Squeezing m-cells to (m—1)-cells in E"
by
C. D. Bass (Pembroke, N. C.)

Abstract. An m-cell B in E" is said to be squeezed to an (m— 1)-cell if there is a map f of E™
onto E" such that f(B) is an (m—1)-cell, fI(E"~B) is a homeomorphism onto E"—f(B), and
f|B s related to a natural projection onto a spanning (m—1)-cell in B. It is known that every 2-cell
(3-cell) in E® can be squeezed to a 1-cell (2-cell), and that there exist m-cells in E" (n=4,
2 mgn—1) which cannot be squeezed to (m—1)-cells. In this paper we develop a technique
for squeezing m-cells in dimensions n>5. We then apply this technique to derive sufficient con-
ditions for a cell to be squeezable, and to distinguish some wildly embedded m-cells which can
be squeezed in many different ways to cells of lower dimension.

1. Tntroduction. We are interested here in the problem of squeezing an m-cell
in Buclidean space E" to an (m—1)-cell in E™. By an m-cell we mean a topological
image of the set

B" = {(xy, vrr %) € E| PEEINE L

The boundary of this set we denote as S™~ 1, A topological image of this set is known
as an (m—1)-sphere. There is a canonical projection map = from B™ onto Bt
defined by the equation: w(xy, v, Xm—1> Xm) = (%15 +rrs Xm—y). The so-called squeezing
problem is to find a map of E" onto E" which realizes the effect of = on an m-cell
embedded in E”. More precisely, let B denote an m-cell in E* (m>2). We say that
a map f of E" onto E" squeezes B to an (m—1)-cell B’ if there exist embeddings g
from B™ onto B, and & from B"”* onto B’ such that (i) S |(E"~ B) is a homeomor-
phism onto E"—B' and (i) feg = hom We say that B can be squeezed to B’
along g or that g supports a squeezing map.

Faton and Daverman proved in [12] and [13] that each 2-cell (3-cell) in E® can
be squeezed to an arc (disk). It was found subsequently, that their techniques could
be used to prove that each 2-cell in E” can be squeczed to an arc. However, Da-
verman [6] gave examples of m-cells in E", 2<m<n-1, nz4, which cannot be
squeezed at all to (m—1)-cells. Our present efforts will yield some conditions that
are sufficient for a cell to be squeezable. Yet, there remain some interesting questions
regarding the incomplete classification of squeezable cells. Some of these are stated
at the conclusion of this paper.
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Our approach to squeezing problems emphasizes the role of the embedding g
from B™ onto an m-cell B, A useful idea is to associate with each such embedding g
the decomposition G of E” whose non-degenerate elements are the particular spanning
arcs gn~Y(x), xe IntB"~%, in B. The question, whether B can be squeezed to an
{m~1)-cell along g, is equivalent to the question: is the decomposition space E"/G
homeomorphic to E”. A principle result, Theorem 2.1, gives a sufficient condition
for an m-cell to be squeezed along a particular embedding g for dimensions
2<m<n—1, n>5. A similar result for cells of dimension # is a consequence of the
“mismatch theorem” for sewings of crumpled cubes, [14, Theorem 3] and [7, The-
orem 5.1]. The author is indebted to Robert Daverman for stimulating conversations
and suggestions regarding the development of these results,

2. The main results. The theorems stated in this section, our main objectives,
are proved in Section 5. The material in Sections 3 and 4 is confined to technical
preliminaries similar to well-known techniques of [3] and [7]. Section 6 treats further
consequences of these results.

Let “4” denote the usual metric on E”. If X is a compact space, f and g are
continuous functions from X into E"; we define the distance g between f and g by
o(fig) = ;Sclelg d(f(x), g(x)). A set Y= E" is 1-ULC, uniformly locally simply con-

nected, if to each >0 there corresponds a number >0 such that each
map f: S* — ¥, for which diam f (S1) <4, extends to a map g: B> — ¥, for which
diamg (B?*)<e.

THEOREM 2.1. Let B denote an m-cell in E", n=5, 2<m<n—1. Suppose that
g: B"— B is a homeomorphism onto B; F is an F, set in B such that

1) (E"—B)u Fis 1-ULC, and

2) each arc gn~!(x), x e IntB"™*, contains at most one point of F.

Then B can be squeezed to an (m—1)-cell along g.

The use of a “local homotopy” criterion in this result is motivated in part by
an example, due to Eaton, of a “dogbone” decomposition of E™ into points and
tame arcs [15]. This construction can be used to define an embedding g: B*— E"
such that g (B?) is locally flat modulo a Cantor set C in g(BdB?); yet, g does not
support a squeezing map. The hypothesis of Theorem 2.1 fails to apply because some
of the arcs gn™*(x) contain two points of C. To perceive the limitations of this result,
one can exploit a construction of Daverman [7, Example 13.2] to define an em-
bedding g': B*— E” such that g'(B%) is locally flat modulo a Cantor set C in
g'(BdB*). Again, unusual properties of ¢’ and C imply that the hypothesis of The-
orem 2.1 is not satisfied. However, the embedding g’ does support a squeezing map.
A careful comparison of these two examples might suggest how to strengthen
Theorem 2.1.

THEOREM 2.2. Let B denote an m-cell in E", n5, 2<m<n—1. Suppose that B
contains a 0-dimensional F, set F such that (E"—B) U F is 1-ULC and F is locally
flat relative to B and BdB. Then for each homeomorphism g of B™ onto B and each
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number >0, there exists a homeomorphism g': B™ — B such that o(g,g")<e and B
can be squeezed to an (m—1)-cell along g'.

Some special types of m-cells to which the latter theorem applies are discussed
in Section 5. These examples, of cousse, all share the property that many different
embeddings g of B™ can be used to do the squeezing. Daverman’s construction [8}
can be used to give examples, not subject to the hypothesis of Theorem 2.2, which
can be squeezed to cells of lower dimension. It remains an open question, however,
whether the hypothesis of this theorem is a necessary condition for the existence
of a dense set of embeddings which support squeezing maps. The author does not
know if there exists an m-cell B (m>3) in E" (n2>4) with the property that there is
a unique homeomorphism g: B"— B, along which B can be squeezed. In Section 6
we will discuss the case that every homeomorphism from B™ onto B supports
a squeezing map.

3. Special subsets of an m-cell. In this section we derive a technical result
related to the hypothesis that a topological m-cell B in E" contains nicely positioned
subsets which can be used to confine homotopies of simple closed curves near B.

For notational convenience we will use the unit m-cube I", the m-fold product
of I = {0<t<1},as 2 standard model for m-cells, in lieu of B™ Another notation
is N(X), the set of points within distance & from a compact set X, known as the
e-neighborhood of X. The distance between two compact sets X and Y is defined by
d(X, Y) = inof d(x,y). Ang-map (¢~ homeomorphism) of X is a map (homeomor-

xg X,yeY

phism) f: X — E" such that d(x, f(x))<e for each xe X.

DermuTioN. Let g denote a homeomorphism of I™ into E";  the natural
projection of I" onto I m=1. ¢ a positive number. An isotopy 4, of E” moves points
&-parallel to fibers if and only if, for each x € E”, either h,(x) = x, 0<r<1, or there
exists y e "~ such that k(xx ][0, 1D eN(gy~ ().

Levma 3.1. Let g denote a homeomorphism of I"™ onto an m-cell Bin E*; n=5,
2<m<n~1; F an F, set in B such that (E"—B)u F is 1-ULC. Let a be a point
in (0, 1); P a 2-dimensional polyhedron in E" such that P n Beg(I™™1x [0, a)).
Then, for each 5>0 there exists a homotopy f: P — E" such that

1) fy is the inclusion,

2) £IP—Ng(I™"* %[0, a]) is the inclusion,

3) f(P) n g™t x[a, 1)) = B for each t, 0<t<1,

4) for each x e P either f(x) = x for all t, or there exists yeI™™ such that
f,(x) e N(g(yx [0, 1D),

5) fi(P) " Bc(E"=B) LV F.

Proof. Case 1. m<n—2. Put

n = min{e/2, d(P, g™ x[a, 1D) -
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Cheose 6>0, 0<d<n such that each loop in (E"-B) U F having diameter <g
bounds a singular disk in (E"—B) U F having diameter <#/3. Choose a triangu-
lation T of P having mesh <§/3. Using the locally non-separating property of B,
we obtain a §/3-map /i of the I-skeleton T of T into E"—B such that
HT'—N(gU""*x[0,a])) is the inclusion. Now, since A(TY)n B =@ and
diami(g;)<d for each 2-simplex o; in T, each map k|6, extends to a map
ki 6;— E" such that kyo)=(E"~B) U F and diamkge))<n/3. Thus, there is an
n-map k: P—(E"—B) U F defined by:

k (JC) — {I;i(x)s

The required homotopy f, satisfying (1)-(5) is the standard “straigh-line” homotopy
between the inclusion map and this map k.
Case 2. = n—1. Choose a point @, in (0, 2) such that P A Beg(I™~1x [0, ay)).
Let r,: E" — E" denote the natural homotopy between the identity ro and a retrac-
tion ry of E" onto B. Choose (m—1)-cells By, ..., B, in I~ subject to the following:
n

if xeo; for some o, which intersects N,(¢ (1" x [0, a])),
otherwise.

IntI"™* = | ) IntB;; for each i either B, n BdI"! = @& or B, n BAI" ! is an
i1

1=
(m—~2)-cell in BdB;; for each i there exists x;€IntB; such that g(B;x [0, a,])
=N,(g(x:x [0, a,])). For each i = 1,..., k let U, be an open subset of E” such
that
r(U) = g((B;~cl(Bd B, ~ IntI"~ 1)) x [0, ay))
and
r{U)=N,(9(x;x [0, @, D)—g (I""*x [a, 1]) .
‘Note that any two maps from B into U, are homotopic in Ne(g(x; % [0, a,])) missing
g™ ' x[a, 1]). The homotopy J; that we wish to define will adjust 2-simplexes
of P within these neighborhoods in accordance with requirements (2) and (4).
The next step is to distinguish certain open subsets of each U, which help to
confine homotopies of simple closed curves near B in accordance with condition 5.
For each i = 1, ..., k choose connected open sets V, Vi, Vi, and Vi3 with the
following properties:
Vin B =g(IntB;x (0, a,));
VanVy=@; VyuV,=V,~B
g(Int(B; A BAI™ 1Y% [0, a,]) = Vis;

g(Int(B,x {0}) = V;3;

The sets ¥y N Vi, Vi,V are arcwise connected; and each loop in
Vij—B (j = 1,2, 3) is contractible in (U;—B) U F.

To see that this homotopy property can be obtained for some choice of Vi, Vi,
we first observe that V;; and ¥, can be chosen so that each loopin ¥;; can be homo-
toped into g(B;x (0, ay)) missing ¥, and vice-versa. Then, the technique used
in case 1 can be applied to adjust any map p: B%—» Vivg(Bix(©0,ap)),j=1,2,
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on the 1-skeleton of a fine triangulation of B?, thereafter replacing the images under ¢
of small 2-simplexes by singular disks in ¥;; U F. To obtain ¥;; we choose a num-
ber ¢ in (0,a;) very close to O; then require that Vi n B = g(B,x[0, ¢)) if
B;nBdI™ ' = @; if B, n BdI""* # @, then

Vis 0 Bog(B;x[0, ) U N(g(B, A BAI" Y %[0, a,]) .

1t follows that short arcs in V3 can be approximated by short arcs in ¥;3—B. Thus
by “pushing” the images of 1-complexes into £"—B, we are able to adjust any
map ¢: B*— Vi3 to a map ¢': B2— (U;—~B) UF.

Now, choose a triangulation T' of P with sufficiently small mesh that each
2-simplex of T which intersects B lies in one of the open sets ¥; U ¥;;. We suppose
further that the vertices of I"are in E"—B; that no 1-simplex of T intersects BdB;
and that each 1-simplex pierces B at each point of intersection. Let 7; be a 1-simplex
of T such that ; n B 5 @. For each 2-simplex ¢, which intersects B choose an
integer i(g) such that 6, < Vi) U Vi 5. Choose disjoint segments 4, , ..., 4,in 7; such

8

that 7;n Bc |JIntd,; each 4, contains just one point of ;B and
p=1

U4, ) Vigy- Applying the method of [20, p. 66], we replace each A, by

p=1 ogest(ty, T) . ..

an arc 4, such that 4, N B =@ and 4, is homotopic to A, in ) Vg U Vi, 3
q

keeping endpoints fixed. Az’, runs near a fiber g(x x [0, a]) for some x e "~ 1. By
repeating this procedure for all the other 1-simplexes of T, we obtain a homotopy
6,: P— E" such that 0, is the identity; 6, is the identity on each simplex ¢ which
does not intersect B; 6,(P) ng(I"~* x [a, 1]) = @ for each £, 0<t<1; 6,(T* )< E"—B;
and for each 2-simplex o, intersecting B, 0,6, Vi U Vi, 3-

For each 2-simplex o, in P, intersecting B, 6,(6,) is a loop in

Vi1 Y Viw,2 Y Figa—B) -

Subdivide ¢, into arcs ay, ..., & = o, such that, for each j, 8(e;) is in one f’f .the
open sets V. oo = 1, 2, or 3, but any two consecutive arcs ¢;, ¢;4 are in distinct
neighborhoods. For each o, such that 0,(;) < ¥y, 1, choose a companion arc B;
spanning ¢, between the endpoints of «;. We require these f,’s to be disjoint. Smce’
the endpoints of each a; are mapped by 0, into V¢, 1 N Vigg, s, there exists an arc ﬁ 1]
in this open set joining the endpoints of 6,(e,). We use a similar procedure to obtzur:
arcs f8; and B} for each a; such that 0(x)< Vi, ». Subsequently, we ext.end 0,16}
in the obvious way to the finite graph ¢, U (g) B;). Each of the boundaries of the

components of ¢,—{J /3; are mapped by this extension k, into one of the sets

Viw,es € = 1,2, 3. Thus by the local homotopy properties of these neighborhoods,

we extend k, to a map kgt 64— (Uygy—B) v F. Carrying out a similar procedure
for all the 2-simplexes which intersect B leads to a map k: P—»(E"-B)‘ u'F.
Since 8,(c,) is homotopic to k(s,), for each o, in N{xy4x [0, a1]), missing
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g™ *x[a, 1]) and keeping 6,(d,) fixed, the map k is realized by a homotopy w,
having the properties: w, = 6;; w, = 0; on each simplex of P in E"—B;
oP) ngI™ ' x[a,1]) = & for each #; w(P)=(E"—B)u F; and for each
2-simplex oy, either |0;(s,) is the inclusion, or ¢, B # & and w‘(ﬂl(aq))
SN xyqy % [0, @;]). The required homotopy £, may now be identified as the com-
position of f, and ,. This completes the proof.

4. Engulfing. In this section we establish the engulfing technique needed for
the proof of Theorem 2.1. Throughout this section we assume n3>5, 2< m<n~1,
whenever m denotes the dimension of a cell embedded in E”; unless we specifically
state otherwise.

PROPOSITION 4.1. Let g denote a homeomorphism of I" onto an m-cell B in E";
Fan F, set in B such that (E"—B) U F is 1~ULC and each arc g(x % [0, 1), xe ™4,
contains at most one point of F. Let a, b be numbers such that 0<a<b<1; P, and P,
disjoint 2-dimensional polyhedra in E" such that P, r Becyg (I""1 x[0, a)) and
Pyn Bog(I™ 1 x (b, 1]). Then for each >0 there exist an isotopy h, of E" and
two disjoint closed subsets X, and X, of I"™' such that

1) hy is the identity,

2 hlg™ "t x[a, b)) U (E"~N{g(I" 1 x[0, 4] U [b, 1)) is the identity for
all 1, 01,

3) by moves points e-parallel to the fibers g(xx [0, 1D, xeI™*, and

4) b(P) 0 Beg(X,x[0,1]), i =1, 2.

Proof. The proof of this lemma uses two applications of Lemma 3.1 to provide
homotopies needed for engulfing. More specifically, we obtain a homotopy
Jit Py U P, — E” such that f; is the inclusion; f¢ is the inclusion on

Py U P, —N{g(I" "t x[0,a] U [5, 1))

for each t; f(P; UP,) ng(I" * x[a, b)] = @ for each t; f; moves points -parallel
to the fibers g (x x [0, 1]); and £,(P, U P,) <(£"~B) U F. Since each arc g (x x [0, 1D
contains at most ome point of F, the projections g™ (fi(P) A B) and
Y9~ (f1(P2) N B) are disjoint closed subsets of "1, We take X ¢ and X,, respect-
ively, to be the disjoint closures of two open sets Uy and U, in I"™™! such that
g™ (fi(Py) A B)c U, and Y9~ *(fi(P2) N B)=U,. Choose an open set ¥ contain-
ing fi(Py U P,) such that ¥ ~ Beg((X; v Xy)x [0, 1]).

The remainder of the proof amounts to an application of Bing’s radial engulfing
technique [17, p. 185-193], An isotopy H, is obtained, such that H, (V) contains
Py U P, and points are moved g-parallel to the fibers g(xx[0, 1]). The required
isotopy #, is then obtained by reversing H,. We leave further details to the reader.

The next result is essentially the same as Proposition 4.1 of [3]. The proof,
which we omit, uses radial engulfing.

PROPOSITION 4.2. Let g denote a homeomorphism of I™ onto an m-cell B in E";
“a” a point of (0,1); V an open set containing g(I"™*x [a, 1]); &>0. Then there
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exist >0 and a neighborhood W of g (™t xla, 1}) with the foll'owing I?roperties:
If P is an (n—3)-polyhedron in Nyg (™1 %0, a)), then there exists an isotopy H,
of E" such that

1) H, is the identity;

2) H, is the identity on W and also on E"—N{g(I m=1% [0, a])) for all 1, 0<t<1;

3) PcH(V); and ‘

4) H, moves points e-parallel o ithe fibers g{xx [0, 1], xel™ L,

We are now prepared to establish the main tool for sq.u'eezing an m-‘cell.' The
lemnma below shows that large portions of two disjoint fam111’es of ares lying in an
m-cell can be engulfed using an open set which initially contains only one endpom,t,
of each arc. Elements of the two families which fail to be engulfed are “mismatched.
The engulfing thereby defines a shrinking effect on the cell.

LemMa 4.3. Let g be a homeomorphism of I™ onto an m~cell B in E";_ f’ an F, ..set
in B such that (E"—B) u F is 1-ULC and each g(xx[0,1}), xeI""", contains
at most one point of F. Let a and b be points in (0, 1), a<b; s>?; I:—aln open set
containing g{(I™~* x [a, b)). Then there exist open sets Uy and U, in I"~1 such that
™1 = U, u U, and an isotopy h, of E* such that

1) b, is the identity on g(I"~* x [a, b]) for all ¢; .

2) h, moves points e-purallel to the arcs g(xx [0, 1]), xeI"™; and

3) hyg((Uyx [0, a) L (U x [b, 1D)=V. . .

Proof. The isotopy k, is obtained in typical fashion by stacking three iso-
topies H,, ¢;, and k,, each of which moves points clo‘se to ‘fhc.a <ﬁbers g(xx[0, 1D,
xe I™1, In order to control the tracks of these i_sotopmg we 1mt1a11ymcihloose a num-
ber & such that 0<d8<ef4, and to every pair of pomts_x, yel " sucili t};::
d(g(x+10, 1D, g(¥x [0, 1])) <36, there corresponds a point z& T - s?‘;ice e
g(xx[0, 1) U g(»x[0, 1) =N,2(g(x [0, 1D). Apply Przrﬁsltwn 2 e
obtain a positive number # and a neighborhood W of g(I"™*[a, b)) s:fl p .a]))
every pair of (n—3)-dimensional polyhec.lra P, and P,; f‘ cN,,(gl(t x[0,a)).
P,eN{g(I™* x[b, 1])); there exists an isotopy H, of E" such tha

4) Hy is the identity,

5; H, is the identity on W and outside N{g" *%[0,a]l v [b, 1),

6) P, U Py H(V), and -

7) H, moves points §-parallel to the fibers g(xx [0, 1])’, xel ./ . ut
Choose an open set W' such that g™ 1x[a,b)=W’ and dW'cIW. Py

A = min{8, d(E"~W, cIW"), d(E"— W', g™ % [a, b))} -

Choose PL n-manifolds M, and M, such that g(" 1—1—[(1);l f]l) ;éntﬁ.f) 1),
M, =N, (g™ %0, a))), g™ % [b, 1D<IntMy, and M, c:]\'f,,(gl( e ,mes!;
Triangulate M, and M, with triangulations T and T22’ respectzwe Y, s e
less than 2. Let K, and K, be the subcomplexes of T¢ and T3, 1e8p A
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2-skeleta of Ty and T3), obtained by taking all simplexes which do not intersect cl .
Foreach i = 1, 2 let L; denote the dual of K; in T (the polyhedron consisting of all
simplexes in the first barycentric subdivision of T; which do not intersect X,). Note
, that, for each /, L;~ Wlies in a subcomplex Q; of L, such that dim Q;<n~—3; and L;
contains a neighborhood of g(J™~ 1 x [a, b)).
Apply Proposition 4.1, with K, K,, and
min{s, d(E"—M,, g(I"~* x [0, aD), d(E"~ M, g(I"~* x [b, 1]))} ;
corresponding, respectively, to P,, P,, and ¢; to obtain an isotopy k, of E" and two
disjoint closed sets X, and X, in I"~! satisfying conditions (1)-(4) of the conclusion
of that proposition. Note that k, is the identity outside M, U M,. Choose open
sets Uy and U, in /™~ such that ["~! = U, U U,, kg @U %[0, a) e M, ~K,,
and kg (U, x [b, 1]leM,~K, (X, < U, and X,cU,.)

Let H, be an engulfing isotopy satisfying (4)-(7) above with P, and P, identified
as 0, and Q,, respectively. Since H,|W is the identity for all #, H,(V) contains
Ly UL, as well as Q, U Q,.

By “stretching” H, (V') linearly across the join structure between each L, and X;
we obtain an isotopy ¢, of E” such that @, 1s fixed outside a neighborhood of M. 1 VM,
and on g(I™*x[a, b]), o(p,, identity)<i for all t, ¢, is the identity,
kg (elU; x [0, ab)<= @ (Hy(V)), and k7Y g(clU,x [b, M) <o, (H(¥)). Observe
that each of H,, ¢,, and k, reduce to the identity on g™ *x[a, b]); H, and k,

move points §-parallel to the fibers g(xx[0, 1]), xe I"=1: and each @, is a §-homeo-
morphism of E". Thus we define h, by:

ky_go kT(x)
h(x) = Pa~3;0 (/’;1 ° kl_i(x)
Hy 5o Hi o 7% o k()

if 013,
if 1/3<1<2/3,
if 2311 .

It follows from the choice of § that h: moves points g-parallel to the fibers. This
completes the proof.

5. Shrinking the vertical arcs of an - cell. The shrinking process which is needed
to prove Theorem 2.1 is based upon Lemma 4.3 and the following technical result
due to Cannon and Daverman [5, Lemma 2.2). We include a proof here for com-
pleteness.

LemmA 5.1. Let g be a homeomorphism from I™ into E" 5 & a positive number;
and P ={0 = ty<t;<..<t, = 1Y, k=2, a partition of 0, 1] such that
diamg (x x [£;_,, tD<e for each i = 1, -> k. Suppose further that, for each x e 1",
either g(xx [0, t,]) or gxx[te_5, 1]) has diameter less than . Then there exists
a homeomorphism g': I — E" such that

1) g'xx[0, 1) = g(xx [0, 1]) Jor each xe "1,

2) diamg’(xx [z;-, tD<e for each i =1, o k=2, xg L,

3) diamg'(xx [fy_,, 1) <& for each x e I™~1.
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Proof. We use Urysohn’s Lemuma to define a sequence of Ifunctions

: I.’;1~1 — 0,15, i = 0,1, ..., k=1, Each of these is to determine the 1mage.of

fli"."'l x {t,}, for some 7, under the homeomorphism g’. Then we obtain g’ by extending
linearly between these levels, .

Cl};oose positive numbers ay, a;, . such 11h?t 1<a;<tyyy am?
diam g(x x [ay, 1) <e for cach 1. Put X, = {xeI"™!| dla‘mg(xx[O, Ll=ze)};
X‘ = {xel"Y| diam g G [ty 1€} Since these are disjoint closed §c:.ts, there

1ist open sets Uy, Uy, ey Upeg in I"7F such that XpcelUy, Xy<I™ —Uk_?,
Zid clllf (= U for each i =1, ..., k—2. Applying Urysohn’s Lemma to each pair
;(clU i};"'1¥U,), we obtain maps f: "™t — [t;, ] such that fi(clU;.y) = t;
and }—(;",’”1 - U) = a, for each i. Let f, and fi..; denote the constant maps mapping
]’"'llonto “0” and “1” respectively. It follows that dieung(xxl[ Fie109, f()]) <&
for each i =1, ..., k—1 and xeI"~!, Define a map 0 on I""!x {1, ..., t,‘_z,“lf}

R e ) ) >

by the rule 0(x, 1) = (x:fi(x))a xe["‘"‘f, i=0, s k;Z, 0(x, g— l(xn,eizl 01e1
obtain a natural extension of ¢ to a function 0: I —1 ' by exten ing 1i y o
each fiber {x}x[t;—y, 2] The required embedding ¢’ is the composition g o ¢

The proof of Theorem 2.1. Let B be an m-cell in E”, g: B ,—»Bl, fa.n]g F
an F. set in B satislying the hypothesis of Theorem 2.1. By B.mgs Shrin! ngi‘
Crite;ion {16, p. 92] it suffices to prove that, for every s>0,"lt_§x1ere isa Tmeo;to—rl
phism /: E" — E" such that diamhgn™ I(x)<e for elezck; x ; (B ng(f()))r ez::ld ); ;- -

i = that gr~t hgn~ (XD Nfgn™'(»);
there is some y & B"~* such that gz~ *(x) ;J " i,

i [ i - hthat {z} U {i(2)} =N {gz ™ ().

ze E*, either h(2) = z or there is some y € B"™ " sudl - . o )

lly, it is suffici [ rablish just the first and third of the conditions.
Actually, it is sufficient to establish jus . _ 4 ‘
‘shrinkin:g homeomorphism / can be realized by an isotopy h, which moves points

-parallel to the fibers gn™*(x). '
£ P'llL‘et §: I — B™ be a one-to-one map, § a number‘ 1such :hgt 0<6flez/§,<ic/>;
- =gr™? for some yeB"‘" ; and diamgn “(Z
each xeI"™1, 0(xx[0, 1]) = gn™"(») : amgr @<
for each z such that d(g(z~%(2)), B—g0(I")<d (Fig. l)..Put go=go0. s
a partition & = [0 = ty<t;<..<t; = 1] such that dlamGD({x}x[ti_;, id51
forrz’:ach xeI™ % i =1, .., k The remainder of the proof useﬁ Lelrlllmas; ;b e:n))b
i i for i ri=0,1,..,k—2 and each nu A
inductively to prove: for each integer i 1 ' S
there exist embeddings go, .., g of I™ onto go(I™) and homeomorphisms /o f
of E" onto E" such that .
1) g ({x}x [0, 1)) = hyge(xx [0, 1)) for cach xe]l ; .
(1.2) diamg,({x} % [t;-y, ] <8, for each i = 1:1..., c—i—1;

i i ¢ §, xe "', and

(.3) diamg {{>} % [fg— -1, 1D <5, o

(i.4) for cach xe E", cither h(x) = x or {x, h{(x)} = Na(go({¥}x [0, 1D) fo
some el i = identity suffice

Clearly, the embedding g, specified already and th‘e chc: hh:e ;i;r;lt iZS, fhee
for the case i = 0. Suppose, then, that g, and A, sat1sfym§ en lzwo it v, »
for some arbitrary i<k—2. Choose y, 0<y<4/2 s'ucl}thatthz: aezc]l e cn
of 1", d(go({x}x10, 1), go({y} x [0, 1D)<y implies

vy ez
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go({x}x[O;'_ll), g,,({y}'x[o, %]) lies in the 3/2-neighborhood of golzx [0, 1]) for
some z..e I™"*, By the mductmr} hypothesis g, and &, can be chosen so that (,i 1)-(.3)
are saus‘ﬁed' and A; moves points y-parallel to the fibers go(yx [0, 1]) c
An appllcatmn of Lemma 4.3 provides a homeomorphism c,: E"i»E’"
by an isotopy of E").and open sets U, and U, in [m=1 pm-1 —i.U ul.
. . ? - 1 )
(1.5) diamoyg({x} x [t 1, 8] <6, 1<ik—i (4, = 1), xelm-‘i-z
(1.6) diamw;g ({x} x [0, 1,])< 8, for each xe U;; ,
1.7) diama,g ({x} X [te—;- 2, 1<, for each x e U,; and

yel™?,
(realized
such that
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(i.8) for cach yeE", ecither o)) =y or {y, o (N}cNgo(zx[0,1]) for
some ze I™ %

The numbers @ and b in this application are t, and #,_;_,, respectively, y cor-
responds to & Put /14y = @; o h;. Lemma 5.1 provides the necessary embedding g, ;
so that properties (i-+1.1)~(i++1.4) are satisfied by the pair f;y,, g4, For this
application, /.14 cotresponds to g in Lemma 5.1; 8 to & k—i to k; and g4,
tog.

The homeomorphism /., is the homeomorphism satisfying Bing’s Shrinking
Criterion, since (k—2.4) applies with 1 = § and, for each xe "™,

g2 go({x} % [0, 1]) = Fr-2({x} % [0, 1])
= gp-a({x} x [0, ;1) U g o({x} x Iy, 1])

implies that diam7,—,go({x} % [0, 1])<s. This completes the proof.

The proof of Theorem 2.2. Let g denote an embedding of B™ into E”,
B = g(B™); ¢ a positive number; F a 0-dimensional F, set in B such that the hy-
pothesis of Theorem 2.2 is satisfied. By continuity there exists >0 such that
d(g(x),9( ¥)) <& whenever d(x, )<, x,y e B" By Theorem 2.1 it suffices to show
that there is a homeomorphism 0 of B" onto B™ such that (6, identity)<é and
09~ '(F) intersects each segmient 7™ *(x), x € B""%, in at most one point. Then, of
course, the required embedding g’ is g ¢ 0. In order to obtain § we describe below
a sequence of homeomorphisms @, , @, ... of B™ onto B and a sequence &y, 83, ...

of positive numbers such that g(ew,, identity)<d, for each iand ) 6;<d. Each w;
=1

produces a slight simplication of the intersections g HF) A (), xeB™ L
Then we recursively define homeomorphisms 8y, 81, 0, -.. bY 8o = identity and
8; = w; 0 0,_, for each i>1. Clearly, the limit 6 will be continuous and surjective
(for & sufficiently small). Additional care in specifying the sequence {§;} insures
that 6 is injective as well.
Put §; = §/2. Let Cy, Cy, ... be compact 0-dimensional sets in B™ such that
o

g~ (F) = U C;; C,=C;y for each #; and each C, is locally flat relative to B™ and
1=1
BAB™, Thus, there exists a finite collection {B(1, 1), B(1,2), .., B(L, k(D)} of
disjoint locally flat m-cells in B™ such that
(1.1) diamB(1, )<, for each i =1, .., k(1);
(1.2) for cach i, either B(l, i) n BdB" = @ or B(l,i) nBdB" is a locally
flat (m—1)-cell in Bd.B",
K1)
(1.3) ¢y = U IntB(1, D) v Int(B(L, D) N Bd.B™).
=1 L
Choose a collection {D(1,1), D(1,2), ..., D(1,k(1))} of disjoint flat
(m—1)-cells in Int.B"~* such that, for each i,

(14) If B(l, i)~ BdB" # @, then one component of =~ (D(l,1
lies in Int(B(1, 1) n BdB™);

) N BdB™
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(1.5) if B(1,i)n BdB™ = @, then =~ Y(D(1, 1) n IntB(,i) = .
See Figure 2 for an illustration of this arrangement. Using the local flatness

of each B(1, i) and condition 1.2 we obtain a homeomorphism w, of B™ such that
k(1)
(1.6) w, is the identity outside ) B(1,i);
i=1

(L.7) 0:(Cy) n (BQA, D)Sn~*(Int D(1, i) for each i;
(1.8) w,(BdB™ = BdB".
To define w,|B(1, i), for B(1, i)<Int B, we shrink a subcell of B(1, i) radially

toward an interior point. If B(1, 1) intersects BdB™ we shrink toward a point of
Int(B(1, 1) n BdB™). Using the uniform continuity of w;!, choose 1,>0 such

= YD(1,3))
~"Y(D(1,2))

2~ (D(1,4))

= (D(1,5))

IDIMm»™

R

o

A

R h S

Fig. 2
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that d(col(x),wl(y))>ll whenever d(x,y)>1. For notational convenience put
0, = w;, 6y =36 = 06, and Cy = &.
. Now, we proceed inductively to define 8,, 83, ...; Ay, A3, ...} @, @3, ...; and
0,,0;,... in a manner similar to the procedure above. Suppose that for each
j=1,..,r—1 there exist positive numbers 07, A;; homeomorphisms ;, 0;; and
finite collections {B(j, i)}, {D(j, )} of disjoint locally flat m-cells and (m—1)-cells,
respectively, such that

(.0) 8; = min{8;_4/2, };-,/6};

(j.1) diamB(j,i)<d; for each i =1, ..., k();

(3.2) for each i, either B(j,i) n BAB" = @ or B(j,i) n BdB"is an (m—1)-cell
in BAB(j, i);

110}
(33) 0;-1(C= U IntB(j, i) U Int(B(j, ) n BAB™;
i=1

(4 if B(j,i) # @, then one component of n~*(D(f,#))n BAB™ lies in
Int(B(j, ) » BdB™);
(3.5) if B(j, i) n BdB™ = @, then n~'(D(j, 1)) n IntB(},i) # &;
k(D)
(j.6) w; is the identity outside () B(j,?);
=1

(3.7) @;0,-(C;) n B(j,)en" (Int D(j, i) for each i;
(j.8) w{BdB") = BdB";
(j.9) for some integer I(j)<k(}), j=2,

10 kG-1)
0;-4(C;—y)= U IntB(j, 1) U Int(B(j, 1) n BdB™e U w;—4(B(—1),i);
i=1 i=1

(G.10) 0; = w;0 6;_4; and

(G.11) d(04x), 0»))=4; whenever d(x, y)=1/j.

Put j = r; §, = min{5,.,/2, A,.,/6}. In the manner described above for the
case j = 1, we choose disjoint m-cells B(r, 1), ...,B(r,k(r)) in B™ as well as
(m—1)-cells D(r, 1), .., D(r, k(r)) in B"~! with sufficient care that (r.1)-(r.5)
and (r.9) are satisfied. Then w, and 6, arc defined using radial shrinking within the
cells B(r, i) so that (j.6)-(j.8) and (j.10) are satisfied. Finally, A, satisfying (r.11)
exists by uniform continvity of 0;*.

As indicated above, we define 0 = lim 0,. It follows from the specification

oo
of {6,} (1.0, 2.0, etc.) that 0 is continuous and that ¢ (0, identity)< 5. Conditions (r.8)
for r =1, 2, ... assure that @ is surjective. All that remains to be shown is that 9 is
injective and that each set ™ *(x), x e B"~*, contains at most one point of 6(F).
Let x and y be distinct points of B™ Let N be a positive integer such that
d(x, )=1/N. Then d(Ox(x), 04(»))=Ay by (N.11). Morcover, the mnumbers
Sn+1> Oxazs ... have been chosen (conditions 1.0) to assure that d(0y(x), O(x)) < Ay/3
and d(0y(y), 0(»))<Ay/3. Hence, we have d(0(x), 8(3))>Ay—2443>0. Le., 0 is
injective.
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Now suppose that x and y are distinct points of F. It suffices to show that two
such points are mapped by 8 into two distinct segments 7~ 1(2) and n~*(w), respect-
jvely. Let M be a positive integer such that x and y are both in C,,. There is also
a positive integer M’ such that d(8,-1(x), 0,.1(») =29, if r=M’, as shown above.
Put R = max{M, M'}. By Properties R.1 and R.3 in the program for defining 0,
there exist disjoint m-cells B(R,s) and B(R, 1) such that Or-1(x) € B(R,s) and
Or-13) € B(R, £). By (R.7) there exist disjoint (m~1)-cells D(R,s) and D(R, 1)
in B""! such that Ox(x) e x~*(Int D(R, 5)) and Ox(y) e =~ '(Int D(R, 1)). It now
follows from (R+1.9), (R+29), etc., and from (R+ 1.6), (R+2.6), ctc. that
8(x) e n~Y(Int D(R, 5)); whereas 0() e 7~ Y(Int D(R, £)). This completes the proof.

We mention now some applications of Theorem 2.2. The first, an unpublished
result of Daverman and Eaton, is an immediate consequence of Theorem 2.2 and
{18, Lemma 2].

COROLLARY 5.2. Each 2-cell in E", n25, can be squeezed to an arc.

For n = 4 this result is due to Sher [19].

The following theorem, proved by techniques of [18, Theorem 4], [10, The-
orem 3.3], and [9, Theorem 4], provides a useful vehicle for further applications of
Theorem 2.2.

THEOREM 5.3. Let B denote an m-cell in E", 3<m<n—1, n=5. The following
assertions are equivalent.

(1) B contains a O-dimensional F, set F such that F is locally flat relative to B
and (E"—B)u F is 1-ULC.

(2) For each 2-dimensional polyhedron P< B, £>0 (dimP n BdB<L1 if m = 3),
there exists an &-homeomorphism h of B onto B such that h(P) is locally flat relative
1o E".

COROLLARY 5.4. Suppose that an m-~cell B in E" is locally flat modulo a poly-
hedron P that is flat relative to E". Then B can be squeezed to an (m—1)-cell.

Proof. The result is established by proving that each 2-complex X in such
a cell Bis locally flat in E* (dimK n BdB<1, if dimB = 3). Assume dimP<m—1.
Let e>0 be given. Let 71 §'— E" be a loop such that £($*) N K =@ and
diam £ (S <e. We may suppose also that £(S') N P = @. Using the fact that P is
flat, we extend fto a map g: B2 — E" such that g (B%) intersects P in at most a finite
set of points in P—(P n K) and diamg(B*) <e. Thus, g(B*) n K is contained by
a subpolyhedron K’ of K such that K'<B—P. Since K’ is locally flat g (B?) can be
pushed into E"—(K) by an arbitrarily small move. This shows that E"— K is 1-ULC.
Thus, K is flat by the Bryant-Seebeck taming result [4].

COROLLARY 5.5. Suppose that B, an m-cell in E", 2&m<n~1, n25, contains
«a polyhedron P such that B is locally flat modulo P, P is locally flat relative to B,
dimP<m—1, and dim(P n BdBY<m~—2. Then B can be squeezed to an (in—1)-cell.

Proof. Using standard techniques, a 2-complex K in E" can be adjusted via
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an isotopy h,, close to the identity, so that 4,(K) n P is 0-dimensional. Using such
intersections for a suitably chosen sequence of 2-complexes Ky, K,, ..., we obtain
the required F, set F in B so that (E"~B)u F is 1-ULC.

To put these results into proper perspective it is helpful to consider the special
class of cclls which are locally flat modulo a Cantor set. If such a Cantor set is locally
flat in E® or in the cell B which contains it, then B satisfies the hypothesis of one of
the corollaries above. The examples, given by Daverman, of cells which cannot be
squeezed are locally flat modulo Cantor sets which are wildly embedded in both
ways, in £" and also in the cells.

6. Slack cells. In view of the results discussed above, which reveal that a wildly
embedded mi-cell might be squeezed to an (m—1)-cell in many different ways, we
are led to consider the possibility that a cell can be squeezed, using any embedding
whatsoever, to an (m— 1)-cell. More specifically, we say that a cell B is slack if every
homeomorphism g from B™ onto B supports a squeezing map. In a forthcoming
paper, the author will prove, using Theorem 2.1, that an m-cell is slack provided
that each compactum of dimension <[(m+1)/2] in that cell has 1-ULC comp-
lement, 2<m<n—1,n25. (Atpresent it is unknown whether this result can be im-~
proved by lessening the dimension.) From this result follows the existence of slack
cells which are wild at every point. For m<n—2, n>5 such examples are obtained
by specifying an arc 4 in E"~™**, which fails to be locally flat at each point. The
product 4 x I, naturally embedded in E"~™** x E"~! is an m-cell in which each
(m—1)-dimensional compactum has 1-ULC complement in E". For m = n—1
define B as D x I"™3, where D is a 2-cell embedded in the wild sphere described by
Bing in [1]. A result of Daverman [11, Theorem 9] implies that (#—2)-dimensional
compacta in this example have locally nice complements, a sufficient condition
for B to be slack. Other examples of slack cells can be obtained, which are not fac-
tored and contain wildly embedded polyhedra of low dimension.

We conclude by stating a few open questions.

(1) Can an m-cell be squeezed to an (m—1)-cell if it is cellular?

(2) Can a cell be squeezed if it is locally flat at each interior point?

(3) Is there a k-cell D, k>1, such that no (k-+1)-cell can be squeezed to D?

(4) Is there a converse of Theorem 2.27 I.e., if each embedding g: B" — B
can be approximated by embeddings g’ which support a squeezing map, then does B
contain a locally flat O-dimensional F, set F such that (E"—B)u I is 1-ULC?

(5) Let g: B" — B be an embedding. Suppose that each arc 4 in B™~! can be
approximated by arcs A’ such that gn~*(4’) is locally flat in E". Is this a sufficient
condition for B to be squeczable to an (m—1)-cell?

(6) Is every factored cell slack? (A cell B in E" is factored if it is ambiently
homeomorphic to D x "< E"~*x E* tor some lower dimensional cell D in E*F)

4 — Fundamenta Mathematicae CX/1
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(7) Is a cell slack if each 2-dimensional compactum in the cellis 1-ULC in E"?

What is the minimal dimension & such that the 1-ULC property of k-dimensional
compacta implies that B is slack? (If dimB = m, then k<[(m+1)/2].)

[1]
[2]
B]
[4]
(5]
[6]
{71
(8]
9]
[10]
(11]
[12]
[13]
[14]

[15]
[16]

[17]
[18]
[19]

[20]
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Metrizability of certain Pixley-Roy spaces
by
H. R. Bennett, W. G. Fleissner, and D. J. Lutzer * (Lubbock, Tex.)

Abstract. This paper studies metrizability of the Pixley—Roy hyperspace & [X] of a space X
where X is a generalized ordered space of a certain type. For those generalized ordered spaces.
constructed from separable linearly ordered spaces, necessary and sufficient conditions for metriz-
ability of & [X] are obtained. Metrization theorems for the hyperspace of other generalized ordered
spaces are obtained by placing restrictions on the one-sided nature of neighborhoods. For example,
it is proved that if X is any first-countable subspace of any ordinal, then 5 [X] is metrizable.

1. Introduction and definitions. In [PR] Carl Pixley and Prabir Roy presented
an easily described space which could be used in place of an older and more com-
plicated example given by Mary Ellen Rudin [R,]in her study of completable Moore
spaces. In today’s terminology, Pixley and Roy associated with each space X one
of its possible “hyperspaces”, i.e., topological spaces whose ground-set is the power
set #(X). Tt soon became apparent that Pixley and Roy had, in fact, discovered
an elegant and useful general technique for constructing certain kinds of examples,
and various versions of their construction have been studied in [PT], [vDTW]
and [vD,]. In this paper we give necessary and sufficient conditions for metrizability
of the Pixley-Roy hyperspace of certain lines.

The lines on which our Pixley-Roy spaces are constructed are certain general-
ized ordered spaces. Begin with a linearly ordered set (¥, <) and let 1 denote the
usual open-interval topology associated with <. Select three disjoint, possibly empty,
subsets 4, B, C= ¥ and let 7 be the topology on Y having the collection

AU {[x, ] xed, y>x} U {Ix,y]| x<ye B} u{{x}| xeC}

as a base. The space (¥, 7) is then called a generalized ordered space 911 Y, <)
and can be denoted by GOy(4, B, C). The standard reference for the basic proper-
ties of generalized ordered spaces is [L] whose terminology and notation we usually
follow. .

The Pixley-Roy hyperspace of any space X is constructed as follows. Let
F[X] be the collection of all nonempty finite subsets of X and topologize #[X]
by using basic open neighborhoods of the form

[F, W] = {Se #[X]| FeScW}

* Partially supported by NSF GRANT GMCS 76-84283.
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