Projective limits of perfect measure spaces *

by

Kazimierz Musial (Wroctaw)

Absiract. Necessary and sufficient conditions for the existence and perfectness of projective
limits of perfect measure spaces are given.

1. Introduction. Projective systems of measure spaces form a matural general-
ization of product measures. The idea of a projective system of measure spaces was
first introduced by Bochner ([1], pp. 118-119), who proved the existence of the
projective limit measure space when the spaces were topological and Hausdorff
and the measures were approximated by compact sets. Since then projective systems
of measure spaces have been the subject of a number of studies (see, e.g. Choksi [3],
Metivier [13], Mallory and Sion [10], Mallory [8] and [9], Pachl [18], Parthasarathy
[19]). Mainly, projective systems of compact measure spaces (see Marczewski [12])
were considered. Also Scheffer [22] and Topswe [24] investigated projective limits
of measure spaces; however, their results and methods seem to be very different
from ours. Dinculeanu [4] proved a sufficient condition for the existence of pro-
jective limits in terms of the existence and some regularity properties of conditional
probabilities (see also Choksi [3], Theorem 4.1).

In our paper we get necessary and sufficient conditions for the existence and
perfectness of projective limits of perfect measure spaces.

Since, as is now known (Mahkamov and Vinokurov [7]), there are perfect
but non-compact measures, the theorems we obtain can be applied to a wider class
of projective systems than those previously known. However, using our method in
the case of an arbitrary projective system of compact measure spaces, wWe can prove
the perfectness of the projective limit measure only.

In confradiction to the approach of other authors, all the presented conditions
guaranteeing the existence and perfectness of projective limits are purely measure-
theoretic; we do not use either topological properties of measures or any approxi-
mating families of sets.

In Section 4 we find necessary and sufficient conditions for the existence and

* This is a part of the authors investigations for the doctoral thesis written under the super-
vision of Professor C. Ryli-Nardzewski in 1971. The results were announced in [15] and [17].
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perfectness of a projective system (X}, €;, u;, Sij» I) of (perfect) measure spaces
provided that all systems (X;, %;, u;, f;;, J) with a countable J<7 have (perfect)
limits. We introduce a new notion of the sequential maximality condition of a system,
which is weaker from that introduced by Bochner [1], and does not yield the surjec-
tivity of the mappings f;;. We introduce also a few new conditions of this type, which
play an important part in our theory.

Section 5 is devoted to the investigations of projective systems of separable
measure spaces. We find a necessary and sufficient condition for the existence and
perfectness of the limit of an arbitrary system of separable perfect measure spaces.
In particular we prove that each sequentially maximal projective system of separable
perfect measure spaces has perfect limit. All previously obtained theorems required
different special properties of inner approximating families of sets (cf. Choksi [3],
Theorem 3.1, Mallory [8], Theorem 2.4, Metivier [13], Theorem 3.2). Mallory and
Sion ([10], Theorem 2.5) proved only the existence of the limit.

In Sections 6 and 7 we examine projective systems of countably generated
perfect measure spaces (see Definition 2.2). We show that a projective system of
countably generated measure spaces has the perfect limit if and only if it satisfies
an atomic sequential almost maximality condition (see Definition 4.7).

In Section 8 we apply the results of Section 7 to the case of arbitrary projective
systems of perfect measure spaces.

Finally, let us observe that Musial [15] and Millington and Sion [14] considered
projective systems of group-valued measures also.

2. Preliminaries. Throughout this paper we use the standard set-theoretical
notations and terminology. However, by a countable set we always mean an infinite
set of cardinality ,, and by a sequence — a countable one. Moreover, if X is a set
and A= X, then we write 4° for X\ and 4* for 4. If #<2¥ (all subsets of X)
then the set {Z N F: Fe #} is denoted by Z ~ &. If Y is a set and f: X— Yis
a function then f(X) = {f(x): xe X} :

If o/ is a o-algebra of subsets of a set X, then (X, #f) is said to be a measurable
space. By a measure on a o-algebra o/ we mean any countably additive set func-
tion p: & — [0, oo0] which is o-finite. However in all the proofs we assume —
for the simplicity — that u(X) = 1. By a measure space we mean a triple (X, o, y)
consisting of a measurable space (X, of) and a measure x defined on .

If (X, o, 1) is a measure space, then by py and p* we denote the inner and outer
measures on X, respectively, induced by p. If # is a sub-s-algebra of o and Z <X,

then p|# is the restriction of 4 to B and u|Z is the restriction of u to Z
(e mZnd)=p"Znd)forde &f). Z< X is thick if and only if p(X\Z) = 0.

Two measurable spaces (X, o#) and (Y, #) are said to be o-isomorphic if and
only if there exists a Boolean o-isomorphism h: &f — % such that h(sf) = &.

Two measure spaces (X, o, p) and (¥, &, V) are o-isomorphic if and%only if

there is a Boolean g-isomorphism 4 of & onto # such that (4 = v[h(4)] for
every Aeof.
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By o(#F) we denote the smallest o-algebra of subsets of X containing the
family F<2* (6(%) is said to be gencrated by F).

If o is a o-algebra, then Ee &/ is an & -atom provided 4 e o and AcE
together imply 4 = & or 4 = E. The family of all &7 -atoms is denoted by at(d?.

If (X, #) and (Y, %) are measurable spaces, then a function f* X — Y is
(4, B)-measurable provided f~Y(B)<= . ‘

The letter R is reserved for the real line with the natural topology. If Yisa subs?t
of R, then by %y we denote the o-algebra of relatively Borel sets. The letter 4 is
reserved for the Lebesgue measure (on R or on an interval).

The Cartesian product [] X; of a family of sets is denoted by XL (X, %)),

iel

ie I, are measurable spaces, then by J] %, we mean the smallest algebra of sub-
iel
sets of X7 containing all the sets of the form 4; x 1;[ X;, with 4; € %;, and by & the
i#j
o-algebra generated by this algebra, i.e. ¥' = o([[ %) ¥ I'= {if, ...

iel

, i,}, then

we use also the notation =™, .

If @ % J<I, then p” denotes the canonical projection of X” onto X 7. In parti-
oular, if J = {iy, ..., i,}, then we write p'~™.

DERINITION 2.1. A measurable space (X, o) (or a o-algebra &) is countably
generated if there exists an at most countable family of sets such that « is generated
by this family. If o is countably generated and contains all points of X, then (X, 2/}
and &/ are said to be separable. ) '

(X, o) and of are quasi-countably generated (quasi-separable) if there exists
a countably generated (separable) s-algebra #cof with the same atoms as /.
Such a 4 is called a basis of A.

DEFINITION 2.2. A measure space (X, s/, u) and p are countably generated
(separable) (*) if there exist a p-null set N e o and a countably generated (s.eparable)
basis & of o n N° such that o n N° is contained in the u|# completion of 4.

The following result is essential for our purposes:

ProroSITION 2.1. Let (X, o) and (Y, %) be two measurable spaces and let
f: X Y be an (, B)-measurable function. Then the graph

G={x)eXxY: f(x) =y}

belongs to o (sf x %) if and only if there exists a countably generated o-algebra 9<%
containing all the points of f(X).

Proof. Suppose G & (< x ). Then there exists an at most countable number
of rectangles 4, x B;, 4, € o, B, € ®, such that G belongs to the o-algebra generated
by them.

Let @ be the o-algebra generated by By, i = 1,2, ... and let % be generated

() Almost separable in the terminology of C. Ryll-Nardzewski [22].
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by f~4D) and 4;, i = 1,2, ... Clearly, ¥ and @ are countably generated and f is
(%, @)-measurable.

Let (x, ) be a point of G and let ¢; € at(%) and e, € at(P) be the atoms con-
taining x and y, respectively.

Being (¥, 9)-measurable, f is constant on e, so that

erx {3} =(erx{¥)nG=(e;xe)) nGeo(¥xD).

Since. e, X ¢, is an atom of (% x 9), we have ¢, = {y} and since (x,))e G
was arbitrary, & contains all points of f(X).

To prove the converse part of the theorem, suppose that there cxists a countably
generated ¢-algebra P containing all points of f(X).

Let {D;} be a sequence generating & and let

n
2,={NDs=00r1}, n=1,..
i=1
It is not difficult to see that

G = F) U Y D)xDeo(f HD)xD)co(sf xB).

n=1DeP,

This completes the proof of the theorem.

As simple conclusions we obtain the following:

CorOLLARY 2.1. If (X, &) and (Y, B) are measurable spaces with a quasi-separ-
able B, then for every (sf , B)-measurable map f: X — Y the graph of [ is an element
of o(f xB).

COROLLARY 2.2. Let o be a o-algebra on a set X. The diagonal of X % X belongs
to o(f x ) if and only if o4 is quasi-separable.

Dermvirion 2.3. A family of sets (X));.; 18 a projective system relative to maps f;,
iel, jel (we use the notation (X;,f;;, ) for such a system) if

(i) Iis a directed set (the ordering relation is denoted by <; if i<jand i 5 j,
then we write i<j);

(i) fi;: X;— X, are defined for each i and j from I such that i<j;

(i) fi = fij o f whenever i<j<k, and f;; is the identity map.

The set X; = {{x;};e1 € X": fi;(x;) = x, whenever i<j} is the projective limit
of (X3, fi;, I). We write also X, = limX.

Dermnvirion 2.4, A family (X;, €);.; of measurable spaces is a projective
system relative to maps f;;, ie I, je I (we use the notation (X;, %;,f;;, I) for such
a system or (X,, €y fums1, N) if I=N={1,2,..)if

@ (X, fy;, I) is a projective system;

(ii) fy; are (¥;, ¥;)-measurable.
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If %, is the smallest o-algebra of subsets of X; relative to which the canonical

projections  fi: Xr— X, given by f({x};en) =x; are (%, €;)-measurable

(i.e. % = a(U FTH@Y), then (Xy, €) is called the projective limit of (X;, €, fiz, 1)-
iel

DerNITION 2.5. A family of measure spaces (X;, 4;, u), L€ L, is a projective
system relative to (fy;,jer (We use the notation (X;, ;, u;,f3;, 1)) if

@) (X, %, fyj, D) is a projective system;

(i) 1yf7; C) = u(C) for every i<jand Ce¥,.

The system is convergent if there is a measure gy defined on (X7, %)) such that
wfTHE) = w(C) for every iel and Ce %,

X1, @y, ) 18 called the projective Limit of (X;, 6, pr, fiy> D

The system (X;, €y, > Sy, ) 18 said to be sequentially convergent if for every
sequence J = {1}, i;<i;<... the system (X, %y, 1, Sy, J) i convergent.

All the systems that are used in this paper are projective, so that, in order to
simplify the notation, we shall use the word “system” instead of “projective system”.
Systems of measurable spaces will be called measurable systems, and systems of
measure Spaces — Measure Systems.

For a system (Xj, f;;, 1) and a directed subset J=I (J will always be directed
by the same relation of order as I) we write X, for the projective limit of the system.
Moreover, if systems (X, €y, fy;, ) and (X3, €5, i, fiz» 1) are under consideration,
then the symbols ¢; and g, have the obvious meaning as well.

If J and K are directed subsets of T and J< K, then by f;x we mean the canonical
projection of Xy into X; given by fox({*i}ier) = {%:}1es. For K = I we write f;
instead of fy;. It is easily seen that we always have fy = fig o fy Whenever JcX.
Observe also that fy = p*| Xy, If J = {ig, s bn}s iy <iy<...<i,, then we use the
notation Xix...in’ rgix...in and Hig i

The following two theorems contain a few basic facts about the projective

systems which are used in this paper.
ProPOSITION 2.2, Let (X;, %y, fy, I) be a measurable system. Then:
@) o( U U@) = (p")"™&") Xy for every @ # JT;
ied

i) ;= 6" n Xp;
(iii) if J is a non-empty directed subset of I, then

a( (Ulf(l(%)) = f7%5;

(iv) if J< I is directed and cofinal with I, then the projection fy: Xy — X, is a one-
to-one surjection and the map C— f; (C) is a a-isomorphism of €y onto €.
Proof. (i) is an immediate consequence of the equality
FFUE) = (B 0 X;
for Ec¥,, iel
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(i) is a particular case of (i) for J = I,

(iii) follows from the equality f; = fi; o fy, 1€ L

(iv) It follows from (iii) that o( (U f,'i(%) = fyY(%,) and from the cofinality
ieJ

of J with I it follows that
G(iUJf?i(%)) =4y,

Thus, we have € = f; X(%.).

To prove that the map C—f; X(C) is a o-isomorphism of %, onto @, it is
enough to show that f; is a one-to-one projection of Xy onto X, and this can be
found in Bourbaki (2], I, § 1, 12. II).

ProroSITION 2.3. Let (X, €y, i, iy, 1) be a measure system. Then:

O If (Xi, Gy, pis Sy, 1) is comvergent, then for each non-empty directed set
Je1 the system (X;, €y, W, 15, J) is also convergent, and the equality py = i fy*
holds.

In particular, each convergent measure system is sequentially convergent.

(i) JfJ is cofinal with I, then (Xy, €y, py) exists iff (Xy, Gy, 1) does. Moreover,
the map C— f7*(C) is a o-isomorphism of (Xy, €y, 1y) onto (Xy, Gy, ty).

Proof. (i) is a direct consequence of Proposition 2.2 (iii). (ii) follows casily
from (i) and Proposition 2.2 (iv). i

Our further considerations concerning the convergence of measure systems
are based on the following simple observation:

PROPOSITIf)N 24. Let (X;, %, mi» 11y 1) be a system of probability spaces.
Then there exists a unique finitely additive set function fi, on T| %, such that
ial

ﬁo[(PJ)dl(E)] = p;(En X;)

Sor every non-empty finite directed set J<I and every Ee @ .

Proof. It is enough to verify that i, given by the above formula is propetly
fieﬁned. But this is an obvious consequence of the equality p; = uy fyx', where Je K
is an arbitrary directed subset of I (see Proposition 2.3 (i) with I = K). The uni-
quene:?s of [y is a consequence of the uniqueness of u,’s.

Since for each system (X}, f;, I) the set X is a subset of X7, in order to establish
the convergence of a probability system (X;, ;, u,, Sy» ) we shall try first to guaran-
tee the countable additivity of fi, on the product algebra 1 %, and then, using

ial

its unique extension i to (X, ¥"), we shall examine the restriction of fi to X,
) I.t follows fro.n.J the properties of fi, and Proposition 2.2 (i) that if such a restric-
tion is a probability measure then it coincides with g;.

As was observed by Mallory and Sion [10], if I is uncountable then X; need

not be an element of %’. This explains many of the difficultics encountered by
measure systems.
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ProposITION 2.5 [10]. If I is uncountable and X; contains at least two points for
uncountably many i€ 1, then Xy ¢ %",

Proof. Clearly, it is enough to prove that X; ¢ %" if card X;>2 for each ie L.

But in such a case we have X;; # X" for all pairs (7, f) with the property i<j,
so that X; depends on uncountably many iel

Since cach element of @ is of the form (p*)~*(E) where Ee %’ and J is at most
countable, the set X; does not belong to %

3. Perfect measures. We recall in this section a few more or less known facts
about perfect measures. More information can be found in [217 and [20].

DemNITION 3.1 (Gnedenko and Kolmogorov [5]). A measure space (X, o,
(or a measure ) is perfect if and only if for each (o, #g)-measurable function
f: X— R there is a set Bedy, such that Bef(X) and p[XNfH(B)] = 0.

It is easily seen that if g and v are measures on (X, &) and u is absolutely con-
tinuous with respect to v (u<v), then p is perfect if v is such. Moreover, if (X, o,
is perfect, Ye o and & is a sub-g-algebra of &, then (Y, Yo o/, p|Y) and
(X, %, 1|®) are perfect. It is also known that each measure on %y is regular, hence
also perfect.

ProrostTioN 3.1 (Ryll-Nardzewski [21]). (X, , 1) is perfect if and only
if for each countably generated o-algebra Bl the measure p|# is perfect.

PropoOSITION 3.2. Let (X, sf) be a quasi-countably generated (quasi-separable)
measurable space. If u is a perfect measure on (X, ), then p is countably generated
(separable).

Proof. Let {E,}csf be a sequence of sets separating the s/-atoms (points}
and let & be the Marczewski function of {E,} [11]:

h(x) = 2"21 (13 e, -

If & = oc({E,}), then h is a one-to-one (#, By)-measurable function.

Take an arbitrary E e of. Then, since p|E and pu| X\E are perfect, there are
sets B, Ce By, Boh(E) and C<h(X\E) such that

p(ENEA(B)) = HIENENEHON
It follows that
B~ Y{B)c EcX\EH(C)
and
, ph(B) = plXNHO -

This proves that E belongs to the 14| -completion of # and 50 p is countably

generated (separable).

2 — Fundamenta Mathematicae CX/3
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TueoreM 3.1. Let (X, o, p) and (Y, B, v) be measure spaces and let g: ¥ — X
be a (B, &)-measurable map such that p(d) = vlg~(A)] whenever Ae . Then
the perfectness of v yields the perfectness of p and ulg(Y).

Proof. Let f: X — R be an (&, #g)-measurable function. Then fog: ¥— R
is (@, Bp)-measurable and the perfectness of v yields the existence of a set Be %y
such that B<f[g(¥)] and v[¥\g~ Y~ '(B)] = 0.

Hence u[X~f~Y(B)] = 0 and B<fg(Y)] = f(X).

This proves the perfectness of u.

The perfectness of u]g(¥) follows from the first part of the theorem if we put
X = g(Y).

As a corollary we get

ProposITION 3.3. If (X;, %, 13, /35, I) is a convergent measure system, J is
a non-empty directed subset of I and py is perfect, then yuy is perfect as well,

Proof. In virtue of Proposition 2.3 (i) u, does exist. Its perfectness is a conse-
quence of Theorem 3.1 with g = fj.

Lemma 3.1 (Sikorski [23]). Let (X, ) and (Y, B) be countably generated
measurable spaces. If h: of — & is a o-homomorphism of o onto B, then there exists
a (B, of)-measurable map g: Y — X such that h(4) = g~'(4) for every de .

Proof. If eeat(s?), then h(e) is an atom of & or it is the empty set.

It is easy to see that for each y € Y there is only one «-atom e(y) such that
yehle(»)]

Take for each eeat(«) a single point x,ce and then put g(y) = X, for
every ye Y.

g is a map of Yinto X and clearly h(A4) = g~1(4) for every Ae o.

TaEOREM 3.2. If (X, o, 1) and (Y, %, v) are c-isomorphic measure spaces,
then v is perfect if and only if p is perfect.

Proof. Let h: &/ —%# be a o-isomorphism of o/ onto # such that
v[A(A4)] = p(A) whenever 4 e o/. We shall prove, for instance, that the perfectness
of v yields the perfectness of p.

In view of Proposition 3.1 it is enough to show that y is perfect on each count~
ably generated o-algebra ¢ c .

Let 9 = h(%).

By Lemma 3.1, there exists a map g: ¥— X such that A(C) = g~*(C) for
all Ceé4.

Hence, p(A) = v[g~*(4)], whenever 4 € %, and in view of Theorem 3.1 the
measure u|% is perfect.

THEOREM 3.3. If (X, o, 1) is a perfect measure space, (Y, &) is a measurable
space and h: of — % is a o-homomorphism of s onto B, then a set function v: B — R,
given by vIh(A)] = p(A), for all A€ o, is a perfect measure if and only if for each
countably generated ¢-algebra 9 <ot there exists a set Ne D such that u(N) = 0
and the restriction of h to @ ~ N° is a ¢-isomorphism of @  N° onto h(D) n h(N®).

icm®
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Proof. Suppose that v is perfect and take a countably generated P =</, By
Lemma 3.1 there is a map g: ¥~ X such that h(D) = g~*(D) for each De 9.

Let f: X — R be such that f~1(Bp) = P. Since fe g: ¥ — R is (&, Br)-measur-
able, there exists a set Be %y, such that Bof[g(Y)] and v[Y\g~1f~1(B)] = 0.

Put N = X\f~Y(B). Clearly, p(N) = 0 and g~1f~*(x) # @, whenever x¢ B.
This yields A(D) = g~ (D) # @ for every De P n N° and so the restriction
of 1 to @ n N° is a o-isomorphism.

Conversely, take an arbitrary countably generated o-algebra ¥ =4 and a coun-
tably generated o-algebra @ <. such that 41(2) = .

Let Ne @ be such that u(N) = 0 and the restriction of # to @ n N°® is
a o-isomorphism of @ n N°® onto (2 n N°® = & n h(N®).

Since h(4) % O for each 4 € & with u(4)>0, v is a measure on 4.

Since (N°, N° N 9, 1|9 n N is perfect, it follows from Theorem 3.2 that
the restriction of v to A(V®) n & is perfect as well.

Since % was arbitrary, this proves (in view of Proposition 3.1) the perfec-
tness of v.

Remark 3.1. Observe that, in general, the perfectness of v does not yield the
existence of a set Ne .o such that u(N) = 0 and h(4) # & for every non-empty
set Ae N° n /. However, it is the case for countably generated sf.

Remark 3.2. If I'is a directed set and J is a countable directed subset of 7 which
is cofinal with I, then there is also an increasing sequence that is cofinal with 7.

If (X;, %> s Jiy» 1) is a measure system, then by Proposition 2.3 (ii) the measure
spaces (X, €y, 1) and (X;, €, ;) are o-isomorphic.

It is clear that countable additivity is preserved by o-isomorphisms. Moreover,
it has been proved in Theorem 3.2 that the perfectness of measure spaces is preserved
by o-isomorphisms.

In this paper we are interested in the existence and perfectness of projective limits
of measure systems and so, from our point of view, instead of measure systems with
countable cofinal directed index subsets we may consider only systems directed by
positive integers.

4. Convergence of sequentially comvergent measure systems. Throughout this
section we assume that I is a directed set and Z is the collection of all increasing
subsequences of It B = {{i,}%: {;<i;<.. and i,e[ for all n}.

We begin our considerations with two examples.

ExaMmpLE 4.1. Let I be the collection of all at most countable subsets of the
interval [0, 1], ordered by inclusion. Setting X; = [0, 1]\i, €; = By and fi;: X;— X,
to be the identity injection, we get a system of measurable spaces (Xj, %,
iel If A;, iel, is the restriction of A to the space (X;, %)), then (X, %;, uy; fips I)
is a system of perfect measure spaces.

Since X; = @, the limit measure space (X, %y, &) does not exist.

On the other hand, for every J = {i,} € E, the system (X;, %y, A;, fyy, J) has

o%
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o
a limit; as can easily be seen, it is equal to ([0, 1IN\ U 7, $x,» A %By,). It is obvious
n=1
that the measure 1|y, is perfect.

ExaMPLE 4.2. Let 4 be a subset of [0, 1] such that A,(4) = 0 and A*(4) = 1.
Moreover, let I be the collection of all at most countable subsets of the set [0, 1]\A
ordered by inclusion, X, = [0, 1IN, 4, = #y,, 4 = A%, and fj(x) = x, when-
ever x € X;.

In the same manner as in the first example, it follows that for every J = {i,} € &,
the system (X, %y, 4, fy,J) has a perfect limit (X, @x,AlX)) with

XJ = [0’ 1]\ U iu'
n=1

It is easy to see that (4, B4, A|4) = (X;, Gy, A;). However, it follows from the
properties of 4 that A[4 is not perfect.

The two systems (X;, %;, A;,fi;» I) which have been considered above have
the following common property:

for each J e E there exists a perfect measure space (X, €, ;). In the first
case (Xj, %y, jiy) does not exist and in the second one the limit exists but is not
perfect.

It is the aim of this section to give necessary and sufficient conditions for the
existence and perfectness of limits (X;, 4;, ;) provided that all measure spaces
(X;, %y, 1) with Je & exist.

Our first theorem gives a necessary and sufficient condition for the convergence
of an arbitrary sequentially convergent measure system.

THEOREM 4.1. For each sequentially convergent measure system (X;, €y, 1> fiy, 1)
the jollowing conditions are equivalent:

(i) the system is convergent to (X, €y, p);
(i) for each Je & the set fi(Xy) is thick in (X;, €y, 1)

_ Proof. (i—ii) If Je &, then, in virtue of Proposition 2.3 (i), we have
w(C) = p f1 HC) for every Ce%;.

If De¥, is disjoint with f,(X;) then clearly f;y*(D)= &, and hence we
have u,(D) = 0, which proves (ii).

(ii—i) First of all we shall prove that by setting uf; *(C) = p(C), for arbitrary
Ce¥,,iel, we get a well defined non-negative and finitely additive set function z on
the algebra |J f71(%).

iel

Indeed otherwise there would exist an i, and a Ce @, such that f;(C) = @
and 1, (C) # 0.

If J = {i,}nio€ &, then (X;,%,,, i )i=o s a system relative to the maps
Sininers B =0,1, ...

Since (X, €y, ;) exists, it follows that f};}(C) #@ and p, i (C)>0.

1t follows from the thickness of f3(Xy) that f;7;/(C) n f(Xp) # 0, and hence
Fk(C) # .

icm
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This contradiction shows that y is well defined on | f; 4%)).
iel

Clearly it is also non-negative and finitely additive.
To show that u = p; it is now enough to prove the o-additivity of u.

-]
Clearly it is sufficient to prove the ¢-additivity of u on each algebra U fi, 1(%,),
n=1

where J = {i,} € B, which in virtue of Proposition 2.2 (jii) gencrates f5 X(%,).
But f;(X)) is thick in (X, ;, py), and therefore, setting

BLATHD) = py(D)  for
we get a measure fi on fj X(%,). Since jf;, 1(C) = ufi. Y(C) whenever C€%,,, the

De%y,

restriction of 4 to the algebra |) £, %(%,,) coincides with p.
n=1

0
Thus, u is countably additive on (J i, '(%,,), and this completes the proof.
n=1

The next example shows that the assumption of the surjectivity of £;; does not
imply in general the existence of the projective limit of any sequentially convergent
measure system.

ExAMPLE 4.3. Let I be the collection of all finite subsets of a set T whose cardi-
nality is greater than the continuum. We assume that 7 is ordered by inclusion.

Moreover, let D; be the diagonal of the #-dimensional cube [0, 11hn=2,3,..
where card (i) = n.

Then, put

X; = {[0, 11\{(sy, > 8) € [0, 1T 5, = 5, for some p # q}} v D,,

where card (i) = n, €, = &y, and u; = A"| X, where A" is the n-dimensional Lebesgue
measure.

If f;;: X; — X, are the usual projections, then (X}, €;, y;, f;;, 1) forms a system
in which f;; are surjections. It is easy to see that it is a sequentially convergent system
(all y, being perfect measures) and fy(X;) = D,, which is a set of measure zero in X;
if card(i)>1.

1t follows not only that u; does not exist but also that it is impossible to define
a finitely additive set function g on |J f7 *(#,) such that uf; '(C) = p,(C) whenever

iel
Ce%,;.

ProeLeM 4.1. Ts every sequentially convergent system in which f;: X - X,
are surjections convergent?

DEFINITION 4.1. Let (X, %) be a measurable space. A subset of X is said to be
thick in (X, %) if it is thick with respect to each non-atomic measure on %
(e.g. A<[0, 1] is thick in ([0, 11, Byo,1;) if and only if [0, 1]\4 does not contain any
uncountable Borel set).

Using this notion, we can formulate the following condition ensuring at least
the existence of projective limits of non-atomic measure spaces.
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COROLLARY 4.1. Let (X;, €;, fyy, I) be a measurable system. If for every Je &
the set f,(Xy) is thick in (X,,%;), then each sequentially convergent system
(X;, €y, s fog» 1) with non-atomic p; has a (non-atomic) limit.

Now the question is: what changes should be made in the formulation of
Theorem 4.1, in order to guarantee the perfectness of (Xy, %y, i) in the case of
a sequentially convergent system of measure spaces? The next theorem gives an
answer to this question.

DepniTioN 4.2. Let (X;, %y, ti, fiy» I) be a sequentially convergent system,
If for each J e & the space (X, €, uy) is perfect, then we say that (X;, B;, u;, fiy, )
is a sequentially comvergent system with perfect limits.

" THEOREM 4.2. For ecach sequentially convergent system (X, €;, p;, fiy, I) with
perfect limits the following conditions are equivalent:
(i) there exists a perfect measure space (X, €y, ip);

(i) for each J € B, the set f}(X,) is thick in (Xy, b5, py) and the measure py| (X))
is perfect; .

(iii) for each Je E and each (quasi-) countably generated o-algebra 9<%,
there is a set Dy e @ with the following properties:

(@) u(X\Dyp) =0,
b) fH(X) ne# G for every D-atom e=C,.

Proof. (i—ii) It follows from Theorem 4.1 that f,(X;) is thick, and Theorem 3.2
and Proposition 4.1 imply the perfectness of u;|fi(X)).

(ii—iii) Take a Je& and a (quasi-) countably generated o-algebra 2c¥,.
Since the measure u; |9 n fi(X;) is perfect, there is — in virtue of Theorem 3.3 —
a set Ne 2, such that y(N) = 0 and e n f3(X,) 5 @ for every Z-atom e< X,\N.

Thus, it is sufficient to take Dy = X,\N.

(iii—i). It is easy to see that assuming (iii) we get the thickness of f,(X;), and
hence, in virtue of Theorem 4.1, there exists a space (X, 4;, py); we have only to
prove that it is perfect.

Clearly, it is enough to show the perfeciness of y; on every o-algebra f; (),
where 2<%, is countably generated and Je E.

If Je & and 9<%, is countably generated, then it follows from condition (b)
that the map

DnDy—fy(DnDy), De9,

is a o-isomorphism of D n @ onto f7 (@) n f5 1(Dy).
Thus, in view of Theorem 3.2, the restriction of g, to f; }(@ n D,) is perfect.
It follows that pyl f YD) is perfect as well.
This completes the proof of the theorem.
DerNiTION 4.3, A system (X;, £y, 1) ((X;, 4, fip, D) or (Xi, G, o fig, D) I
sequentially maximal (s.m.) if, for each sequence J = {i,}>, € & and each sequence
" {xupa=1€ X, there exists an x & X; such that fi,(x) = x,, n = 1,2, ...
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Observe that this notion of sequential maximality is weaker from that given
by Bochner [1], and, in geueral, it does not yield the surjectivity of the canonical
mappings f;; and f;.

If f;; are surjections, the two notions coincide.

It is clear that (X, f;;, I) is s.m. iff £,(X)) = X, for every Je Z.

DerNITION 4.4, If (X, fi;, I) is a system and J<7 is directed, then we say that
a family {4;: ieJ} of sets A;cX; is ascending (descending) if f'(4)=4,
(fi71(4)>4;) whenever i<].

DermviTioN 4.5 [14]. A system (X;, ;, w;, £, 1) is sequentially almost maximal
(s.a.m.) if for every ¢>0 and every J = {i,};=, € E, there exists a descending se-
quence of sets 4, €%, with the following properties:

@ w (X NA)<e, n=1,2, ..

(b) for each sequence {x,}q=; € X, such that x, e 4,, n = 1, 2, ..., there exists
a point x € X, such that f; (x) = x,, for all n.

An idea of the almost maximality condition becomes clear due to the following:

PROPOSITION 4.1, 4 sequentially convergent system (X;, €, pi, fij> D) is s.a.m. if
and only if for every Je E there exists a set De%@, such that Dcfy(X;) and
u(X\D) = 0.

Proof. Assume that the system is s.a.m. and take a Je &.

Then, for & = 1k, k = 1, 2, ..., there exist sets A € ¥, satisfying the assump-
tions of Definition 4.5.

Setting

)

D=0 N1,
k=1 n=1

we get the desired result.

Conversely, suppose that, for a given J € £, we have D € ; such that D <f;(X7)
and p,(X\D) = 0.

Then, for a given ¢>0 there is an ascending sequence of sets B, € €, such that

XNDe Ufii(B)
n=1
and

WL U fi @<

Setting 4, = X, \B,, n = 1, ..., we get the sequential almost maximality of the
system.
As direct consequences of Theorems 4.1 and 4.2 we get the following results:

THEOREM 4.3. Each sequentially convergent measure system (with perfect limits)
which is s.a.m. or s.m. is convergent (fo a perfect measure space).
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Remark 4.1, Since the system in Example 4.2 is not s.a.m., the sequential
almost maximality of a sequentially convergent measure system is not necessary for
the existence of projective limits.

COROLLARY 4.2. A sequentially convergent measure system (X, €y, py, fiy, D)
with one-to-one surjections fy; is convergent. If all uy, J&€E, are perfect; then pp is
perfect as well.

Proof. The assertion follows from Theorem 4.3 because (X;,fy, I) is s.m.

The example given below shows that in Corollary 4.2 the assumption that the
system is sequentially convergent is essential.

ExaMPLE 4.4. Let I = (0, 1) with the usual ordering and let X; = (0, 1), ie l
Moreover, let @; be the o-algebra generated by all the intervals (0,7) with j<i,
and let g, be a probability measure on %, such that p([7, ) = 1.

If f;; are the identity maps, then (Xy, €5, 1y, S I) is a system such that f;
and f;; are one-to-one sutjections.

Clearly, the above system is not sequentially convergent because

ﬁ[l—l/n, H=0.
n=1

COROLLARY 4.3. Let (X;, €., fyy, I) be a measurable system. If, for every J e &,
the set X,\f,(Xp is universally mdl (i.e. it is p-null for each non-atomic p on 4),
then each sequentially convergent system (Xy, €;, . fiy, 1) of non-atomic measure
spaces and with perfect limits is convergent to a perfect measure space. ,

It is easy to construct a system (X}, ,, fi;, I) which is not s.m. and for which
all sets X \f(X) (JeE) are universally null,

Now we shall introduce two notions which in the case of countably generated
spaces are more useful than s.a.m. and s.m.

DermvTION 4.6 [15]. A system (X, %;, fyy, I) of quasi-countably generated
measurable spaces is atomic sequentially maximal (a.s.m.) if for cach J = {i,} e &
and each descending sequence of €, -atoms e,, n = 1, 2, ..., there exists an x € X},
such that f; (x) e e, for all n.

Tt is clear that a system (X;, %;, f;;, I) is a.s.m. if and only if fy(X)) N e#@
for every %;-atom e.

It is easy to construct an example of an a.s.m. system which is not s.m.

DepmviTioN 4.7 [15]. A system (X, 4, g, f;;, I) of countably generated
measure spaces is atomic sequentially almost maximal (a.s.a.m.) if, for cvery &>0
and every J = {i,} € &, there exists a descending sequence of scts 4, € %, with the
following properties:

(@) 4, N ¥;, are quasi-countably generated;

®) (X NA)<g, n=1,..

in

(c) for each descending sequence of %, -atoms e, 4, n = 1,2, ..., there exists
a point x € Xy such that f; (x) e e, for all n.
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Remark 4.2. The above two properties of systems were introduced in [15]
without names.

The following proposition can be proved exactly as Proposition 4.2.

PrOPOSITION 4.2. A sequentially convergent system (X, €y, Wy, fij, 1) of count-
ably generated measure spaces is a.s.a.m. if and only if for every J€ & there exists
a set De%; with the following properties:

@ D%,y is quasi-countably generated;

(B) pAX\D) = 0;

o) f1(X) ne # @ for every G-atom ecD.

In the special case of countably generated measure spaces Theorem 4.2 and
partially Theorem 4.1 can be reformulated as follows:

TrEOREM 4.4. Let (X3, G4, 1y fij» 1) be a sequentially convergent system of count-
ably generated measure spaces.

(i) If the system is convergent and py is perfect, then it satisfies the a.s.a.m.
condition.

(i) If the system is a.s.a.m. (und has perfect limits), then it is convergent (to
a perfect measure space).

Proof. Only the perfectness of yy in (ii) requires a proof. But this follows from
Theorem 3.2 because the o-algebras D n @, and f5(X) 0 Dn%,; (D from the
a.s.a.m. condition) are ¢-isomorphic.

As a direct consequence of Theorem 4.4 we get also

TreoreMm 4.5. If a system (X, €, fiy» 1) of quasi-countably generated measurable
spaces is a.s.m., then each sequentially convergent system (X;, %y, P> Jygs ) (with
perfect limits) is convergent (to a perfect measure space).

Proof. The system (X;, %1, ti> fijs 1) is always a.s.a.m., and so we may apply
Theorem 4.4 (ii).
From Theorem 4.2 and 4.4 we get

Trrorem 4.6. Let (X, €y, i fyj» 1) be @ sequentially convergent measure system.

@) If the system is convergent fo & perfect measure space, then each system
X0 D5, 1) D5 iy D of countably generated measure spaces with Dy=%, is a.s.a.m.

(i) If all the systems (X, Dy, 0|20, 13 D of countably generated measure
spaces with @,c%, are a.5.a.m. (and have perfect limits), then X;, Gis s figs 1)
is convergent (to a perfect measure space).

Proof. (i) The convergence of the initial system yields the convergence of an
arbitrary (X;, @y, | Do [y, 1). In particular for countably generated measure
spaces the a.s.a.m. condition is satisfied (Theorem 4.4 @).

(ii) It follows from the a.s.a.m. condition for all the systems (X;, Dy, %, figs D)
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that for each Je & the set f,(X7) is thick in (X, %;, 1), and so the existence of
follows from Theorem 4.1.

The perfectness of pyis a consequence of Theorem 4.2 (iii) and Proposition 4.2,

Remark 4.3. We will show in § 7 that, in fact, every measure system satisfying
the a.s.a.m. condition is sequentially convergent.

In view of the theorems proved in this section, we devote the rest of the paper

to determining the conditions under which a given measure system is sequentially
convergent,

5. Projective limits of separable perfect measure spaces. In this section the problem
of the existence of a projective limit measure in the case of separable perfect measure
spaces is considered.

It is proved that every system of separable and perfect measures ordered by a set
with a countable cofinal subset has a perfect limit. Moreover, we give a necessary
and sufficient condition for the existence of a perfect limit of an arbitrary system of
separable measure spaces.

Our starting point is a theorem on product measures proved by C. Ryll-
Nardzewski in [21]. We quote it without proof.

TueoREM 5.1. Let (X, €,, h)a=1 be & sequence of perfect probability spaces.

00

Each finitely additive set function p: [] %,~— [0, 11 such that
n=1

Bl(P)'(B)] = ulE)

whenever E€ €, n = 1, 2, ..., is countably additive. The unique extension of pi to €" is
a perfect measure.

As follows from the above theorem and the examples presented in § 4, that the
problem of perfectness of projective limits in the case of general systems is much more
complicated than in the case of product spaces. It appears that even the countability
of I and the surjectivity of fi; do not guarantee the perfectness of projective limits.

ExAMPLE 5.1. Take a subset 4 of [0, 1] such that 1,(4) = 0 and A*(4) = 1
and put % = (B, 1, U {4)). Since ¥ is countably generated, there exists a sequence
{4i}izq of sets generating %.

Put %, = o({di}i=4) and X, = [0,1], n =1, ...

If pis an extension of 4 onto %, f, .11 X4y — X, is the identity injection,
and p, = u|%,, then (X,,%,, i, Juur1, N) is a system of perfect measure spaces
with the limit ([0, 1], ¢, w), which is not perfect.

Let us observe that, setting (¥,,D,,v,) = (X, % X,, 0(€,x%By,), tn* 1)
and g, ,+1(») =y we get a system of perfect measure spaces with non-atomic
measures v, and with a non-perfect limit ([0, 1]1x [0, 1], o(% X Byo,1), LX),

It is our aim to show that in the case of separable perfect measures such patho-
logical constructions are impossible.

We begin with a simple consequence of Corollary 2.1.

icm®

Projective limits of perfect measure spaces 179

PRrOPOSITION 5.1. Let (X;, €,.fi;, 1) be a measurable system of (quasi-) separ-
able measurable spaces. If I has an at most countable cofinal subset, then (Xy, %1)
is (quasi-) separable. Moreover, if I'is at most countable, then X;e 4.

Proof. Assume that I is at most countable. Then, by Corollary 2.1, we have
Xije%’” for every i<j. Since

X = CRRED

- ) 1<}
and ‘ .
W Hxpe?,

we have X;e %" . -

If I has an at most countable cofinal subset, then the (quasi-) sepa}rabmty f’f
(X;, %) is a consequence of Proposition 2.2 (iv) and the (quasi-) separability of € in
the case of an at most countable I

Now we are in a position to prove a theorem that is fundamental for all the
subsequent results of this paper. The theorem generalizes Theore.m V.3.2 of
Parthasarathy [18], proved for standard spaces (X,, %;) and sutjective maps fj;.
The proof presented here is completely different from that of Parthasarathy.

TuEOREM 5.2. If I is a directed set possessing a countable cofinal subset, then
each system (Xy, €y, > fiy, D of separable and perfect measure spaces is convergent
1o a separable perfect measure space (X, €r, Uy

Proof. In virtue of Remark 3.2 we may assume that [ = N, and a simPle cal-
culation shows also that without loss of generality we may assume the quasi-separ-
ability of all (X;, €)), ie N.

Take the finitely additive set functior fi, on T1 ., whose existence was proved
- ’ iel

in Proposition 2.3. ] . ) ot
In virtue of Theorem 5.1 there exists a unique extension of [, to a perfec
probability measure j on %"
Since
ﬁ[(plm'r)—l(Xl.‘.n)] = ”1...7:(X1...n) =1 ’

° .
- N
X = 00" (X;.We€,
n=1
and ji is a measure, we have A(Xp) =1, and the restriction of. ﬁ to X;isa perfc?t
measure. Since fi| Xy = gy (sce the commentary after PI(?I.?OSlthIl 2.4) anfl ¢ is
quasi-scparable (Proposition 5.1), sy is separable (Proposition 3.2) and this com-
pletes the proof.
As Bxample 4.1 shows, if I does not possess any countable cofinal subset,
then Theorem 5.2 does not hold.
Remark 5.1. Using the proof of the above theorem, it is easy to coestruc:
examples of probability spaces (X, %y, #) for which there are finitely additive se
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e
functions, defined on [] %, and generated by p,’s, which cannot be extended to
n=1
any measure on %"~
In fact, if (X, @p» fns fym+1» N) is @ system of probability spaces without any
limit, then f, has the desired properties.

In particular, taking a decreasing sequence of sets ¥,<[0,1] such

that Y, =@ and ¥,, n = 1,2, ... are thick with respect 1o 4 (sec Halmos [6],
n=1

p. 214 for a construction of such a sequence), we can construct a sequence of measures
Mt G 0,11, n=1,2,..., where €, = 0(Bo, 13V {T1} V... W {7} (cf. Hal-
mos [6], p. 71) which are extensions of A and are such that p,.,|%, = u, and,
1Y) =1 for every n.

Of course, limp, does not exist (we take (X, = [0, 11, ©,, thys f,n+1 — identity

map, N)) and so the finitely additive set function #: [] %,— [0, 1] is not count-
n=1

ably additive.

The following theorem completely solves the problem of the existence and
perfectness of (X;, %}, yy) in the case of arbitrary system of perfect separable
measure spaces.

THEOREM 5.3. Let (X;, €1, pu» fij> 1) be a system of perfect separable measure
spaces. Then, a necessary and sufficient condition for the existence of the perfect
space (X, €y, pp) is the sequential almost maximality of the system (Xy, €, i1 fiy» I)-

Proof. In virtue of Theorem 5.2 (X;, €;, i, /3, I) is a sequentially convergent
system with perfect limits, and so the assertion follows from Theorem 4.4.

As a straightforward consequence of Theorems 5.3 we get the following result:

TueoREM 5.4, If a system (X, 4;,f:;, I) of quasi-separable measurable spaces
is s.m., or I has a couniable cofinal subset, then every system (X;, €y, pis fiy, 1
of perfect measure spaces is convergent to a perfect measure space.

Now we shall show that the converse to Theorem 5.4 is false even for countable I.

ExaMPLE 5.2. We denote by W the rational numbers of the interval (0, 1) and
set I = W. Setting X, = (0, INW n (0, w), we W, €, = By, and f,,,0 X,p— X,
to be the identity injection whenever w<w’, we obtain a system of scparable
measurable spaces which is not s.m.

On the other hand, in virtue of Theorem 5.2, every system (X, €,ys Hys Sows W)
has a perfect limit.

In the case of separable measurcs the compactness (Marczewski [12]) and
perfectness of measures coincide (Ryll-Nardzewski [21]). Thus it is natural to ask
about the compactness of a projective limit of separable compact measure spaces,

Unfortunately, the answer is negative: there exists a system of separable measure
spaces whose limit is perfect but not compact.
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ExampLE 5.3. Denote by I'(4) the set of all non-limit (limit) ordinals less
than w;. Then let ¥, = {0, 1}, Jet v, be the uniform probability measure defined on
2, = 2% and let (Y7, 97, ") be the product space where V' is the direct product
of all v, with a<y<e; and a,yel.

For cach Ae A choose a sequence y,<7;<.. cofinal with 1 and put

M* = {{x,}vq: Xp=0,n=1,2, o}
and

M= M*x dell.

1 v,
A<y<d
Clearly we have vi(M3) = 0.

Put X, = Y\ U M}, 4, = 9" X, and p, = V'|X,. Morcover, let £, <y
A<y

and a, y & I" be the canonical projections of X, into X,. The o-algebras ¥, are separ-
able and the measures p, are compact. It is easily seen that the system
(X, Gy» Mys Jup> T) 8 s.0.100. and so — in virtue of Theorem 5.3 — the limit measure
space (Xr, Gr, pr) exists and is perfect. Moreover, (X, %r, ur) is o-isomorphic

to a measure space (Z, 2" n Z,v"|Z) where Z = YF\AEJ M}, and the o-isomor-
(238

phism is induced by a one-to-one map.
Since v"|Z is not compact (Musiat [16]), it follows that py is not compact either.

6. Systems of quasi-countably generated measurable spaces. In this section we
consider the problem. of the existence of a projective limit measure in the case of
perfect measures defined on quasi-countably generated measurable spaces. Using
the results of § 5, we obtain a necessary and sufficient condition for the existence
of perfect limits of all the systems of measures defined on an established system
of quasi-countably generated measurable spaces and ordered by a set with a.count-
able cofinal subset, and a sufficient condition in the case of an arbitrary ordering set.

The results obtained by Parthasarathy in [19] in the case of standar.d spaces
are particular cases of our Corollaries 6.1 and 6.2. However, the proofs given here
are quite different from that contained in [19].

Let (X}, €, f,;, T) be a system of quasi-countably generated measurable spaces
(X,, %), ie I We write X, for the set of all #;-atoms, and define #;: X, — X as
the map x— ek, where ¢, is the %-atom containing x € X;. -

We define %, as the collection of all the subsets 4<X, such that h} A e ‘dii.
Clearly, &, arc quasi-separable and the o-algebras 4, and @, are ¢-isomorphic.

(X,,@) is called the measurable space associated with (X;, ;). The map
A —h7Y(4) is a o-isomorphism between %, and ;.

Define the map fj;: X; — X, by the formula

1 . s
}‘U(ei)=efu(x), if isj.
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1t is easy to see that the definition of fj; is correct and the equality

hiofiy=Ffisoly

holds.

We write (X;,@,) for the space Hm(X,, @, f;;, 1) with maps fi: X, — X,
given by f({%};en0 = % _

(X, @, iy, D is said to be associated with (X, €1, fyy, n. (L[IXi, a(ﬂ Z))

@

is denoted by (X%, #°).

Assume further that (perfect) measures p, are defined on (X, %)), i€ Z, in such
a way that the family (X;, %;, t)ier is a system with respect to the maps fi;, I<j.

Using the o -isomorphism /;, we can define on (X, %)) a (perfect) measure i, by
the formula

() = wlh ()] for  Ae@,.

From the equality & o fi; = fijoh; it follows that (X;, %,, ;. fiyy, I) is a measure
system with quasi-separable spaces (X, €)), i€l

As above, we say that the measures ; and the system (X, @,, iy, fyy, I) are
associated with u; and (X;, €, w, fyy, I), vespectively.

DerNITION 6.1, A system (X}, €, fij. 1) of quasi-countably generated spaces
is atomically maximal (a.m.) if for each descending family {e};.s, Where ¢; is
a %-atom for every ie I, there exists an x € X} such that fi(x) e ¢;, for every ie L

The following two results present some basic relations between (X, ¥p) and
(XI’ %I)a and between (XI: (61, I'LI) and (Xh ?Eb I-'_"I)’ where ﬁ] = hl—llﬁi

PROPOSITION 6.1. If (X, €y, fy;, I) is a system of quasi-countably generated
spaces, then there exisis a map h: X;— X such that k™*: 4 — h™(4) is a ¢-homo-
morphism of @y onto €, and for each i € I the equality hyo fy = fo h holds. If the
system is a.m., then h™* is a G-isomorphism of @ onto €.

Proof. We define A: X; — X; by putting 2({x;};en) = {m:(xD}icr

THEOREM 6.1. Let (X;, %;, t, fij» I) be a measure system. Then:

@) If the system is convergent, then the associated system is also convergent and

(%) () = ™ (A)]

for all A e%;. The perfectness of py yields the perfectness of fiy and fr\h(Xp.

(i) If the system (X, €y, fi;, 1) is an a.m. system of quasi-countably generated
spaces, then the comvergence of (X, %, Iy, Jiy, I) yields the convergence of
(X, 63, bas [ 1), the spaces (Xy, 6y, py) and (X, @y, fy) are o~isomorphic and (¥)
holds. If iy is perfect, then uy is perfect as well.

Proof. The assertions follows easily from Proposition 6.1, Theorem 3.1 and
Theorem 3.2.
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The following theorem is, in a sense, the main result of this section:

TrEOREM 6.2. Let (X, €, fip, 1) be a system of quasi-countably generated spaces.
If I contains a countable cofinal subset, then:

@) If each system (X, €y, W, fij, 1) of perfect measure spaces is convergent,
then (X;, €1, 115> 1) is a.m.;

(i) If (X, €1, fiy, D) is a.m., then cach system (Xy, €y, w, fi;, ) of perfect
measure spaces Is convergent to a perfect measure space.

Proof. (i) Suppose that there exists a descending family of #,-atoms e;, with
the empty intersection (i.e. (1/7*(e) = @) and each system (X,,%;, m.fy;, D)
tel

of perfect measure spaces is convergent.

We define measures y; as follows: yu, is defined on %; and p,(C) = 1 or 0, ac-
cording as e;=C or C n ¢; = @. The inclusion e;=f;;(e;) implies that g, f;7*(C)
= p(C)if Ce %, and so (X;, %y, iy, /3, I) is a convergent system of perfect measure
spaces.

On the other hand, we have p[ fi:i(ein)] = 1for all n, while ) fi.*(e,) =D
n=1

and f;7 Y ey ) o fn Hey) > ... (the sequence {7,} is chosen to be cofinal with 1), and
this contradicts the countable additivity of p;.

(i) Let (X;, % ui,fij» 1) be a system of perfect measure spaces where
(X, €1, [y, 1) is a.m.

In virtue of Theorem 5.4 the associated system is convergent to a perfect measure
space, and so the assertion is a consequence of Theorem 6.1.

As a special case we obtain a generalization of Theorem 4.1 from [19].
COROLLARY 6.1. Let (X, %) be a countably generated measurable space and
let €,, n =1, ... be countably generated o-algebras such that

G cbc... and F=0(U%,).

If for each consistent sequence {u,} of perfect measures ,: €,— [0, 0], n =1, 2, .

(i.e. fiz41|%, = 1) there exists a measure on € which is their common extension,
0

then each decreasing sequence of %,-atoms e, has a non-empty intersection () e.

n=1
And conversely, if cach decreasing sequence of %,- atoms e, has a non-empty intersection,
then each consistent sequence of perfect measures [, on €y, n =1, ... has a common
perfect extension on the whole of €.
As is shown by the examples given below, in general there is no correlation
between the atomic maximality condition and the atomic sequential maximality
condition of a measurable system.

EXAMPLE 6.1. Let I = X be the set of all the ordinals less than oy, Put X, = X
for every y<w, and let %, be the smallest o-algebra on X, containing all the ordinals
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less than y. If 51 X, — X,, a<p, is the identity map x — x, then (X,, CysSaps D
is an a.s.m. system, but it is not a.m.

ExaMPLE 6.2. Let I be the collection of all at most countable subsets of the
interval (0, 1] ordered by inclusion. Setting X, = [0, I\, 4, = &y, and f;;: X, — X,
to be the identity injection, we get a system which is a.m. but not a.s.m. (see
Example 4.1).

As can be observed, this example shows that the second part of Theorem 6.2
does not hold for an arbitrary directed set I. Hlowever, we can prove the following:

THEOREM 6.3. If (X;, €1, fi;, 1) is an a.s.m. system of quasi-countably generated
spaces, then each system (X, €;, i, fiy, I) of perfect measure spaces is convergent
to a perfect measure space.

Proof. If follows that for each Je & the system (X;, %), f);,J) is a.m., and
hence, in virtue of Theorem 6.2 (ii), each system (X}, ¥;, i, f;, T} of perfect measure
spaces is sequentially convergent and has perfect limits.

Thus, the assertion is a direct consequence of Theorem 4.5.

COROLLARY 6.2. Let (X, %) be a measurable space, I—a directed set and {8}, oy —
a collection of countably generated o-algebras €,=% with the following properties:

@) if i), then 4,=%;;
() ¢ =o(U %;
isl
(iii) for each sequence iy <i,<... and each decreasing sequence of 4,,~atoms e,,
-+
we have () e, # @.
n=1

Then, for each consistent family of perfect measures u, on %,, i€ I, there exists
a perfect measure p on € which is their common extension.

Remark 6.2. In virtue of Theorem 6.3 if (X, G4, fag, 1) is the system con-
sidered in Example 6.1, then each system (X Gy, tys fop. I) has a limit. Since
(X, %y, fu, I) is not a.m., it follows that the first part of Theorem 6.2 does not
hold in the case of an arbitrary I.

Remark 6.3. In the case of systems of quasi-separable measurable spaces the
sequential maximality condition and the atomic sequential maximality condition
are equivalent. Thus, Example 5.2 shows that the converse to Theorem 6.3 does
not hold, even in the case of systems possessing a countable cofinal subset.

7. Systems of countably generated measure spaces. In this section, we give
a necessary and sufficient condition for the existence and perfectness of a projective
limit of an arbitrary system of countably generated measure spaces.

ToEOREM 7.1 If (Xy, €1, w5, /3, D) is a system of perfect countably generated
measure spaces, then a necessary and sufficient condition Jor the existence and perfect-
ness of (Xy, %5, 1) is the atomic sequential almost maximality of the system
X, 6., Bas S 1),

Proof. In virtue of Theorem 4.4 it is sufficient to prove the assertion in the
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case of /= N. Without loss of generality we may assume that the spaces (X,, %,),
n=1,2,.. are quasi-countably generated.

Necessity. Assume that the system is convergent to a perfect measure space
(}(Nv (QJNJ ﬂN)-

In virtue of Theorem 6.1 (i) the associated system has the Limit X, Cy, )
and this measure space is perfect.

Moreover, fiy|h(Xy) is perfect as well, In view of Theorem 3.3 there exists
a set De @y such that

Dah(Xy) and fig(X,\D) =0.

If &>0 is arbitrary, then from the elementary properties of outer measures

follows the existence of a descending sequence {d,} of sets 4, €%, such that

ZDe U JHENT) €@y
n=1

and

ﬁNf;l(yn\Zu)<e ) n= ]., 2, e s

where A, = h,(4,).
It is easy to see that the sequence {4,} satisfies the conditions formulated in
Definition 4.7 and so the system (X, €, ty, [y n+1, N) is as.a.m.

Sufficiency. Assume that the system is a.s.a.m. and take for every k=1,2, ..,
a descending sequence of sets 4% @, with the following properties:

@) ,Lt,,(X’,,\Aﬁ)<l/k, n=1,2,..
«©
(b) if e,c A} is a ¥,-atom and, e,4; < frasi(e), then () fii(e) # @.
n=1

Thus we have

ﬂlfn' YA =h(Xy)
and hence
U NTTHAD <X .
k=1 n=1
Since
W -
U N7 ) e@y
k=1 p=1
and

RIXN U ()77 = 0

(the existence and perfectness of fiy follow from Theorem 5.2 since Gy i = 1 2,
are quasi-separable), the restriction of fy to (h(Xy), A{(Xy) N €y) — say u — is
a perfect measure,

3 -- Fundamenta Mathematicae CX/3
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Since the spaces (Xy, %y) and (A(Xy), @y 0 h(X, w)) are o-isomorphic, it follows
from Theorem 3.2 that a measure u: €y — [0, 1], given by
phHA) = j(4)
whenever 4 €@y n h(Xy), is perfect. It is easily seen that u = My. This completes
the proof of the theorem.

Observe that in general it is impossible to find the sets 4, such that p,(d4,) = 0
for all n.

EXAMPLE 7.1.' Put X, = (0,1] and let %, be the algebra generated by the

intervals
k k+1
Lok E=0,1,..,2"—1.
2)1 2"
Put
k k+1 1
—, = = — if =0,1,..,2"—1
“”{(2"’ 7 ]} e A k=0, 2
and

Jontl(®) =x, xe(,1].

It is easily seen that (Xy, €y. my) = (0, 11, B0, 135 A).

In view of Theorem 7.1 the system is a.s.a.m. Suppose there exist sets d,€%,,
n=1,2, ... satisfying the conditions of Definition 4.7 and such that mid,) =0
for all n. Then, since each measure y, is purely atomic, we have 4, = X, for every n.

«
But for e, = (0,1/2", n =1, 2, ... we have N e, = @, and this contradicts the
n=1
atomic sequential almost maximality of the measure system.

Let us also observe that the above example shows that Theorem 7.1 cannot
be deduced from the theorems proved by Choksi [3] and Motivier [13].

Indeed, if ¢, is a compact system approximating %, with respect to p,, then
we have €, < ¢, (because y, is purely atomic and positive except for the empty set).

It is clear that a condition Jon+1(@ur1) =@, (Choksi [3], Theorem 3.3) does
not hold.

In a similar way we can show that the compactness of a family
A = U f;:,m((pm)
mzn

(Metivier [13], Theorem 2.3) cannot hold.

As a corollary we get the following result:

COROLLARY 7.1. A measure space (X, €, p) is perfect if and only if there exists
a family €, ie 1 of finite subalgebras of %, directed by inclusion and such that
X, &, u]‘gt, Jip ) forms an a.s.a.m. system with fy; being the identity mappings.

8. Systems of arbitrary perfect measure spaces. As a direct consequence of
Theorem 7.1 we get the following necessary and sufficient condition for the existence
and perfectness of a projective limit of an arbitrary system of measure spaces.
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THEOREM 8.1. If (X, b3, i, fij, I is a system of perfect measure spaces then
a necessary and sufficient condition for the existence and perfectness of (Xy, €ruy)
is the atomic sequential almost maximality of each system (X, 9, WDy fips ) of
countably generated measure spaces with D,c%, ie I

As an example of the application of the above theorem we give a proof of the
following result of Topsge:

TreEoREM 8.2 (Topsge [25], Theorem 3). Let (X, €1 s £33, 1) be a sequentially
almost maximal measure system and let for each ie I A ; be a family of subsets of X
approximating u;. Assume moreover that Sy ey for every i< j and that one of
the following conditions is satisfied:

(1) For every i e I and every chain of non-empty sets in " i, the interesection of
the sets in the chain is a non-empty member of A'; (a family & is a chain if for all
A, Be F either AcB or BcA);

() For eachiel, x e X;, j>i and each decreasing sequence {Kufoey of sets in o,
with (} K, n fij"-l)x) = ( there exists an n such that K, N f};l(x) = .

n=1

Then lim y; exists and is perfect.

Proof. In virtue of Theorem 4.3 it is sufficient to prove the sequential conver-
gence of the system (X;, %, s, fij I).

So take a sequence J = {i,};=; €. We shall prove the atomic sequential
almost maximality of each system (Xi> Dis 3] D5 fintanrs N) with countably
generated 2, <%, . In virtue of Theorem 8.1 this will guarantee the convergence
of (Xi,s Bi,» iy fininer» N) to a perfect measure space.

In order to simplify the notations we shall write » instead of ,. In virtue of
a result of Vinokurov (cf. Musiat [16], Lemma) there exists a sequence of countably
generated o-algebras, 5 ,c®,, such that @,c%,, (X,, Foy tlFns Jonr1s N) is
a measure system, and almost all &,-atoms belong to o,

Take B, e #, such that p,(B,) = 0 and all &% ,-atoms contained in X,\B, are in
A . Without loss of generality we may assume that {B,}-1 is an ascending sequence.
Then let {e,}5-; be a descending sequence of & ,-atoms e,= X, \B,.

Put now for each n e} =e, and suppose that for a non-limit ordinal y sets,
e <y, n€ N are already constructed. Then we put for each n

&t = ) fumlel -
mzn
If y is a limit ordinal then we put

e} = ()& for each neN.
a<y

It follows from (1) that if E, = () e}, then E,#@ and f, y41(Epsy) = En,
14
nen.

3%
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This shows that there exists xe X, such that f,,(x)ee, for every neN.
Taking this result into account and applying Theorem 7.1 to the system
X, Di D1, fig, 1) we easily_get the a.s.a.m. of this system.

In a similar way the second part of the theorem can be proved.
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Nardzewski for his help and guidance during the preparation of my doctoral thesis.
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