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An interesting plane dendroid
by

David P. Bellamy * (Newark, Del.)

Abstract. Using inverse limits and geometric techniques, a dendroid M is constructed in the
plane with connected set of endpoints, and such that the endpoints and only the endpoints of M are
arcwise accessible from the complement of M. -

I. Introduction. In this paper, a plane dendroid M is constructed such that
only its endpoints, in the sense of Lelek [3], are arcwise accessible from the com-
plement of M. Further, the set E of endpoints of M is a connected set and has
a “circle-like” property, namely, that while no point of E separates E, each pair
of points of E does separate E. E must be a dense subset of M, so that the closure
of E does not separate the plane. When this example was presented in Professor
Borsuk’s seminar, the following two questions were raised:

1 (Krasinkiewicz). If a plane dendroid has the property that its endpoints
ate its only arcwise accessible points, must the set of endpoints be conmected?

2 (Borsuk). Is M irreducible with respect to the property that its endpoints
and its accessible points are the same?

In the last section, examples are described giving a negative answer to each
of these questions.

I would like to thank J. Krasinkiewicz and P. Minc for many helpful con-
versations during the preparation of this paper. The questions leading to this work
arose during the seminar on metric continua led by Krasinkiewicz and Minc at
Instytut Matematyczny, PAN in Warszawa in the fall of 1975.

The following terminology will be used. The arc in a given dendroid from p
to g will be denoted [p, g]. C1(4) denotes the closure of a set 4, in whatever space
it is being considered. E? is the real Buclidean plane and 4 its usual metric. If A< E%,
H(4) is the convex hull of 4. A V-arc is an arc in E2 which is the union of two
noncollinear straight segments with a common endpoint. The interior of a V-arc V,

* Except for the second example in the last section and the final preparation of the manu-
script, this research was done while the author was working at the Institute of Mathematics of
the Polish Academy of Sciences as a participant in an exchange program sponsored jointly by the
Polish Academy of Sciences, Warsaw, and the National Academy of Sciences, Washington, D. C.
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denoted J(¥), means the interior of H(V). The term vertex of a V-arc is self-cxplana-
tory. For three non-collinear points, p, ¢, and r in E% V(p, q, r) denotes the V-urc
with p and r as opposite endpoints and g as vertex. The boundary of a V-arc ¥(p, ¢, r),
denoted Bd(¥(p, g, r)) is the straight segment from p to r and bd(¥(p, ¢, r)) is
Bd(¥(p, ¢, r)) with its endpoints deleted. (Thus H(¥) is the disjoint union of ¥,
I(V), and bd(¥).)

If X is a continuum in E? and p e K, we shall say briefly that p is “accessible
in K” to mean that p is arcwise accessible from E?—K.

The next definition is rather technical. An exposed V-arc in a dendroid K< £?
will mean a V-arc ¥ such that: 1) ¥<K; 2) K n H(V) = V; 3) The endpoints of ¥
are also endpoints of K; and 4) The nonendpoints of ¥ are not accessible in
Ko H(V). (It is an immediate consequence of 2) that each point of an exposed V-
arc V is accessible in X, by a scgment from any point in J(¥). Thus, 4) could be
restated: The nonendpoints of V are accessible in K only by means of arcs which
meet I(V).) A V-arc V which satisfies all of the above except that its vertex may
be accessible in Ku H(V) will be called a v-exposed V-arc in K.

In an inverse sequence {X;; A}ieq, Alk,j1: X, — X; denotes the appropriate
multi-step bonding map. X is the inverse limit of the sequence. (Similarly for any
other letter in place of X.) If K< X, K; is the image of & under the projection of X
to X;.

The construction proceeds as follows: First we shall construct a dendroid B
which is our “building block”. We shall then construct an inversc sequence
{My; h}iZ, where each M, is built up out of specially constructed copies of B.
Then we shall prove that M embeds in the plane, using a theorem of Anderson and
Choquet to be restated below in a convenient form, and that M is a dendroid with
the desired properties.

The following lemmas will smooth the way somewhat.

Lemma 1. dny inverse limit of dendroids with monotone bonding maps is a dendroid.

Proof. Let {M;; i}, be such an inverse sequence, and let (p >3,
{gpi1€ M. Since h; is monotone and M, is hereditarily unicoherent for each i,
it is easily verified that i, maps [pyy, ¢;+,] monotonically onto [, q;]. Thus,
the inverse limit, 4, of this sequence of arcs is an arc in M from {p,>i., to {g>2.
If WeM is any continyum containing these two points, [ s W, for cach i,
so that AS W, Thus M is arcwise connected and hereditarily unicoherent and the
proof is done.

In an inverse sequence {X;; #,}i%; where all the bonding maps are retractions
there is a natural embedding k;: X;— X defined by: k(x) is that sequence (x;>%
such that x; = x for all j=i. (For j<i, X; is determined by the bonding maps.)
If ey X;— X; is the inclusion map for 7<j, then ky = kj v e;;. Henceforth in such
an inverse system cach X, will be identified with its image under k; to avoid cum-

bersome notation, and X, =X will be defined by X, = G X,.
=1

n
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Lemma 2. Let {X;; h}i%q be an inverse sequence of dendroids and monotone re-
tractions. Then each point of X—X,, is an endpoint of X.

Proof. Let H;: X — X, be the projection. Each H, is also a monotone retrac-
tion. First observe that X— X, contains no arc, for if [p, g]< X~ X, were an arc,
then there would be an » such that H,(p) # H/{g). Then

[P, gl v Hy ' (H{p, q}) v Hlp, q]

would be a nonunicoherent continuum in X since
(I, g} v H ' (Hp, 41)) 0 Hylp, a1 = {H(p), H@)} .

Next, if [p, g] were an arc with a point b e [p, g]—{p, ¢} such that be X— X,
then since X— X, contains no arc, there would be points re [p, 4] and se [, g]
such that r, se X,. Thus, for some k; r,se X;. But then X, u [r, s] would be
a nonunicoherent continuum since X n [r, s] contains Loth r and s but not b.
Therefore an arc in X can meet X— X only at its endpoints, completing the proof.

LemMa 3. If S is a complete metric space and {M}i2, is an inverse sequence of
compact subsets of S and monotone retractions, and if for each §>0 there exists an n such
that for each pe M,,

dia[ G (i, n))" M (p)] <e
i=n

and if for each n the family {hli, nl}i%, is uniformly equicontinuous, then H: M — S,
2]

defined by H[{p;Yi=] = lim p; is a homeomorphism of M onto CI[ J M;]. Further-
FEO i=1

more (with the identifications made above before Lemma 2), H|M, is the identity
on M.

Proof. Except for the last sentence, this is a special case of Theorem 1 of
[1, p. 348]. The last sentence is clear.

II. Construction of the example. Let X denote the Cantor set consisting of all
those numbers in [0, 1] which can be expanded base 5 using only the digits 0, 2, and 4.
(This set may be obtained by dividing the interval into fifths and removing the second
and fourth fifths; that is, the open intervals (%, 2) and (%, %) and then recutsively
repeating this process on the remaining intervals at each step.) Observe that e X
and that } is not an endpoint of a deleted interval.

Then there is a map u: X — [0, 1] defined by
] o0 X
pl Y a5 = Y Bal3™r,
k=1 k=1
where it is understood that cach g, is even. The properties of u are similar to those

of the Cantor ternary function. The facts we need about g are: 1) p is surjective;
2) i has a continuous extension ji: [0, 11— [0, 1] which is constant on each of the
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components of [0, 1]—X; 3) If x is an endpoint of one of the intervals deleted in
the construction of X, then u(x) is a triadic rational; and 4) u(x) = xif x e;{(), %, 1}

First consider a copy, By, of the mapping cylinder of y, embedded in E? as
follows: B, is the union of all straight;;line segments from (x, 0) to (u(x), 1) for
x€ X (sce Fig. 1.)

() D (a,n

0,0 L0
Fig. 1. B,

. B, _is a dendroid and has a v-exposed V-arc corresponding to each deleted
interval in the construction of X, For technical reasons, define also a slightly different
dendroid, C,, as follows: C, is the union of the two sets

{x+%, )] (x,7) € B, and x<4}
and

{r=1.9) (x.3) e By and x4} .

Geom'etrically, we have cut B, in two along the vertical line segment at x = 4 and
sewr-l it back together, identifying the vertical segments at x = 0 and x = 1 together.
Co is a dendroid since B, contains the vertical segment from (x, 0) to (x, 1) for
x = 0, 3, or 1. The important thing to observe about Co and B, herc is that the
vert.lce's of tl?e v-exposed ¥-arcs in C, have x-coordinates of the form a4, where a is
a triadic rational, while those of B, are themselves Lriadic rationals. Hence no vertex
of one of these F-arcs in B, is a vertex of one in Co. This Jast statement will also
hold for B; and Cj, for B and C, and finally for B and C, all to be constructed
below.

The retraction ry: B, — [0, 11x{1}, defined, for ze[0,1] and xe X, by

roft(x, O+1-0(p), 1)) = (u(»), 1)

is just the-map which sends each point on the line segment from (x, 0) to (u(x), 1)
to the point (u(x), 1). This is just the standard retraction of a mapping cylinder
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onto its range space. Observe that ry is a monotone retraction, as will be every
map which we denote by the letter r with or without subscripts or other means
of distinction. The reader may check this in each case.

Let Do = [0, 1]x[0, 1]. r, has a continuous extension #,: Do — [0, 1]x {1}
defined by Fo(t(x, 0)+(1—1)(R(x), 1)) = (E(), 1), where now t, xe[0, 1]. %, is
constant on the convex hull of each v-exposed V-arc in B,.

By, Cy, and D, have been constructed where they are easy to visualize; they
will now be moved to where they are easier to work with. Let f: E* — E2 be defined
by f(x,0) = @x—1,y—1), and let B, = f(B); Cy =f(Co); and D, = f(Dy).
The retractions fo ro o (f7!|B;) and foFye(f~1D,) will be called r, and F,,
respectively.

B, C, and D are now obtained from B, Cy, and D, by setting:

B ={(x,)eB) yzlx|-1},
C={xyeClyzlxl-1},
D = {(x,y)e Dy| y=|x|-1}.

Geometrically, this means that B (respectively C, D) is the set of points of B, (respect-
ively Cy, D;) on or above ¥((—1,0), (0, —=1), (1, 0)) (see Figure 3 or the lower
half of Figure 2). The retractions 7,|D and r,|B will be called simply Fand r, respect-
ively. Again, r is a restriction of ¥, and the range of each is [—1, 1]x {0}, and F is
constant on the convex hull of each of the v-exposed V-arcs of B.

Let M, denote the union of B with the reflection of C through the x-axis;
that is, My = Bu C, where € = {(x, p)| (x, —»)& C} (see Fig. 2). It is clear
that M, and B are dendroids. Observe also the following facts about M, and B.

(i) The accessible points of M, consist of its endpoints together with the points
of countably many exposed V-arcs in M. (The v-exposed ¥-arcs of B and of C are
exposed F-arcs in M;.)

(ii) The only points of [—1, 1]x {0} which are actessible in B by an arc lying
entirely in the closed lower half-plane are the endpoints (—1, 0) and (1, 0) and the
vertices of the v-exposed V-arcs in B. In particular, (0, 0) is not accessible by such
an arc. ((0, 0) corresponds to (4, 1) in B,.)

The dendroids M, for i>2 will be constructed as unions of M; with particular
copics of B used to “cover up” the exposed V-arcs of M. No further use will be
made of C apart from its place in M.

For 12¢>0, let B{s) (respectively D<g)) denote that portion of B (respect-
ively D) on or above P((~1,0), (0, —&), (1, 0)); that is,

B{g) = {(x, y) e B| y=|ex|—e}

and similarly for D{e) (see Fig. 3).
Let r{e) = r|B{e); F (&) = F|D{e). By choosing & sufficiently small, the
maximum diameter of point inverses under 7{e) and r{e> can be made arbitrarily
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Fig. 2. M, (Ny is the square indicated by the dashed lines.) The horizontal dashed line is used in

Section VI
4ij 4//\ /\\ k Lﬁ/w
o

Fig. 3. B{e) is that portion of B above the dashed V-arc
small. Next define, for each fourtuple[a, b, ¢, d]of positive reals, the homeomorph-
ism gla, b, ¢, d] of E?* by:

(ax, y+bx)
(cx, y—dx) if

if x<0,

gla, b, c,dl(x,y) = { >0

‘Whenever convenient, o will denote a fourtuple of positive reals. Each g [«] is the
identity on the y-axis and is linear in the left and right closed half planes, and bends
both halves of the x-axis downward, to slopes of bja and —djc respectively. The
image under g{o] of any V-arc ¥V which misses the y-axis is a V-are, and
glaJ(I(V)) = I{g [«](¥)). In particular, this is true of the v-exposed V-arcs in
each B{s).
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Denote by ¥la] the V-arc g[a]([—1, 1]1x{0}). By appropriate choice of o,
Vo] can be made congruent with any preassigned V-arc in E2.

Let Blo, e} = g[al(B{e)) and D[u, e] = g[a](D{ed), and define rla, €]: Blu, &]
— Vo] and Fla, &]: D[a, e] — V]a] in the obvious way, by conjugating r{z>
and F{ep with gla]. If « = [a, b, ¢, d], it will always be assumed when Bla, ]
or De, ¢] is written that e<min{b, d}. This insures that D[u, £]— V[a] lies in the
interior of V[a], as does Bla, £]— V[x]. This will be referred to as the “concavity
resiriction on &” (see Fig. 4).

0 (0,0}

V]

—~VIa]

Dia, €}
Dla, ¢]

Fig. 4, Concavity restriction on &

Observe that vondition (ii),‘ above, can be restated for Ba, ] as follows:

(iif) The accessible points of Blu, &] are its endpoints, the points of ¥[«], and
the points of its v-exposed V-arcs. The only points of ¥[a] which are accessible
in Bla, ] by an arc lying entirely in H(V[x]) are the endpoints of Va] and the
vertices of the v-exposed V-arcs of Bla, ¢]. In particular, (0, 0) is not accessible
by such an arc.

Observe also:

(iv) The convex hulls of the v-exposed F-arcs in Ble, ¢] are pairwise disjoint.

(v) If v is the vertex of a v-exposed V-arc in Bla, e] and A4 is an arc from
E*—B[ua, ¢} to v such that A< H(V|[x}), then 4 n I(V) # @. (This is clear from
Figure 4.)

Suppose now that the dendroid M, has been constructed such that A, has no
accessible points except its endpoints and the points of countably many exposed
V-arcs, {V{(n, md}i=1, whose convex hulls are pairwise disjoint.

For each ¥ {n, m), choose an a(n, m) such that V[u(n, m)] is isometric with
V<n, m), and choose an e(n, m)>0, satisfying the concavity restriction, such that
for all pe Vix(n, m),

(vi) dia((Fla(r, m), s(n, m)])"(p))<min{l/n, 1/m}.

Then the same inequality is true if 7 is replaced by
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Let G<n, m): Dla(n, m), e(n, m]— E? be an isometric embedding such

that G<{n, my(Vie(n, m)]) = V<{n, m), and set

Din, my = G n, my(Dlaln, m), e(n, m)])
and

Bn, my = G {n, my(Bla(n, m), e(n, m)]) .
(This “flls in” part of I(V'{n, m)).) Define F {n, my and r{n, m) in the obvious
way, conjugating through G<n,m). Then define:

Mu+1 = Mu v [ U B(I’l, m>] *

m=1
It is also necessary to define the sequence of continua {N,}j2, by: Ny = H(M,)
L]
and N,.q = M, U [ U D<{n,mp]. Then define functions /,: Nyiy — M, and
m=1

Byt My — M, by:
h,|M, is the identity,
R\D<{n, my = F{n, my and
By = R\ Mysq -

Observe that #4,|B{n, m) = r{n, m) for each m.

The verification that M, , satisfies the induction hypotheses imposed on M,
is relatively straightforward. M, ., (also N,.,) is compact since if ¢>0 only finitely
many of the B{n, m)’s (also D{n,m)’s) contain points at a distance greater
than & from M, by (vi), above. M, is clearly a dendroid, and it is tedious but
easy to check, using (iii), (iv), and (v), above, applied (with minor notational alter-
ations) to the B{n, m)’s, that the v-exposed V-arcs of the B{n, m)’s are exposed
V-arcs of M, 4 and that the set of accessible points of M, consists of these V-arcs
together with the endpoints-of M,,, (see Fig. 5).

Fig. 5. Small section of My+q, showing B<{n, m) attached to Vn, md
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The example, M, then, is just the inverse limit of {M; h)2,. To prove that
it is planar, it is neccssary to verify the hypotheses of Lemma 3, the Anderson—
Choquet Theorem.

. The _Anderson—-Choquct hypotheses. The following lemmas are relatively
easy observations about the collections M3, {NJ2y, {R}2,, and A
The proofs of the less obvious ones are given or indicated. o e

Lemma 4. Each N, is the union of M ; with the convex hulls of its exposed V-ares.

LemMa 5. Each h, (respectively b, is a continuous monotone retraction of M,
(respectively N,.,) onto M,, .

Proof. The continuity follows ecasily from (vi), above, and a convergent se-
quence argument. Once the continuity has been established, it is self-evident that 4
(respectively F,) is a monotone retraction since each rn, my (respectively 7{n m);
is. ,

LemMA 6. Every endpoint of M, is also an endpoint of M; for all izn.

Lemma 7. For each n, N, SN,; M,=N,; and M,=M,, ..

o0
Proof. N,y =M,u [ UID(n, my]. However, D<{n, m)=H(V<{n, my).
e
Thus the first statement follows from Lemma 4. The other two statements are
obvious.
Lemva 8. If n and k are positive integers, M,=N,.
Proof. Immediate from Lemma 7.

. « o
Lemma 9. CI[ U M, 1= () N,.
k=1

n=1
0 0
Proof. CI[ UjM,,]skﬂlNk as a consequence of Lemma 8. Conversely, if
n= =
o0 0
X€Npyy, dix, M<k™. Thus, if x e | Ny, dlx, U M,] = 0.
k=1 n=1

Lemma 10. If X € My—M);, then x lies in the interior of one of the exposed
V-ares in M.

o0
Proof. xe MyS Ny = M;u [1U D{j, 5], but x¢ M;, so xe Dj,i)y for
=1
some i x¢ V{j,i), so by the concavity restriction, xeD{, -V,
SIV<), ).
Lemma 11. R, is constant on the convex hull of each exposed V-arc in M.
) Proof. Each 7<{n, m) is constant on the convex hull of each exposed V-arc
n M, where it is defined.
Lemma 12. If V is an exposed V-arc in My and 1<n<k, V lies in (and hence
also H(VY) the convex hull of some L, where L is an exposed V-arc of M,.
LemMa 13, If V is an exposed V-arc in M, and 1<n<k, k, is constant on H(V).
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Proof. This is immediate from Lemmas 11 and 12,

Recall the notation A[r, k], above

LemMA 14. If kzn, hlk, n] = R,|M;.

Proof. For k = n, both these functions are the identity on M. For k = n+1,
hln+1,n] = h,, and b, = F,| M, by definition. Suppose the lemma be established
for some value kn+1. Then if x & My, cither xe M, or x¢ M;. If xe M,,
hlk+1, n](x) = hlk,n] e l{x) = hlk, n](x) = h(x) by the induction hypothesis.
If x ¢ My, h{k+1, nl(x) = hlk, n] o hy(x) = R(h(x)) by the induction hypothesis.
However, Iy(x) and x both lic in H(V {k, m>) for some m, and by Lemma 13, since
n<k, h, is constant on H(¥<k, m}). Thus, h(h(x)) = h(x) = h[k+1, n](x), and
hlk+1, n](x) = Ry(hx)) = h{x), and the proof is complete.

Lemma 15. If xe M, dia[lg (Blk, )" 1(x) 1< n.

Proof. By Lemma 14, (hlk, n])" (@)= (h,)"(x) for all k>n. Thus,
dia U (hk, i)~ *(9) <dia (h) (o)< 1fn
k=n

Lemma 16. For any n, the collection {hlk,n]| k=n} is an equi-uniformly con-
tinuous family.

Proof. By Lemma 14, all are restrictions of the same uniformly continuous
function, h,.

Lemmas 15 and 16 given us precisely the hypotheses of the Anderson-Choquet
theorem, our Lemma 3. Hence M is topologically the closure of the union of the
M.

IV. The properties of 1/, We have three different representations of M, one

0
as the inverse limit of the sequence {M;; #;}, another as CI[ {J M,], and another
n=1

0

as () N,. The relationship between the first two of these, given in Lemma 3, is used
n=1

o0
strongly here. The inverse limit A4, will now be identified with CI[ {J M,] to simplify
im1

the terminology.
Levva 17. If x is an endpoint of some M, x is an endpoint of M.

Proof. This is an easy consequence of the fact that no arc is extended beyond
its original endpoints in the construction of M, from M,.

THEOREM 1. No nonendpoint of M is arcwise accessible in M.

Proof. A nonendpoint, x, of M lies in M, and hence in some M, by Lemma 2.
Then x is a nonendpoint of M, by Lemma 17, and

M EMy . SMy S M,
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The reader can easily check that no nonendpoint of M, is accessible in M, ,, so
that x is not accessible in M,.., and hence not in A,

Before proceeding to the proof that each endpoint of M is accessible in M,
the following technical lemma will be proven.

Lemma 18. If Cxpdity € M~M,,, then for each i, x,., # X, and x; is the
vertex of one of the exposed V-arcs in My, .

Proof. Suppose for some i, x; = x,,. Since (x>, is not eventually constant,
there is a smallest &>/ such that x, # x;. We have k>i+2. Then since Xpy = Xy,
X1 % X, and this means that x,., lies on onc of the exposed V-arcs in M.,
since no other points have non-degenerate preimages under By If k—1>i+1,
this exposed ¥-arc contains no point of M;, which is impossible since Xp-q = X;€ M;.
Thus k—1<i+1, or k<i+2. Since ki+2, we must have k = -2, Thus X=Xy
and Xyiy % Xp4o. Since x4, must lic on one of the exposed P-arcs in M, ,, and
must belong to M, x;,., is a vertex of one of the exposed V-arcs of M. ,. But then
X;41 18 not the vertex of a V-arc in My,.,, and (f4.,) Y (x,,,) is @ segment. Thus
;4.5 does not lie on an exposed P-arc of M,,,, and none of the exposed V-arcs
of M; for jzi+2, can contain x,.,., so that for j=i+2, x;,., = x;, and the sequence
is eventually constant and so not in M~ M,,. Thus for each i, X, # X;4.

Since for any i, x4, must lic on an exposed ¥-arc of M, ,, and hyx;.4) is the
vertex of that VP-arc, x; is the vertex of an exposed V-arc in M, ,.

THEOREM 2. Every endpoint of M in arcwise accessible in M.

V=1, my

segment bd (¥<k =1, m)

Fig. 6

Proof. If x is an endpoint of some My, let k be the smallest integer such that
xe M. If k=1, a vertical segment to x from above or below shows that x is access-
iblein N, and hence in M < Ny. If k>1, x is an endpoint of B{k~1,m) for some m.
Let ¢ be a point on bd (V (k—1, mD). The straight line segment from g to x misses
Nie—{x}, so that x is accessible in N, and hence in M since MSN, (see Fig. 6).

4 — Fundamenta Mathematicac /3
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Suppose then that x &€ M — M, (Figure 7 may be helpful here). Then x = (x,>2 ‘
where x; # x;, 4 for all i, and each x; is a vertex of an exposed V-arc, V;, in M.
Let ¥, be the exposed V-arc in M; on which x, lies, and let g, denote the midpoint
of Bd(V)) for each i>0. Then, for i>1, g; and x; both belong to (R)~(x)), so that

qQ

Fig. 7

d(g;, x;)<i™*. Then since {x;> converges to x, <g;) converges to x also. The straight
H;le segment [g;, g;,,] misses N;,, and hence misses M. Then, the closure of
igo [g1s 9;41] is an arc from g, to x missing M except for the point x, so that x is
accessible in M.

V. The connectedness 'properties of the set of endpoints of M. The next lemma

is a fairly simple generalization of Theorem 6 of [2, p. 129]. I am indepted to
. Krasinkiewicz for calling it to my attention.

Lemma 19. If S is a connected one-manifold and E is a set contained in any Eucli-
_dean space and f: S — E is surjection of Baire class I such that Sfor any open interval
(a,b)<S, {a,b}=CI(f(a, b)), then E is connected.

The following technical set — theoretic lemma is needed in the proof of the main
result of this section.

LemMa 20. Suppose {A;}21 is a countable collection of pairwise disjoint count-
o0

0
able sets, and suppose that g: iUZA,--» U 4; is a function such that g(Ad; )4
= i=1

icm®
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e
for each i. Then the set \) A; can be arranged in a sequence such that for every
i=1
@

aelJ A;, g(a) preceeds a in the sequence.
i=2

@
Proof. Let & be a one to one function from |J 4, to the set of prime positive
i=1
[e]

integers. Define #: | A; — N, where N is the set of positive integers, recursively
i=1

on i, by:

_jh@
na) = {h(a)'n(g (@)

if ae A,
if n has been defined on 4; and ae 4, .

® .
Then 7 is a one to one function from {J 4; into N such that n(a)>#(g(2)) whenever
i=1

g(a) is defined. Let {n;»j%; be the numbers in n[ U 4;] arranged in increasing order
i=1

and define the desired sequence <{a;>7%; by a; = n7(n;). The required properties
are easily checked.

Let E denote the set of endpoints of M.

THEOREM 3. E is connected, as is E—{p} for any p € E. However, if p,qe E
with p # q, then E~{p, q} is not connected.

Proof. To prove that E—{p, ¢} is not connected, let 4 be an arc from p to ¢
missing M except for p, g and let B be the arc [p, ] in M. Then 4 U B is a simple
closed curve, and so separaies the plane. It is readily seen that both complementary
domains of 4 U B must contain points of E, so that E—{p, 4} is disconnected.

To prove the first two assertions of the theorem, Lemma 19 is used. Let <V, )=,
be an enumeration of the V(k, m)’s such that if V'{k+1,md)<H(V{k,}>), then
V<k,j> preceeds V{k+1, m) in the enumeration. This is possible by Lemma 20.
Observe that the boundary of D <k, m) is the union of V' {k, m) and another V-arc
which we shall designate U<k, m), and that U<k, m) and ¥ (k, m) meet only at
their endpoints (see Fig. 4, 5, or 6). Let u{k, m) denote the vertex of U<k, m).

Let (U,>% , be the enumeration of the U{k, m)’s corresponding to the enumer-
ation (¥, >, of the ¥V {k, m)’s; thatis, U, = U<k, m)ifand onlyif V,, = V<{k,m),
and let u, be the vertex of U, for each n.

Let S denote the boundary of N,. Define a sequence of functions {f,>uk1,
fui 8 — E2, as follows: f; is the identity on S. Suppose f, has been defined such
that Bd(V,)=f,(S) and f(S) n I(V}) = @ for k>n. Let v, be the midpoint of
Bd(V,). Define e,: f,(S) — E? by:

e,(x) = x if x ¢ bd(V});
€,(va) = u,; and

e, is linear on the closure of each component of BA(V,)—{v,}.
4%
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Then Bd(¥,) is mapped piecewise linearly onto U,, the midpoint going to the
vertex, and otherwise f,(S) is undisturbed. f, ., is defined to be e, o f,. (Referring
to Figure 8 may be helpful.) Then each f; is continuous and one-to-one. Now let
peS. If for some n, fi(p) is an endpoint of some My, it follows that for all m>n,

Ju(p) = f,(p), so that limf,(p) = fi(p) € E.

Un

Bd(¥)

Fig. 8

If £,(p) is not an endpoint of any M, for any n, then for each » there is a u-
nique k, such that f,(p) e Bd[V} ]. We have k,>n, and if k,>n, then k,., = k,.
Thus, for infinitely many n, &, = n. Let {n;>{%; be the increasing sequence of those
and only those »n for which k, = n. Then f,(p) e Bd[v,], so that f;.,(p)eU,,
and fy4,(p) e Bd[¥, +“i]g U,,. Furthermore

dia [f74,(BA (s, )] <3diaf, (BA(¥,)

for each i, so that p is the only point in ) f, }(Bd(¥},)). Let (x,){%; be the point
n=1

in M such that x, is the vertex of ¥,,,, for each i (Observe that ¥,,, , is an exposed
V-arc of M, for each i and that there is such a point (x> . (Refer to Figure 9.)

Then, for i>1, d(x;, f1n(P))<1/(i—1), since both belong to Ah(x;-q).
Thus { f,(p)>i%; converges to ilim x;, which is an endpoint of M. Furthermore,

if geS and g # p, then for some 7, ¢ ¢, *(Bd(¥,,)) so that limf,(p) # Lim f,(q).
n~ron H=r o0
Thus, if f: §— E? is defined by f(x) = limf,(x), f is one-to-onc and f(S)<SE.

However, if x € E, either x € M,, for some k or xe M—M - If x& M, for some k,
either k =1ork+# 1L If k=1, xeS and f,(x) = x for cach n so that Sx) = x.
If k>1, x lies on UCk~—1, m) for some m and Ulk—1, md> = U, for some j. Let
¥ =fx1(*¥); yeS, and for all k>j+1, fi()) = x, so that f(y) = x. In case
x € M—M, there is a unique subsequence <¥, >, of (¥,>& ; such that: 1) V,, is
an exposed V-arc of M, 2) ¥,,, . SH(V,); and 3) xe H (¥,,) for each i. Then, by
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the fact ﬂlatio1 T (BA(V,)) # @, there is a point ¢ such that f(@) = limf(g) = x.
Hence f(S) = E. e

LetpeE al.ld let ¢ = f(p). I pe M~M,, 7 is a point of continuity of £,
since f~(I(¥) is open for each i and some subsequence here will form a neighbor-
hood base at p. If p e M), for some k, then in My, p is a limit of a sequence of

7
p= fﬂx(p)
Fig. 9. Observe that fu,(0) = p, far(P) = fi+m(P)s fus(P) = frn (D), -

other endpoints of M., ; from “both sides”, so that the function f satisfies the hy-
potheses of Lemma 19, and f(S) = E is a connected set. (£ is of Baire class J, since
it is a pointwise limit of continuous functions.)

If pe E and f(q) = p, then S—{g} is also a connected one-manifold and again
Lemma 19 applies, so that E—{p} is a connected set.

VI. Modifications of the example: The questions of Krasinkiewicz and Borsuk
(See Introduction). To give an example of a plane dendroid whose endpoints and
arcwise accessible points coincide, but whose set of endpoints is not connected,
let K = {(x,y)e M| y<0}, and call the arc [—1, 1] x {0} the edge of K, and if K’
is a homeomorphic copy of K, call the corresponding arc the edge of K’. Consider
the following plane dendroid W,, due to P. Minc,

Wy =dAdx[-1,1]lUF, UF_

where 4 = {0} U {I/rz”: n an integer, n # 0}; F, is the union of all straight line
segments from (0, 2) to (1/n,1) for odd integers n, and the segment from (0, 2)
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to (0, 1); and F_ is the union of all segments from (0, —2) to (1/n, —1) for n even
and the segment from (0, —~2) to (0, —1). For n # 0, let

o ,_1), i n>0,
2n—1

n<0,

1
={—1].
bn <2n ) |

W is now obtained from W, by attaching a homeomorphic copy of K along
its edge to each of the arcs: [a_;, a4], [a,, @pas), [b—y, by and [b,, b, ] in W, on
the side such that this is possible, and such that: 1) these copies of K are disjoint
except where they necessarily meet along their edges; 2) these copies of K meet W,
only along their edge; and 3) for any ¢>0 only finitely many of these copies of X
"contain points at a distance greater than & from W,. The pattern can be seen in
Figure 10, where the attached copies of X are indicated (K). The idea is to “cover
up” all accessible non-cndpoints of W,. W is the union of W, and the countably

Fig. 10. W, is pictured in heavy lines, the remainder of the construction is pictured schematically
in thinner lines

icm
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many attached copies of K. W is a dendroid and the endpoints and accessible points
of W are the same; however, the set of endpoints of W is not connected since W is
separated by the segment {0} x [—2, 2], which contains no accessible points, and
this yields a separation of the set of accessible points of W.

Next, to show that M is not irreducible with respect to its stated properties,
define a sequence (M;>{%;, where M is a subcontinuum of M; for each i such
that 4, maps My, to M in such a way that the arguments concerning the properties
of M can be repeated. This can be done as follows:

Let M3 = {(x,) € M;| y=—+3} (The value ~18 js chosen here only so that
the line used to truncate M, does meet bd (V) for any exposed ¥-arc V. It does meet
the “outer” endpoints of the two broadest exposed P-arcs in M, (see Fig. 2).

If M, has been defined, consider any exposed V-arc Vin M,. It will be a subarc
of an exposed V-arc ¥ {(n, m) in M,. In order to define M1, simply attach a portion

Vin, my

portion of B{n, m)
to be included in Mp+1

truncation line:
V'is that portion

of Win, md~
above this line

the V-arc U

B{n, m)
(deleted portion of B{n, m)
below truncation line)

Fig. 11. The V-arc U becomes in each case the truncation line for the V-arcs at the next stage of
the construction. If the V-arc¥ is all of V<, m), then all of B<n, m) is included in Myt

of each B{n, m), determined by truncating B{n, m> with a F-arc U with the same
endpoints as ¥ and lying in H (V) and having its vertex on the arc in B(n, m)> from
the vertex of ¥ (see Fig. 11).

When this truncation and cutting out of part of B{n, m) has been done for
each exposed V-arc of M,, then M, is the union of M, and the remaining portion
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of the B{n, md’s. (Of course, some of the exposed V-atcs of M, are omitted com-
pletely from M., as can be seen from the deleted portions of B{n,m) in
Figure 11.)

It is easy to see that all of the argument for the M,’s can be carried out for
the M"’s, defining N, to be the union of M, with the convex hulls of all its exposed
V-arcs. Thus M’, the inverse limit of {M,; h,| M, 41 }ne1, IS @ proper subcontinuum
of M with the same connectedness and accessibility properties for its set of endpoints.
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An example concerning automorphisms of generalized cubes
by

Dorothy Maharam (Rochester, N. Y.)

Abstract. An example is given of an involution T on I" (m3c) with the following properties:
(1) T'= T~* sends Baire sets to Baire sets, (2) T induces the identity automorphism on both the
category algebra and the measure algebra of /™, (3) T has no fixed points.

Let m be an infinite cardinal, and consider the product I™ of m copies of the
unit interval 7, both as a topological space (with product topology) and as a measure
space (with product Lebesgue measure). It is known ([1]) that every automorphism
of the measure algebra of I"™ can be “realized” by a point map that can even be
required to be a Baire isomorphism; and a similar remark applies to the category
algebra ([5]). Some time ago, S. Kakutani asked the author whether the realization
would have to be “almost” unique. More specifically, suppose T is a transformation
of I™ that induces the identity automorphism of the measure algebra (or of the
category algebra) of I™; need T'(x) = x for a “large” set of x’s? When m< &, the
answer is easily seen to be “yes”; we have only to discard, for each member of a count-
able base Uy, U,, ..., for I, the negligible set U,AT(U,), and T will be the identity
transformation on what is left. But we show here that, for m>c, the answer is “no”
to both the measure and category forms of the question, and by the same example —
even if the transformation is required to be an involution. It is of course enough to
consider m = c.

THEOREM. There exists a Baire isomorphism T of I, of period 2, such that T in-
duces the identity automorphisms of both the category algebra and the measure algebra
of I¢, but such that T has no fixed points (*).

Proof. We use the following notation. I denotes the closed unit interval [0, 11
as usual; J = Ju {~1}, X = I regarded as []{I;: jeJ}, where each I, = I
The jth coordinate of x € X is 7,(x) or x(j). (As this notation suggests, the coordi-
nate x(—1) will play an exceptional role).

Take an arbitrary measure-and-category-preserving Borel isomorphism ¢ of I
onto itself, without fixed points, but such that &* = identity map ¢; of I. For instance,

() For a simple example of such a T for which the set of fixed points is not measurable
(having outer measure 1 and inner measure 0) see [3, p. 702].


GUEST




