique that was derived from the considera-
tion of Wage's in [W,], but which is remarkable for its simplicity. Results (1)~(4)
above are based on this technique. Note that (1) together with Fleissner’s result
from [F,] establishes the consistency and independence w.r.t. ZFC of the existence
of a countably paracompact, separable, non-normal Moore space. Result (2) answers
a question often raised by F. D. Tall and contradicts an incorrect argument to the
contrary in [G]. Results (3) and (4) answer questions raised by Proctor in [P] and
Hodel in [Ho], respectively. Result (5) is based on Fleissner’s theorem from [F,]
that, under (V = L), each normal T,-space of character <c is collectionwise Haus-
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