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The assertion that this formula is indeed true in this model is a ¥y statement
about @ in Levy’s hierarchy, by routine computations. Being true for £, it must
therefore be true for all countable ordinals in some closed unbounded set C<@Q.
But for « € C the truth of this statement about ¢ is readily seen to imply that for
somefany x € W with order type A(x) = o we have Jypp*(t, x, ). It follows that
C<S, so @—S is not stationary after all, a contradiction! &
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Analytic sets with countable sections
by
Ashok Maitra (Calcutta)

Abstract. This article contains a new proof of Lusin’s theorem that an analytic set in the
product of two Polish spaces, having countable (vertical) sections, is a countable unjon of analytic

graphs.

1. Introduction. Suppose X, ¥ are Polish spaces. If E< XxY and xe X, we
denote by E* the set {ye ¥: (x,)) e E}. Aset GE XX Y is said to be a graph if G¥
contains at most one point fot each x € X. We denote the family of Borel graphs
in X'x Y by 4. Let my(n,) be the projection of X'x Y to the first (second) coordinate.

Lusin proved the following fundamental results on Borel and analytic sets
with countable (vertical) sections in his celebrated monograph [2]:

(i) If E is a Borel set in Xx ¥ such that (Vx € X) (E™ is countable), then mty(E)
is Borel in X ([2], p. 178). '

(ii) If E is a Borel set in XxY such that (VxeX) (E” is countable), then
Ee%, ([2], p. 244).

(iti) If E is an analytic set in Xx Y such that (Vxe X) (E® is countable), then
there is a Borel set B in Xx Y such that ESB and (VxeX) (B* is countable)
(2], p. 247).

Finally, combining (ii) and (i), Lusin obtained

(iv) If E is an analytic set in X' X Y such that (¥Yx € X) (E* is countable), then E is
a countable union of analytic graphs ([2], p. 252).

We shall prove the following:

THEOREM. If A is analytic in Xx Y such that (Vxe X) (4" is countable), then
there is He %, such that ASH.

A notable feature of our proof of the above theorem is that we do mot use

results (i)-(iv), so that these results fall out as easy consequences of our theorem.
Our proof, though quite different from Lusin’s proof of (iii), is based on ideas con-

 tained in Lusin’s proof of (i) and also on certain ideas in a recent article of Saint

Raymond [3].
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2. Proof of theorem. We will prove a sequence of lemmas from which the theorem
will be deduced.

Let, then, X, Y be Polish spaces. If EcXx ¥, we define
M(E) = {xem,(E): E¥ contains at least two points}.
LemMa 1. If ESX X Y is analytic, then M(E) is analytic.
Proof. Let {P,} be an open base for Y. Then

M(E) = Uny(E 0 (XxP) nmy(En (XxP))],

where the union extends over all ordered pairs (m,n) such that P, n P, = @&.
The sets within square brackets being analytic, so is M £).

For the rest of the proof, A will denote a fixed analytic subsct of ¥'x Y. (To
start with we do nor assume that 4 has countable sections). Fix a continuous func-

tion f on Z, the space of irrationals, onto 4. Let { W,} be an open base for 3. For
ZcZ, we define

D) ={oeZ: n,(f(e)) e M(f(¥ nZ)) for every open neighbourhood
V of o}.

It is easy to see that

D(Z) = DlEn(Z),

where E(Z) = {ceZ: 6 W,— 1 (f (o)) e M(F(W, A Z))}, n21. Next we define
sets Z,, a<w,, by transfinite induction as follows. We put

Zy=2,
7 - {D(Zﬁ) if ¢ = B+1,
R P if @ is a limit ordinal .
f<a

LemMaA 2. If Z<X is analytic, then E(Z) is analytic for each n>1. Consequently,
if Z is analytic, then so is D(Z).

Proof. Observe that

E@Z)=Zn[E-w)u o mTH M (F o7, o z))))] )
That E(Z) is analytic follows from Lemma 1. The second assertion of Lemma 2 is
now obvious.
Lemma 3. (Va<w,)Z, is analytic.
Proof. Use transfinite induction on « and the previous lemma.
Before stating the key lemma (Lemma 6), we state two results which will be used

in its proof. The first result is due to V., I. Glivenko, the second is the generalized
first separation principle for analytic sets due to P.S. Novikov.

Lemma 4. If GSXx Yis an analytic graph, then there is H e @ such that G cH.
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Proof (by S. M. Srivastava). Let g: n;(G) — Y be the funciion whose graph
is G. Since G is analytic, g is Borel measurable ([1], p. 398). So, by an extension
theorem of Kuratowski ([1], p. 341), there is a Borel subset B of X and a Borel
measurable function A: B— Y such that n,(G)=B and & = g on n,(G). Let H be
the graph of A. Then, as is casy to check, He ¢ and G<H.

LemmaA 5. If A,, n=1, are analytic subsets of a Polish space P such that
N A4, = B, then there exist Borel subsets B,, n>1, of P such that (Vnz1)(4,=B,)

nz1
and N B, = @.

nzi

We omit the proof. The reader is referred to ([1], p. 418) or [3] for a proof.

LEMMA 6. If Z& X Is analytic and D(Z)< B for some Borel subset B of 3, then
there is He %, such that f(Z—B)cH.

Proof. Since Z is a fixed set in this proof, we will suppress the dependence
of E(Z) on Z and write E, for E(Z).
By Lemma 2, the sets E, n B°, n>1, are analytic. Moreover, D (E,nBY=0
nzl
since () E, = D(Z)<B. So, by Lemma 5, there exist Borel subscts B,, n>1, of
nZ1

such that E, n B°=B,, n>1, and () B, = @. Plainly, we have:

nz1

(¢)] E,cBU B,
50 that
(@3] Z—-(Bu B)=Z—~E,cW,nZ
and also, because (B, =@,
nz1
3 Z-B= | (Z-(BU B)).
nzl

If we prove that the sets f(Z—(B U B,)) are analytic graphs, we will be done.
For then, by virtue of Lemma 4, there will exist sets H, €% such that

f(z-BuB)<=H,,
from which and (3) it will follow that

_f(ZF—B?E LLfGZ_(B‘J-&D)Q LLIhEE@,.
nzl nz

Clearly, the set f(Z—(B u B,)) is analytic. To show ihat f (z—-(B U B)) is
a graph, let x e n,(f(Z—(B U B8,))}. Then x = 7,(f (o)) for some c e Z—(B UL B),
sothat o € W, n Zand g ¢ E, (by (2)). It follows that x = nl(.f(a?) ¢ M(f(W,n2)).
Hence, the x-section of f (W, n Z) is at most a singleton, a~nd since f(Z —.(B U B))
< f(W, n Z) (by (2)), this implies that the x-section of f (Z—(Bu B,)) is exactly
a singleton. Consequently, f(Z—(B v B,)) is a graph.
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Levma 7. If Z,< B for some Borel set B in X, then there is He @, such that
fE-B)<H.

Proof. We prove the result by induction on «. The result is obviously true
for « = 0. Suppose it is true for all f<a.

Case 1. « is a limit ordinal. Since NZ,=2Z,=B, it follows that

p<a

ﬂoﬂ(Z,, N BY) = @. Moreover, by Lemma 3, the sets Zy n B° are analytic. So, ac-

cording to Lemma 5, there exist Borel subsets By of 2 such that Z; ~ B°c By, f<a,
and () B, = @. Note that Zy<=B U By, f<a. By induction hypothesis, there exist

B<u

Hye %, such that f(2—(B U B))<H,, f<a. But ~B = {J (Z—(B U By)) since
N B, = @. Hence e

f<a
fE-B) = Y fE-(BU B UH,eY,.
<a B<a

Case2. o = f+1. Since D(Z,) = Z,= B, we use Lemma 6 to get Hy € 4, such
that f(Z,—B)< H}, so that Z,=f™*(H,) U B. As the set F~YH) v B is a Borel
subset of Z, the induction hypothesis yields a set H, €%, such that

fE=(f'#) uB)cH,.
Hence
FE=Bsf(E-(f71#) v B) us(fXH)
SH,VH e¥%,.

We show next that, if Z, % @ for each o <@y, then some vertical section of 4 is
uncountable. Towards this end, we introduce some terminology.

Say that a system of sets Vi, 's Viy 04 o, O} is admissible if
(2) V;, Q; are open in 3, ¥, respectively, i =1, ..,k
®) m(fV))<=0;, i=1,..,k and

k

© .anl(f(yt NZ)) # @ for all a<w,.

Lemma 8. Suppose Vi Vs 04 ey 0.} is an admissible system. Let
B(V), B(Q;) be countable open bases Jor Vi, Q,, respectively, i = 1, ..., k. Then
there exists an admissible system {V,,, Vits s Vaos Virs Qros Qi oo (’2,,0 O}
such that Ve B(V), Qe B(Q) and Qi Q; = B, j=0,1, i’= 1,’...,}»'.

Proof. Fix a<w,. Let

>

k
XE iolTh(f(Vi n Za+1)) ,
Then )

x = m(f (o)) for some o€ V;NZ,., =V, A D(Z), i =
L =ViAD@Z), i=1,...k.

It follows that x = m,(f (6)) e M(f (¥, 0 Z)),i=1, ..., k. So there exist y;, #
such that (x, y;) e f(V,n Z,),7=0,1,i= 1, ..., k. Hence we can find o;;€ ¥, 1 Z,

e ©
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such that f(o) = (x,¥;), j=0,1, i =1,..., k. Condition (b) now implies that
yiy€ Q= 0,1,i=1, ..,k So we can choose sets Q(), 0;:(c) e Z(Q;) such
that y; € Q;,(@) and Q)N Qule)y =0, j=0,1, i=1,.., k. Next we use
continuity of the function m, ¢ f to choose sets V(o) € Z(V;) such that

0, € Vl.j(a) and nz(f(Vi,-(Ot))E Qij(‘x): J=0,Li=1,.,k.

It is now easy to sce that

D=

1
Dgﬂl(f (Vif@) 0 Z,))- '

X€E
i

1

1
Thus, for each a<e,, there is a system of sets
{V10(@), Vial@), s Vio(@)s Vier (@), Qro(@), @ya()s oo, (@)}
such that V(o) & Z(V), Q.(@) € B(Q)), Quol0) N Qil(koc) = @,j=0,1,i=1,.,k
and satisfying conditions (a), (b) and the condition i 91 ,-Q (;IEI( F(Vif@) 0 Z,)) # 9.
Since @(V)), #(Q;) are countable for i =1, ..., k, it follows that there are only
countably many such systems. Consequently, there is a system

{V10s Virs ooos Vios Vi Q10> 115 s Quos O}
such that

{Vi0(@}s Vi1, es Vio(@)s Via(o); O10(@), 011, --s Cro(®)> Cra(@}
= {Vi0s Vi1s «s Vios Vit Q105 @ty oo Oxos Cra}
for uncountably many «. Using the fact that the Z,’s are nonincreasing, one verifies
easily that the system {¥ o, Vi1, -» Vios Vias @ios Q115 s Qros Oy} has all the
required properties.

LemMa 9. IfZ, # @ for each a<wy, then there is xo€ X such that A™ contains
a homeomorph of the Cantor set.

Proof. Fix a metric d in Z. Since Z, # @ for each a< o, it follows that the
system {Z, ¥} is admissible. By repeatedly using Lemma 8, we get, for each finite
sequence (&q, &, .-, &) of 0’s and 1’s, an open set ¥y 4, .z in Zandanopenset Qy ¢, .0
in Y such that, for each k1,

() (61, 825 e 80 % (515 025 00s ) = Crvenie O Qostreiti = D

(@) LPregmens) S Versaonnes Where cl is the closure operator,

(iii) d-diameter (V.50 <1/k, and

(V) {(Virons Ornezoet @15 25 s 8) €S} 18 admissible, where S is the
set of finite sequences of 0’s and 1’s of length k.

® . .
Define C = | () Viyey...rr Where the union extends over all infinite sequences
k=1

(g1, 85,..) of 0's and 1's. Using conditions (i)-(iv), one checks that C is
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a homeomorph of the Cantor set. Next observe that (iv) implies that
N {ﬂ:l(f(Vzlzz.,..:k)): (61,855 s 8) €S} # D

It now follows that the set m,( f(C)) contains exactly one point, say, x,. Finally,
conditions (i) and (iv) imply that 7, o f, restricted to C, is one-one. So 4* contains
2 homeomorph of the Cantor set.

We now turn to the proof of the theorem. Assume that 4% is countable for
each x € X. Then, by Lemma 9, there is A<, such that Z; = @. Now Lemma 7
with « = 4 and B = @ yields a set He &, such that 4 = S(Z)S H. This completes
the proof of the theorem.

Discussions with H. Sarbadhikari and S.M. Srivastava are gratefully
acknowledged.

for each k1.
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On pure semi-simple Grothendieck categories IT
by
Dariel Simson (Torur)

Abstract. Given a pure semi-simple Grothendieck category #, we construct a new pure-
semi-simple functor category I(#) such that gl. dimst = gl. dimZ(#), The map # » I(/t) defines
a one-one correspondence between equivalence classes of hereditary pure semi-simple Grothendieck
categories and equivalence classes of hereditary pure semi-simple functor categories. Applications
of this result are given.

Introduction. In [13] the notion of a pure semi-simple Grothendieck category
is introduced as a “pure” counterpart of semi-simple categories (cf. [9]). We recall
that a Grothendieck category is pure semi-simple if each of its objects is a direct
sum of finitely presented objects. Pure semi-simple Grothendieck categories are
investigated in [11]-[17].

In the present paper we give two constructions of new pure semi—simpl'e
Grothendieck categories from a given pure semi-simple one. Given a pure semi-
simple Grothendieck category & a pure semi-simple functor category I(&f) is
constructed in a such a way that gl.dims/ = gl.dimI(«) and the category of all
noetherian injective objects in & is equivalent to the category of all finitely generated
projective objects in I(2). Further, given a skeletally small additive category € suc}1
that the functor category #-Mod is locally coherent and #°P-Mcd is pure semi-
simple, a pure semi-simple Grothendieck category @ is conmstructed. The map
s+ I(f) is the inverse (with respect to an equivalence) of the map ¥°*-Mod @,
and conversely. These maps define a one-one correspondence between equivalence
classes of hereditary pure semi-simple Grothendieck categories and equivalence
classes of hereditary pure semi~simple functor categories. In Section 2 we illustrate
our constructions by simple examples.

In Scction 1 we recall from [12]-[14] some background material on functor
categories and pure semi-simple Grothendieck categories. An extension of
Theorem A in [3] is given.

Section 2 contains the comstructions and main results mentioned above. _As
a consequence of our general considerations we get the following two corollaries.
Any injective noetherian object of a pure semi-simple Grothendieck categf)ry has
a right pure semi-simple endomorphism ring. If 4 is a skeletally small abelian Fat'
egory such that the category ¥-Mod is perfect, then @-Mod is locally noetherian.
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