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Equivariant embeddings of finite abelian group actions
in euclidean space

by
Richard J. Allen (Northfield, Minn.)

Abstract. Let X be a finite dimensional compact metric space and let G be a finite abeliarx
group which acts on X. This paper shows that X equivariantly embads in a euclidean space with
an orthogonal G-action. Moreover, a minimum dimension for the euclidean space is obtained.

1. Introduction. Mostow [8] first showed that every action of a compact Lie
group with a finite number of non-conjugate isotropy subgroups on a finite dimen-
sicnal, separable, metric space can be cquivariantly embedded in a linear action of
the group on some cuclidean space. However, Mostow’s theorem said nothing about
the required dimensions of the euclidean space. Copeland and de Groot [3] went
on to find dimensions for the euclidean space in the case of an action of a cyclic
group of prime order. Kister and Mann [7] extended this result to actions of compact
abelian Lie groups with a finite number of distinct isotropy subgroups:

In [1] the present author obtained improvements on the results of Copeland
and de Groot using methods different from those employed previously. A conse-
quence is that, if X is a compact n-dimensional metric space with a free Z,-action,
then X equivatiantly embeds in R®*! with an orthogonal Z,-action.

The present work provides improvements on the results of Kister and Mann
in the case of a finite dimensional compact metric space with a finite abelian group
acting on it. The methods used here are extensions of the ideas found in [1]. An
important corollary of this work is contained in the theorem stated below.

TuroreMm (1.1). Let G = Ry ®..OROH, ®.. ®H; be a finite abelian group,
where the R's are cyelic groups of ovder # 2 and the s are all of order 2. Suppose X Is
a compact n-dimensional metric space with a free G-action. Then X equivariantly
embeds in an orthogonal G-action on RY, where N = max{2n+1, 2+

2. Equivariant spaces and equivariant maps. Throughout the remainder of this
paper let G denote a finite abelian group and let X be a compact metric space. If G
acts on X, then X is called a G-space, frequently denoted as (X, (). An equivariant
map fi (X, G)— (Y, G) between two G-spaces is an equivariant e-map if
diam f~1y<e for every y e fX. If (X, G} is a compact metric G-space and (¥, G)
is a separable metric G-space, then (¥, G)%+9 is the subspace of the metricspace bl
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(with metric defined by d(7, g) = supd(fx, gx)) consisting of all equivariant maps

xeX
from (X, G) to (¥, G). In fact, (¥, ®© P is complete if ¥ is complete.
If (¥, G) is a G-space, then Gy = {gy| g € G} is called the orbit of y, and
GS = |J ¢S is called the orbit of S, where y is an element in Y, and S is a subset

geG
of Y. A subset S of Y is called sectional if S n Gy = {y} for each y in S, and any
one-to-one function y: (¥/G)— Y is called a section.

(2.1), which is stated here, is used in proving (2.2) below. A special case of (2.1),
namely that of G = Z,,, is found in Jaworowski [5, p. 235]. After the proof in [5] is
examined, it is clear that it holds for G a finite abelian group.

CoOVERING LEMMA (2.1). Let (X, G) be a compact metric G-space and let A be
an equivariant closed subspace of X such that G acts freely outside of A. Suppose C is
an equivariant open cover of X—A. Then there exists a countable, locally finite, equi-
variant, open cover B of X—A which is a refinement of C and which satisfies the
Sfollowing:

@A) lim (diamSt¥V) =0 for Ve B;
av,4)~0

(ii) If Ve B, the ClVaX—4;

(iii) Every neighborhood of A in X contains all but a finite number of elements
of B;

(iv) For every Ve B, the elements in {gV| g € G} are mutually disjoint;

W) If dim(X—A4)<n, the OrdBL|G|(n+1)—1;

(vi) If € is a given positive number, then B can be chosen such that meshB<s.

POLYHEDRAL REPLACEMENT LeMMA (2.2). Let (X, G) be a compact metric
G-space and let A be an equivariant, closed subspace such that G acts freely outside A.
For a given positive number e, there exists a compact Hausdorff G-space (Z, G) such
that:

() Z contains A as an equivariant, closed subspace;

(i) There exists a countable, locally finite, simplicial complex K with |K| = Z~ A
and a free simplicial action of G on |K|;

(i) There is an equivariamt e-map f: (X, G)— (Z, G) such thur fi, = 1,4,
f(X-A)<IK|, and f~HSt(V)| VeK} forms a locally finite, equivariant, open
cover of X—A of mesh less than ¢; and

(v) If dim(X—A)<n, then dimK<n.

(2.2) is a modification of Lemma (2.3) in [5]. The proof given in [5] is valid in
the present case of G a finite abelian group. The essential idea is to replace X'—A4

by the equivariant polyhedron generated by the nerve of the equivariant cover
found in (2.1).

3. Equivariant general position. Given a set § in RV, L(S) denotes the affine
span of Sin R". Let C be a convex body in RY and let S be a subset of C. Then
Le(S) = L(S) o C and L(S) is the affine span of S in C. Several geometric notions
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found in [1], including those of equivariant general position and of equivariant
(g, T)-position, are summarized in the following definition.

DermuTION (3.1). Suppose (R", G) is a G-space and (C, G) is an equivariant
subspace of (RY, G) where C is a convex set in R". Let Q and T be equivariant sub-
sets of C and let g be a positive integer. Q is said to be in equivariant (g, T)-general
position in C if every sectional subset S of Q satisfies the following conditions:

(1) S is in general position in C;

(2) For every subset Sy of § containing less than g+ 1 elements, Le(Sy) N T = @.

EQUIVARIANT GENERAL POSITION Limma (3.2). Suppose RY has an orthogonal
G-action and the convex body C is an equivariant subspace of RY.Let O = {q1, 92, -}
Be a countable set; let : Q— Chea Sunction; and let &y, €, ... be a sequence of positive
aumbers. If T is an equivariant closed subset of C and dim(L(T)) = k<N, then
there exists a function 2 @—C satisfying the following:

1) GO Q) is in equivariant (N—k, T)-general position in C; and

@ d(eq, g <e

Proof. Let B(pg;, &) = {yeC| d(pq;, y)<eg}. Pick yg to be any point in
B(oqy, &) 0 (C=T). Then E; = G()q,) satisfies com?itions (1).a.nd 2.

Assume E; = G({¥qy, s fg,}) is defined and satisfies conditions (1) and (2).
Let .

Py = U {L(S) S<Ej; #(SISN; S is sectional} .

1t follows that P, = GP, is a closed, nowhere dense set in C. Therefore, C—GP,
is an equivariant, open, dense subset of C.If ¢ is any element in C— GPy, then E; U Ge
is in equivariant general position.

Let

P=U{LLSuD)| S<Ej #(S)SN—-k—1; S is sectional} .

As was the case above for Py, it follows that P = GP is a closed, nowhere dense
set in C. Therefore, C—GP is an equivariant, open, dense subset of C and
(C~GP) n T = @. Furthermore, 0 = (C—GPy) N (C—GP) is an open, dense
subset of C which does not intersect T. . . )

Let D = B(@q 1> E41) N (C—T). D is open in C; thus GD is open in C
And, since the G-action is orthogonal, GD n T = @. Hence, U=0nGD is
open and equivariant. Let y be in D such ‘chat’ Gyc U. Define ¥gj41 =¥ and
Ejqg = E;u Gy Ejyy, 50 constructed, satisﬁc::s (1) and (). )

Thus, using induction, a function Y that satisfies the conclusion of the lemma can

be constructed. . o hed
Lemma (3.2) is used in the next scction to embed equivariant polyhedra.

4. Polyhedral replacement embedding lemma. .
LemMa (4.1). Let K be a countable, locally finite, n- dimensional, simplicial complex

N4k an
with a free simplicial G-action and K° = G({v;}i~ 1)..Su];)pose R N >£3v fstEt
orthogonal G-action and the convex body C is an equivariant subspace of R
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Q = {q1. 4, ...} be ¢ countable set of points in C and let &, &,, ... be a sequence of
positive numbers. Let T be an equivariant subset of C and dim(L(T)) = k2n. If G is
free on C—T, then there exists an equivariant embedding h: (K|, G) — (C—-T, G)
such that d(hv;, g;)<e;.

Proof. Let y: Q— C be a function that satisfies Lemma (3.2). Let
GWQ) = G{yg; = r;}). Define h: X°— C by hgv; = gry, g € G. Extend & linearly
to all the simplexes of K. Note that d(hwy, q;) = d(r;, q) = dq;, g)<e;. The
details which show that A is an equivariant embedding can be found in the proof
of (3.1) in [2].

The following notation pertains to (4.2) below. Let X be a compact metric
G-space of dimension <n, where G acts freely outside of a closed equivariant sub-
space 4. Suppose RV*, N>n, is an orthogonal G-space and suppose the convex
body C is an equivariant subspace of RV**, Furthermore, let G be free outside the
equivariant closed subspace T of C where dim(Lo(T)) = kzn.

Ifw: (4, G) - (T, G) is a fixed equivariant embedding and j: (X, G) — (C, G)
is an equivariant map such that j|, = w, then, corresponding to a given positive
number #, the uniform continuity of j implies that there exists a positive number &
such that, if d(x, x)<d, then d(jx,jx")<in. In addition, corresponding to &,
let (K,G), (Z=|K|ud, ), and f: (X, G)—(Z,G) be as in (2.2).

Finally, denote by K° = G({v;};2,) and by GB = G{V;} the locally finite,
equivariant, open cover of X—4, where K is generated by the nerve of B.

POLYHEDRAL REPRESENTATION EMBEDDING LimMmA (4.2). There
h: (Z,G)—(C, &) such that:

() & is an equivariant embedding;

@) hly = w;

(i) Ry 4 is a simplicial homeomorphism; and

(v) d(gh(ey, j(f~(Stgu)))<in, for euch geG.

Proof. Define D = {V;e B| d(V;, 4)<}6} and let D' = B—D.

For each V;eD', choose x;&¥,. Then choose p,e(C—T)n B(j(x), &)
where 2; = }5 and where B(j(x)), ¢,) is the open ball of radius ¢; in C around j(x,).
Similarly, gp; € (C—T) n B(gj(x), ¢;) for each g&G.

For each ¥; e D therc exists a;€ 4 such that d(V;, A) = d(V,, 4) = d(V,, a)),
and there exists x; & ¥, such that d(v;, a;)<d. Choose p, e (C—T) n B(w(ay, &),
where & = min{}d(V;, a), ¢n}. Similarly, gp,e(C—T) n Blgw(a)), &;) for each
geG. .
By the Equivariant General Position Lemma (3.2), there cxists a countable,
equivariant set G({g,f i =1,2,..}) in C with the property that d(gp;, gg)<e,
for cach g € G. Furthermore, the following inequalities hold:

(1) For Vie D', d(ji(x),q)<d(jCx). p)+d(pi, q)<ei+e, = dn+dn = L.

(2) For Vi D, d(j(xp, ¢)<d(j(x), w(a))+d(w(a), p))+d(p;, g)<in+in+

1
+eh = 1.

exists
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Finally, define A: (Z, G)— (C, G) as follows:
hly=w.

Foreachg € G, let h(gv) = gh(g,) for the vertices v; € K°. Then extend A linearly
from K° to all of |K| =2Z—A4.

By definition, / is equivariant, hl, = w, and h]z- 4 is simplicial. (1) and (2) above
imply that condition (iv) of the lemma is satisfied. On 4, & is clearly one-to-one.
Lemma (4.1) tells us that on |K]| /i is an embedding into the complement of T'in C.
The details which show that / is continuous can be found in the proof of (3.2) in [2].

5. Function space lemumas. Results relating to some function spaces will be dis-
cussed here. For this discussion, (X, G), (C,G), 4, T, and w are the same as in
Section 4. Then, one defines

M = (C, G)(X,G);

M = {pe M| ¢ls=w};

M'(E) = {peM'| ¢ is an g-map}; and

E = {peM'| ¢ is an embedding}.

(5.1) M’ is complete.

Since M is complete and M is closed in M, statement (5.1) follows.

Note that the map f: (X, G) — (Z, G) used in the introduction to (4.2) above
was an equivariant §-map. Consequently, given an &>0, § could have been chosen
less than & from the beginning.

(5.2) M'(e) # @ and, hence, M' +# @.

Statement (5.2) is obtained by letting k = ko f, where & satisfies (4.2). Since fis
an equivariant 5-map, and hence an g-map from (X, @ to. (Z, G), then ke M.’(a).

Suppose S, is the set of e-maps in C¥ and suppose S, is the sef of e}r{nbeddmgs
in C*. In [4, pp. 57-59] it is shown that S is open and dense in C” and t.hat
S, = (| Sy. By adjusting the proof in [4] using (2.2), one proves the following.

8

(5.3) For every positive number &, M "(¢) is dense in M'.
Furthermore, M'(s) = M’ n S; and this implies that

NME) =N aS)=Mn()S) =M S =F.

The next two statements follow from the above observation.
(5.4) For every positive number &, M'(e) is open in M. ‘
(5.5) he (\ M'(e) if and only if h: (X, G)— (C, @) with hl, = w is an equi-
variant embedding. In particular, OM (&) = E.‘

Finally, using (5.5), (5.4), (5.3), and (5.1), the following result is established.
(5.6) E is a dense Gy set in M', and, hence, E # @.
The following theorem is a corollary of (5.6).
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TueoreM (5.7). Let (X, G) be a compact n-dimensional metric G-space and
let A be a closed equivariant subspace such that A equivariantly embeds in R", via w,
with an orthogonal G-action. Suppose G = R®..OROH,;®...®H, acts freely
on X—A. Then (X, G) equivariantly embeds in an orthogonal G-action on RVx R™
via an equivariant embedding which extends w and where

i) N+M = (+ 1D +max{n, k}, if 2r+s<n+l;

(i) N+ M = @r+5)+max{2n+1—2r—s, k}, if n4-1<2r+5<2n+1;

(i) N+M = Qr+s)+k, if 20+1<2r+s.

Remark. In (5.7) above, let RY x RY = (R*"x R*"%) % (R"~*x R"), where e is
some nonnegative integer, and let the cyclic group R; have order |R;|. For each
j=1,..,r suppose a;: R*— R* is the rotation about the origin through the
angle 2m/|R;]. Then the required orthogonal G-action on RYx R™ is the product
of the actions generated by the a; (j = 1, ..., r), the action on R*+¢ generated by the
antipodal involution, the trivial action on RM-* and the given G-action on R~
Note that this action is free on R”—{0}.

Proof. Consider

RY = R*x..xR*xR',

where

i = )rs, if n+l<L2rt+s,
T ln+1-2n if 2r+s<n+l.
There is a unique copy of R? corresponding to each R; in the decomposition of G.
Recall that each R; is cyclic of order # 2. For each j = 1,..,r let a; R*— R*
be the rotation about the origin in R? through the angle 2r/|R;|. Define B: R — R}
by fx = —x. Theny = (ay, ..., &, f) generates an orthogonal G-action on RY that
is free on R¥—{0}. This G-action, together with the given orthogonal G-action
on RM, provides an orthogonal G-action on RYx R which, using (5.6), implies
the conclusion of the theorem.

Remark. An immediate corollary of (5.7) is Theorem (1.1), since k = 0 in
the case of a free G-action.

6. G-actions and isotropy subgroups. Let X be a G-space and x € X. Then
G, = {g € G| gx = x} denotes the isotropy subgroup of x. If H is a subgroup of G,
then X" = {x| HcG,} denotes the fixed point set of H. In addition, Jet
Xy = {x| H= G,}. Furthermore, suppose X is a compact n-dimensional metric
space and G is a finite abelian group. Order the isotropy subgroups of the G-action
on X as follows: :

H,,H,,..,H, where H; < H

subgroup

only if j<i. An ordering of this type will be called canonical [6]. Given a canonical
ordering, define

X, = {xe X| G, = H; for some j<i}.

icm®
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Then X;cX,c.cX, =X is a sequence of closed G-subspaées of X and
X,~X;_, = Xy, Note that G/H, acts freely on Xy, and that the G-action and
the G/H-action coincide on Xp,.

DEFINITION (6.1). Let G be a finite abelian group. G is said to have a cyelic
decomposition of type (r,s) il G is isomorphic to a direct sum

R @.ORPH, @.OH,,

where the R’s are cyclic groups of order s 2 and the H’s are all of order 2.

THEOREM (6.2). Let X be a compact n~dimensional metric space and let G be
a finite abelian group acting on X with Hy, ..., H, distinct nontrivial isotropy sub-
groups. Suppose G has a cyelic decomposition of type (r, s) and G/H; has a cyclic
decomposition of type (ry, s, for i =1, .., t, and suppose X @ embeds in R*. Then X
equivariantly embeds in an orthogonal G-action on RY, where

t i
N<max{n+1, 2r+s}+ Y max{n+1, 2r;+s;} + max{k, n} . 1
i=1

Proof. We can assume that G = H,, Hy, ..., H,, Hy.; = (¢) forms a canonical
ordering of the.isotropy subgroups. The proof proceeds, by induction, on the number
of Hys. By (5.7), X; = X% U Xy, equivariantly embeds in an orthogonal G-action
on R™, where

(n+1)+max{n, k}, if 2ri+s,<n+1,
Ny =<Q@ry+s)+max{2n+1—2r1—sy, kY, if nt1<ry+s<2+1,
Q@ry+s)+k,  if 2n+1<2r+sy,
Ny < max{n+1,2r +s5}+max{k,n}.

The result is true for i = 1.
Assume the result is true for i = I; i.e., X; equivariantly embeds in RY with
1

an orthogonal G-action and N; < Y max{n+1, 2r,-+5,} +max{k, n}. Note that
=1

Xioy = Xy, © Xp. Again, using (5.7), Xy equivariantly embeds in RY*,
where

Nipr < max{n+1, 2041 S0 1} +mAX N, 0}
= max{n+1, 2y +54y )+ N

N

1

max{n--1, 2rp g+ e gt + o, max{n-+1, 2+ 5;}+max {k, n}
i=1

41

= L max{nt1, 2o max (k)

Hence, the result is true for i = /+1. Note that for i = t4+1, 2y Sy = 208
Therefore, by induction, the theorem is proved.
An immediate corollary of (6.2) is the following.
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THEOREM -(643). Let X be a compact n-dimensional metric space and let
G=R®.0R®H,®..0H, be a finite abelian group acting on X with t distinct
nontrivial isoiropy subgroups. Suppose X G embeds in RY. Then X equivariantly embeds
in an orthogonal G-action on RY, where

N< @+ max{n+1, 2r+s})+max{k, n} .

Remark. Tt is clear that, upon comparison with Theorem 2 in [7], (6.2) above
does significantly lower the known dimension of the euclidcan space in which a com-
pact finite dimensional metric space can be equivariantly embedded. The following
example is given for comparison.

BxampLE. The Kister and Mann result, Theorem 2 in [7], implies that, given
the conditions of Theorem (6.2) above, the dimension of the euclidean space is

@+ D{(+D(r+s8)}+2n+1 for n odd,
E+D{n+2)r+s@+1)}+2n+1  for n even.

Let Z¢ = Z,®Z, act on X, a compact n-dimensional metric space where n is odd.
Then r=g5=1."
Case 1. Isotropy subgroups: (€), Z,, Zs, Zs. Then ¢ = 2. The following com-
parison for the computation of the dimension of the euclidean space is given:
(@) K—M gives B)(n+1)(2+2n+1 = 8n+7.
(ii) Theorem (6.2) gives {3+2+2+3 =10ifn=1,
+D+@E+D+@E+D)+20+1 = Sn+4 if n>1

and where k is the “worst” possible, namely 2n+1.

Case 2. Free action. The t = 0 and k& = 0.

(i) K—M gives (n+1)(2)+2n+1 = 4n+3.

(ii) Theorem (6.2) gives 2n+1.

CONCLUSION. Most of the results in this paper hold in the case of an arbitrary
finite group. The abelian property of the group is essentially used only to obtain the
cyclic decomposition of the group which, in turn, affects the calculation of the mini-
mum dimension of the euclidean space having an orthogonal group action. In
fact, if, in the case of an arbitrary finite group, one can determine the minimum
dimension of a euclidean space having an orthogonal semi-free group action, then
one can obtain equivariant embedding dimension results for an arbitrary finite
group action analogous to all those contained in this work.
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