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On saturated sets of Boolean rings
and Ulam’s problem on sets of measures

by

. Grzegorek (Wroctaw)

Abstract. Our Theorem 5 implies the following corollary: Let F be a family of o-fields on
the real line R such that for every 4 & F all one-element subsets of R belong to A4 and 4 # T(R).
Then any of the conditions (i) [F| < e, (i) [F| <29 and 29 = w,, (iii) ]F|<22"’ and Goédel's axiom
of constructibility, implies U F # T(R). Theorem 5 is a generalization of some results of Ulam,
Alaoglu-Erdds, Jensen, Prikry, and Taylor connected with Ulam’s problem on sets of measures.

A set F of Boolean subrings of a Boolean ring 4 is called weakly v-saturated
iff there is no set CeA—|J F such that [C| = v and elements of C are pairwise
disjoint. We prove the following lemma if |[Fl<vzo and 4 is (IF|* +w)-complete,
then F is weakly v-saturated iff the set {I(B): Be F} of ideals in 4, where

I(B) = {be B: V(ae A(acb — ac B)},

is weakly v-saturated. The lemma (and its generalizations) applied to some results
of Ulam, Alaoglu-Erdés, Prikry, and Taylor (see [2], [5], [7] and [4]) connected with
Ulam’s problem one sets of measures (see problem 81 of [3], or [9], or else the end
of the present paper) lead to a generalization and strengthening of those results.
The results of this paper were presented at the 6th Winter School on Abstract Analysis
at Spindleriiv Mlyn in Czechoslovakia in February 1978.

1. Notation and terminology. Throughout this paper, small Greak letters denote
ordinals, %, u always denoting infinite cardinals and A, v, § any (finite or infinite)
cardinals. By A* we denote the cardinal successor of A. |S| denotes the cardinality
of the set S and #(S) the power set of S, and we write

ISP = {X<s: |X| =8}, [S1% = {X=S: |X[>3}, and
[S1<° = {X=S: [X[<8}.
For Boolean rings we will use the same terminology and notation as for rings of
sets. The least element of 4 is denoted by 0. A Boolean ring B will be called p-com-
plete iff for every X=B with | X|<pu the Boolean join of X exists (in our notation
U X exists). In this paper 4 will always denote a fixed Boolean ring.
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If B is 2 Boolean subring of 4 (shortly, a subring of 4), then we put

I(B) = {beB: Y(ac A)(acb — aeB)}, B'=A4-B,

and

B(@) ={ced:anceB} forevery acd.

Note that 7(B) is an ideal in 4, B(d) is a subring of 4, and if, in addition, B is
an ideal in 4, then B(a) is an ideal.

F will always denote a mon-empty set of subrings of A.

For every F we put

IF)={I(B): BeF}, F*=A-UF, and F(a) = {B(a): Be F)

for every ae A.

Instead of (I(B))* and (I(F))* we will write I*(B) and I'*(F), respectively.
Since I(F(a)) = (I{F))(@), we can write I(F)(a).

For the case where F is a family of ideals in A4 = 2 (%) the above definitions
were introduced by Taylor in [7].

If 7is an ideal in 4 contained in () I(F), then F will be called v-saturated with
respect to I (shortly, v-saturated w.r.1. I) iff for every collection {x,: a<vicF*t
there exists a set {a, f} € [v]* such that x, N xg ¢ L

We will say that F is v-saturated (weakly v-saturated) iff F is v-saturated w.r.t.
I = I(F)(I = {0} respectively).

For the case where F consists only of ideals in 4 = 2(x), the definition of
v-saturatedness of F was given by Taylor in [7].

It is easy to see that if I is (v-+w)-complete, F is v-saturated w.r.t. I iff Fis
weakly v-saturated.

Other definitions will be given at the beginning of Section 3.

2. Lemmas on saturated sets of Boolean rings. Let F be a set of subrings of
a Boolean ring 4 and let I be an ideal in 4 such that T () I(F). It is evident that if F
1s not v-saturated w.r.t. 7, then I(F) is not v-saturated w.r.t. I either. Observe
that if [F| = 1, then F is not v-saturated w.r.t. I iff I(F) is not v-saturated
w.r.t. I Our Lemmas 1 (iii) 1(iv), and 2 generalize this observation to the case
[F|<v (mainly when v>w). In Section 3 we will nead only Lemma 2(ii).

Lemma 1. Let 4 be a (A* + w)-complete Boolean ring, and let F be a set of sub-
rings of A such that |F|<A. Then:

@) If QI (F) satisfies |Ql = A>w and elements of Q are pairwise disjoint,
then there exists an ae F* such that ac=) Q.

(i) Assume A<w and let Q =I*(F) be such that |0]2+(A2 +34—2) and elements

of Q are pairwise disjoint. Then there exist a Q' =Q with |Q'| = A and an ac F*
with ac|) Q.

(i) dssume w<vzA If I(F) is not weakly v-saturated, then F is not weakly
v-saturated.
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(iv) dssume A<ow and S<w. If I(F) is not (§(A*+3A—2)+§- A)-saturated,
then F is not (5-A+1)-saturated.

Proof of (i). Let {Q,: a<A} be a pairwise disjoint family contained in [o1*
and let {B,: o<1} be an enumeration of F (we repeat elements of F if necessary).
By hypothesis we have in particular Q,=T%(B,) for every a<Al.

For every g e O, (a<4) choose one element rcg, re By and denote by R, the
family formed by the chosen elements r.

It is easy to see that in order to finish the proof of (i) it is enough to define a se-
quence {s,: a<} such that s, € R, for every a<A and | {s,: a<i} e F*, It is also
easy to see that, for every a</, |R,| = A, R,= B} and the elements of R, are pairwise
digjoint;

URNUR; =0
Now we define auxiliary partial functions f and g.

For every o< 4, every b € 4 suchthat b= U {R,: f<a}, and every Se [RI72,
choose one b’ € S such that b U ¥ e B} and denote this &' by f(«, b, S).

Observe that f (o, b, S) exists. Indeed, otherwise there would exist <l and
be 4 such that b= {) | {R,: f<a}, and there would exist by, b, € R, with by # by,
bub,eB, and bub, e B,. Since by, b,, b are pairwise disjoint, we would
have b; = (b L b,)—(b U by) and hence b, € B,, which contradicts b, € R,cBy.

Fix a<l and be A. If there exists a sequence {ry: a<f<A} such that

(*) rpe Ry and bu U {r: a<f<l}eB,,

for every o, f<1 with o # f.

for every a<f<i

then choose such a sequence and denote it by {rg(a, b): a<f<i} (we put, by
definition, ry(w, b) = ry for every a<f<A). Now for every (e, b, ) such that
a<i, be 4 and a<f<A we define g(x, b, f) as either a onc-element subset of R,
or the empty set as follows. Let («, b, B) be as above. If, for «, b there exists a sequence
{rg: a<B<2} with the property (+), then we put g{u, b, B) = {ry(e, b}, re(e, &)
being defined previously in (x). If for e, b there is no sequence with property (%),
then we put g(x, b, f) = @. Now we define by transfinite induction a sequence
{s,: a<A} such that, for every a<4, §,€ R, and
) s =1 U {sp: B<a}, Re—U {g (B, U {s,: y<B}, 0): B<a}).
Put a = ) {s,: a<4}. It is clear that, in order to finish the proof of (i), it is enough
to prove ae F*. Suppose a¢ F*. Then there exists an ay<1 such that ae B,,.
We have also a = ) {s5;: B<op} U U {841 ap<f<A}. Hence, by the definition
of g applied for b = {J {s;: f<ao} and « = &y, we have ce B,,, where

¢ ={sp: <o} vU U {90, U {82 y<00}, B to<B<}.
By (x+) and by the definition of f, we have

spe Ry—U {g(@, U {s,: y<a}, B): a<p} for every f<i.

Hence

55890, U {sy: y<0}, By for every f>a.
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Since also g (v, U {s;: y<ao, f) is a one-element subset of R, for every f>q,
and elements of R are pairwise disjoint for every f< 4, we have anc= U {s;: f<ao}.
Hence |) {sp: f<<0o} € B,,, because a, ce B,,. But by (xx), U {s;: f<oo} € B,
and hence we have a contradiction.

Proof of (ii). Let Qy, Oy, ..., 81—, be a pairwise disjoint family of subsects
of Q such that [Qo] =1, |Qy] =3, |0y =4, ..., |Qs3] = A and |Q,_4| = A+1
(by hypothesis such a family exists). The rest of the proof is similar to that of (i).
We put Q' = {ge Q: Fa<(s,=q).

Proof of (iii). Since v-A = v, (iii) easily follows from (i) and (ii).

Proof of (iv). (iv) easily follows from (ii).

Lemma 2. Let A be a (A* +w)-complete Boolean ring, let F be a set of subrings
of A such that |F\< A and let I be an ideal in 4 such that I< () I(F). Then:

() Assume w<vzl and I A*~complete. If I(F) is not v-satrated w.r.t. I,
then F is not v-saturated w.r.t. I,

(i) Assume w<v2d, I (A+w)-complete and for every aeI*(F), I(F)(a) not
v-saturated w.r.t. I. Then F(a) is not v-saturated w.r.t. I for any ae I'*(F).

Proof of (§). Since I(F) is not v-saturated w.r.t. , there exists a set QI ™*(F)
such that [Q] = v and p n qe [ for every p, g e O with p # g. Let {Q,: a<v} be
a pairwise disjoint family contained in (@) such that |Q,| = A- for every a<A.
By the (A+w)-completeness of I and by I= () I(F), for every a<v there exists
a Q,<I"(F) such that the elements of Qj, are pairwise disjoint and for every p & O,
there exists exactly one g & Q, such that pcg. Now we distinguish two cases: A<w
and Azw.

Case A<w. By Lemma 1 (if) for each a<v there exists a Q' = Q. such that
102 <w and there exists an a, e F* with a,<=|) Q.. Consider the set {a,: a<v}.
Since each 4, is contained in a finite union of elements of Q, we have a, N agel
for every «, f<v with « # B. The existence of the set {a,: a<v} with the above
properties proves that F is not v-saturated w.r.t. 1.

Case A>w. Here we apply Lemma 1 (i) and the A*-completeness of 7. The
proof is similar to the proof of the case A<w and we omit the details.

Proof of (ii). Let ae I'*(F). By hypothesis there exists a family Qc(I(F)(@)*
such that |Q| = v and p n ge I for every P, g€ Q with p 5 ¢q. Choose one such
family @, which satisfies additionally g=a for every ge 0. We have in particular
QcI*(F). By hypothesis, for every g € 0, I (F)(q) is not v-saturated w.r.t. I. Hence
by Lemmas 1 (i) and 1 (ii) applied to F(q) (recall that Iis (A-+ w)-complete) it is easy
to see that for every ge Q there exists a p e (F(g))*. For every ge Q choose one
such p and denote it by p(g). Put 0, = {g A p(g): qe 0}. Evidently g n p(q)
& (F(q))* for every g & Q. Hence, because g = a for every g € Q, we have 0, =(F(a@)*.
Evidently (¢ 0 p()) n (g 0 p(@))el for every g, ¢'e Q such that g # q'. The

existence of the family @, with the above properties proves that F(a) is not v-satu-
rated.
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Remark. It can easily be checked that in all the above definitions and lemmas
instead of subrings of the Boolean ring 4 we can consider substructures of 4 closed
only under subtraction and finite intersections. Lemmas 1 and 2 so generalized
remain true with the same proofs.

3. Applications. In this section we apply our lemmas to some new results of
Taylor’s and an old one of Ulam’s in order to obtain generalizations and strength-
enings of them.

Consider 4 = 2 (x) as the complete Boolean algebra with the usual operations.
Instead of saying that B is a subring of 2(x) we will say that B is a ring on x.
A subset B of 2 (x) will be called non-trivial iff [%]““ = B and B # 2 (x). The follow-
ing two definitions are central for the considerations of this section.

If Q is a set of non-trivial rings on #, then the symbol

Q
u<%: /1, ﬂ> "
denotes the following assertion.
If F< Q, |F|< Aand 7(B)is p-complete for every B € F, then Fis not v-saturated.

If Q is a set of non-trivial rings on % and 7 is an ideal on x (we do not exclude

I = {@}), then the symbol
Q
RCHYORECN b

denotes the following assertion.

If Fe Q, |FI<A, Ic) I(F) and I(B) is u-complete for every Be F, then F is
not v-saturated w.r.t. I.

o

For the case where Q is a set of non-trivial ideals on % the notation {x%: A, u) — v
was introduced by Taylor in [7] (he required also [%]“*<B for every Be Q but
for our purpose we do not need that). If Q is the set of all non-trivial ideals on %,

[} e

then instead of (x: 1, p> — v and (x: A, pd — v, I> we will write {x: 4, ud> — v
and {x: A, py — (v, I, respectively (i.e. we suppress the superscript Q). For
a fixed cardinal » by R we denote the family of all non-trivial rings on » (in paper [7]
by Taylor, R has a different meaning).

‘We have the following theorem:

THEOREM 3. Assume A<vZ .

a) If Iis a (A+w)-complete ideal on x, then

R
Get dy = v, I
a) If A<p, then
R
Ges Aoy —v i Kwi Aoy —v.

Proof of a). The “only if* part is trivial. We only prove “if”. Let I be a (A+w)-~
complete ideal on x and let F be a family of non-trivial u-complete rings on » such
that I< () F, |F|<A. We have to prove that F is not v-saturated w.r.t. I. For every

i e dowdy v, DD
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ae I (F), I(F)(a) is a family of non-trivial u-complete ideals on %, I< ) I(F)(a)
and |[I(F)(a)| <A. By hypothesis J(F)(a) is not v-saturated w.r.t. I for any a & I'*(F).
By Lemma 2 (i), (@) is not v-saturated w.r.t. 7 for any ael *(F) and hence in
particular F is not v-saturated w.r.t. I, since xe7 *(F) and F(x) = F.

Proof of a’). Since “only if” is trivial, we only prove “if”. Let F be a family
of non-trivial p-complete rings on x such that [F|<1. We have to prove that F is
not vy-saturated. By assumption, I(F){a) is not v-saturated w.r.t. () I(F)(a) for
any a*(F). Put I = (YI(F). Since ( I(F)(a) = I(a) for every aeI*(F), it is
easy to sec that I(F)(a) is not v-saturated w.r.t. I for any a eI (F). Hence, by
Lemma 2 (i), F(a) is not v-saturated w.r.t. I for any a € I'* (F). Therefore F is not
y-saturated w.r.t. I since % e I'*(F) and F(x) = F. So F is not y-saturated. Note
that the most interesting part of a’), when Azw, also follows directly from a).

With the help of Theorem 3 we will generalize the following result of Taylor
(Theorem 2.2. and Theorem 4.4 of [7]). (We formulate it in a little more general
form, which easily follows from the original one.)

THEOREM 4 (Taylor). a) Assume v2At 4+, u2 At +o, A<n and I is a (0" + w)-
complete ideal on x. Then we have

Cedywp — v, Iy iff Gl py — v, 1.

b) {0, 0> — @y iff {o;:1, 0> = {0y, [0,]5°) .

Instead of Theorem 4 a) Taylor has formulated only (%: A, A7) ~» A" iff
@e:1, A7) — A" for every A< (in fact Taylor has assummed also Azw but his
proof also works for A< w). His proof gives even (x:4, ) — A% ift (1, @) — A+
for every A<x and p= A% +w. Now we show how a) follows from the above men-
tioned result. Let F = {B,: a<A} be a family of ideals on » which we have to con-
sider to prove “if” (the only non-trivial part of a)). By the above mentioned generalized
version of Taylor’s result there exists in particular a pairwise disjoint family {X,: «< 1}
such that X, e By for every a<l. Let {X#: f<v}=2(X,) be a family such that
X8 XE e I'for every B, B'<v with B # . Put ¥, = ) {X%: a<v}. The existence
of the family {¥,: f<v}, as can easily be seen, proves “if” part of a).

Recall that Theorem 4 of Taylor is a strengthening and a generalization of some
results of Ulam, Alaoglu-Erdds (see [2]), Jensen (see [1]), Prikry (sce [5]) and the
present author (see [4]). An exhaustive explanation of the relations between the above
mentioned results and Theorem 4 can be found in Taylor’s paper [7].

By Theorem 4 and Theorem 3 we immediately obtain the following generaliz-
ation and strengthening of Theorem 4.

THEOREM 5. a) Assume that 1 is a (A +w)-complete ideal on » and vzt + o,
p=it+o, A<x. Then

(%:A,u)i(v,D iff Gel,uy— I

R .
b) <C012 Wy, Wy — 0y iff {wy:il, 6()1> — {w,, [wl]‘:w‘) )
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Remark that if in Theorem 5b) we replace R by Ryc R, where R, is a collec-
tion of all fields on « satisfying a certain natural chain conditions, then the particular
case of Theorem 5b) thus obtained becomes a well known result of Taylor, which
follows directly from Theorem 4 (see Corollary 4.13 of Taylor’s paper [7]).

If in Theorem 5a) we put 4 = w and replace R by R, < R, where R, is the family
of all ¢-fields on % on which it is possible to define non-trivial real-valued measures,
then the particular case of Theorem 5a) thus obtained can be greatly strengthen (see
Prikry’s paper [5] and paper [4] by present author).

Remark. For a given » define

Ry = {AcP(x): 4 is non-trivial and V(ae AV (b € 4)
(@nbed and a—-bed}.

Then R= Ry and Theorems 3 and 5 remain true if we replace R by R, (cf. the Remark
at the end of Section 2).

To see for which %, 4, u and v Theorem 5 works, recall the following well-known
facts. Ulam in [8] has proved that

i, x>y —xt and (2% 1,xY> o0

hold for every . It is easy to see that the first of the above mentioned results of
Ulam implies that {x:1, 1y — p holds for every % which is less than the first weakly
inaccessible cardinal and for every w,<p<x. Also <{x:1, w;> — w holds for
every » which is less than the first strongly inaccessible cardinal (see [8]). By well-
known results of Tarski and Solovay the relations hold if  is even larger. It is also
well known that Gédel’s axiom of constructibility (V = L) implies the transversals
hypothesis (TH) and TH implies (2¢*: 1, 2%> — Qe , [ *15*" (see [5] and [6]).
Recall that V = L implies GCH. An exhaustive discussion and exact references
for V=L, TH and other related axioms can be found in [5], [6] and [7].

The above facts and Theorem 5 imply in particular the following

R R
COROLLARY 6. a) {2%: A, x> — @ for every A< and every x; {u: A, 0> — @
for every A<w and every % which is less than the first strongly innaccessible cardinal;

R R
b) oo, wtY — u™ for every w; (e A, p> — p for every x which is less than
the first weakly inaccessible cardinal, every L<x and every u=A*+o,;

R
©) {xtiw,u™>—utt if we assume V = L or merely TH for x*;
r
{w;: 0y, 0> — w, if we assume V = L or merely TH for w;.

Observe that if we omit the letter R in Corollary 6 then the particular case of
Corollary 6 thus obtained becomes a well-known result. It is in fact a theorem of
Taylor (parts b) and c)), and of Ulam (part a)). For details see the comments after
Theorem 4.
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At the end of our paper we would like to recall (in our terminology) the problem
of Ulam stated in [3] as Problem 81. It is the following question: Does
{wy: 01, ®;) — 2 hold ? The authors of [3] say that they do not know what happens

M
if we consider a stronger relation, e.g. (@, wy, ;) — 2, where M is the family of
all non-trivial @,-complete fields on @, on which it is possible to define a non-

M
trivial real-valued measure (cf. [8]). Prikry has proved that even {w;: 0y, ;> — @y,
assuming the transversal hypothesis for w,. Taylor has strengthened Prikry’s result

to the form <{wy: @y, Wy — ©,, assuming only <w;: 1, w)— (@, [0, 1575,
R

In the present paper we generalize Taylor’s result to the form {w;: wy, > — o,

under the same assumption as in Taylor’s result (see Theorem 5 and the comments

after it), By Theorem 3, without any additional assumption on ZFC, we have in
particular:

M R
{wy: g, 0> — oy iff {1t @y, 03) — @y it {oy: 01, 01D = @y,
and
M . R
2% w,0y—2 if Q%oe,0)>—2 if Q%e,0)—2,

where M is a family of all non-trivial @,~-complete fields on w, (and 2°, respectively)
on which i* is possible to define a non-trivial real-valued measure (observe that

Q% w0y —2 T Q% e,0)— ).

The above two statements together with Corollary 6¢) are a contribution to
the comments of the authors of [3] on the problem of Ulam concerning sets of
measures.

The following question seems to be open in ZFC:

R
Does {w;: 0y, @) —2 imply {o,: @, w;) —2?
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