A multiplier theorem for continuous measures

Ъν

COLIN C. GRAHAM (Evanston, Ill.) and ALAN MACLEAN (Wichita, Kan.)

Abstract. Let G be a non-discrete LCA group and X a norm-compact subset of continuous measures on G. Then there exists a singular continuous independent power Hermitian probability measure μ on G such that $\mu*\nu\in L^1(G)$ for all $\nu\in X$. Some applications of this are given, as well as a partial converse: If f is a trigonometric polynomial on the compact abelian group G and $\varepsilon>0$, then there exist singular continuous measures μ , $\nu\in M(G)$ such that $\mu*\nu=f$ and $\|\mu\| \|\nu\| < (1+\varepsilon) \|f\|$. Riesz products are used.

1. Introduction and statement of results. In this section we state our main results (Theorems 1 and 2) and two applications (Corollaries 3 and 4). In Section 2 we prove two lemmas. Theorems 1 and 2 are proved in Section 3. A converse to Theorem 1 appears in the last section.

Riesz products are described at the end of this first section.

THEOREM 1. Let G be a compact abelian group with dual group Γ . Let X be a norm-compact subset of continuous measures on G. Then there exists a singular continuous independent power Hermitian probability measure μ on G such that $\mu*v$ has an absolutely convergent Fourier-Stieltjes series for all $v \in X$, and such that the map from X to $L^1(\Gamma)$ given by $v \rightarrow (\mu*v)^{\hat{}}$ is continuous.

THEOREM 2. Let G be a non-compact, non-discrete, locally compact abelian group with dual group Γ . Let X be a norm-compact subset of continuous measures on G. Then there exists a singular continuous independent power Hermitian probability measure μ on G such that $\mu * \nu \in L^1(G)$ for all $\nu \in X$.

Remarks. Doss [4] proved Theorem 1 when X is a singleton. The proofs of Theorems 1 and 2 are based to a large extent on his paper. Körner [9] shows that there exist probability measures μ, ν on Kronecker sets in T such that $\mu * \nu$ is a C^{∞} -function. Doss [4] obtains the following corollary for compact abelian groups; his proof carries over nearly verbatim to our more general context and will be omitted.

COROLLARY 3. Let G be a σ -compact, locally compact abelian group. Let F be a perfect non-empty subset of G. Then there exists a Borel subset S of G of zero Haar measure such that FS = G.

Remarks. (i) When G has a countable base, Corollary 3 has the following form: Let F be any uncountable closed subset of G; then there exists a Borel subset S of G of zero Haar measure such that FS = G.

- (ii) Körner [9], Bernard and Varopoulos [1], and Varopoulos [13] have shown that if F is a perfect Kronecker set in a compact metrizable abelian I-group G, then there exists another Kronecker set S in G such that FS = G.
- (iii) Talagrand [12] has shown that if F is a compact perfect subset of the locally compact abelian group G, then there exists a compact subset S of G such that FS has non-empty interior and S has zero Haar measure. We can obtain, by our methods, only the weaker version that FS has non-zero Haar measure.
- (iv) After a version of these results had been prepared and circulated, we received a communication from S. Saeki pointing out that "norm compact" can be replaced by "pseudonorm compact" in Theorems 1 and 2, and that the conclusion of Theorem 2 holds in the (new) situation of Theorem 1; see [15], Theorem 7.5.1.

COROLLARY 4. Let G be a non-discrete locally compact abelian group. Then

- (i) $\Delta M_c(G)$ is not σ -compact;
- (ii) $\partial M(G)$ is not a G_{δ} ; and
- (iii) $\Gamma^{-} \setminus \Gamma$ is not a G_{δ} .

Proof. (i) If $\Delta M_c(G)$ were σ -compact, then there would exist a sequence of measures $\{\mu_1, \, \mu_2, \ldots\} \subset M_c(G)$ such that $\lim \mu_j = 0$, and such that for each $\chi \in \Delta M_c(G)$, there exists $1 \leq j < \infty$ such that $\hat{\mu}_j(\chi) \neq 0$. Let $X = \{\mu_1, \, \mu_2, \ldots\} \cup \{0\}$. Then X satisfies the hypotheses of Theorem 2. Therefore, there exists $\mu \in M_c(G)$ such that

(1)
$$\mu * \mu_i \in L^1(G) \quad \text{for} \quad j = 1, 2, \dots$$

and such that μ is a Hermitian, independent power probability measure. This last sentence implies that there exists $\chi \in \Delta M_c(G) \setminus \Gamma$ such that $\hat{\mu}(\chi) = 1$. Indeed, $\mu^n \perp \operatorname{Rad} L^1(G)$ for $n = 1, 2, \ldots$, so the spectral radius of $\mu + \operatorname{Rad} L^1$ in $M_c(G)/\operatorname{Rad} L^1$ is one. If $\chi \in \Delta M_c(G)/\operatorname{Rad} L^1 = \Delta M_c(G) \setminus \Gamma$ has $|\hat{\mu}(\chi)| = 1$, then $\hat{\mu}(|\chi|) = 1$ and $\chi \notin \Gamma$.

Now, if $\chi \in \Delta M_c(G) \setminus \Gamma$ and $\hat{\mu}(\chi) \neq 0$, then (1) implies that

$$\hat{\mu}_j(\chi) = 0$$
 for $j = 1, 2, \dots$

This proves that $\Delta M_c(G)$ is not σ -compact.

(ii)-(iii). Let X equal either $\partial M(G)$ or $\Gamma^- \setminus \Gamma$. Let $\{U_n\}$ be a sequence of open sets in $\Delta M(G)$ such that $X \subset \bigcap_{n=1}^{\infty} U_n$. Each set U_n is of the form

(2)
$$\bigcup_{a} \bigcap_{k=1}^{K(n,a)} \{ \chi \colon |\hat{\mu}_{k,n,a}(\chi) - \hat{\mu}_{k,n,a}(\varrho_{k,n,a})| < 1 \}.$$

Since each U_n contains the compact set X, we may assume that the union over α in (2) is finite. We may also assume that each measure $\mu_{k,n,\alpha}$ is either discrete or continuous. It is not hard to see that the discrete measures bring about no exclusion. This follows from the fact that $\Gamma^- \setminus \Gamma \subset X$, and the details are left to the reader. We may thus assume that the measures $\mu_{k,n,\alpha}$, are all continuous. It is easy to see that for each $n=1,2,\ldots$, there exists an $\alpha=\alpha(n)$ such that $\hat{\mu}_{k,n,\alpha(n)}(\varrho_{k,n,\alpha(n)})=0$ for $k=1,\ldots,k(n,\alpha)$. This follows from the fact that the zero functional is in the weak* closure of Γ in $L^\infty(\mu)$ for any continuous measure μ on G. Let

$$Y = \{\mu_{k,n,\alpha(n)}: k = 1, ..., K(n, \alpha(n)) \text{ and } n = 1, 2, ...\}.$$

Then there exists a measure $\omega \in M(G)$ such that $\omega * \nu \in L^1(G)$ for all $\nu \in Y$. (This follows from Theorem 2.) This measure is the extension of a Riesz product on a compact quotient of an open subgroup of G, and hence is "tame", by Brown [2]. Therefore, there exist (by the arguments of Brown [2]) elements χ of $\Delta M(G)$ such that $\hat{\omega}(\chi) = 0$, and $\chi \notin \partial M(G)$. In particular, $\chi \notin X$.

The corollary is proved.

Before proving Theorems 1 and 2 we present here a short description of Riesz products. Further discussion and references may be found in Zygmund [14], Hewitt and Zuckerman [8], Brown and Moran [3], and Brown [2].

Let G be a compact abelian group with dual group Γ . We shall use multiplicative notation for the group operation, except in \mathbb{R}^n and \mathbb{Z}^n . For $\gamma \in \Gamma$, let $O(\gamma)$ denote the order of γ . A subset $\Theta \subset \Gamma$ is said to be dissociate if it does not contain 1 and if every $\gamma \in \Gamma$ has at most one factorization (except for the order of the factors) of the form

$$\gamma = \prod_{j=1}^n \gamma_j^{m_j},$$

where $\gamma_1, \gamma_2, \ldots, \gamma_n$ are distinct elements of Θ , $m_j \in \{\pm 1\}$ if $O(\gamma_j) > 2$, and $m_j = 1$ if $O(\gamma_j) = 2$. We let $\Omega(\Theta)$ denote the subset of Γ consisting of 1 and all characters of the form (3). Infinite dissociate sets exist in any infinite abelian group Γ .

Let Θ be dissociate and let $a: \Theta \to C$ be a function satisfying $|a(\gamma)| \leq \frac{1}{2}$

if $O(\gamma) > 2$, and $a(\gamma) \in (-1, 1)$ if $O(\gamma) = 2$. For $\gamma \in \Theta$, set

$$q_{\gamma}(x) = \begin{cases} 1 + \overline{a(\gamma)\gamma(x)} + a(\gamma)\gamma(x) & \text{if} \quad O(\gamma) > 2, \\ 1 + a(\gamma)\gamma(x) & \text{if} \quad O(\gamma) = 2, \end{cases}$$

and for each finite subset Φ of Θ define

$$p_{\Phi}(x) = \prod_{\gamma \in \Phi} q_{\gamma}(x).$$

We regard the trigonometric polynomials p_{σ} as absolutely continuous probability measures on G. Then the net $\{p_{\sigma}\colon \Phi \subset \Theta, \Phi \text{ finite}\}$, directed by inclusion, converges weak-* to a probability measure μ . It is not difficult to see that $\hat{\mu}$ vanishes off $\Omega(\Theta)$, while

$$\hat{\mu}\left(\prod_{j=1}^n \gamma_j^{m_j}\right) = \prod_{j=1}^n a(\gamma_j)^{(m_j)}$$

for $\prod_{j=1}^{n} \gamma_{j}^{m_{j}} \in \Omega(\Theta)$, where $a(\gamma_{j})^{(m_{j})} = a(\gamma_{j})$ if $m_{j} = 1$ and $a(\gamma_{j})^{(m_{j})} = \overline{a(\gamma_{j})}$ if $m_{j} = -1$. The measure μ is called the *Riesz product* based on Θ and a. The phrase "a Riesz product μ " is used with the understanding that μ is the Riesz product based on some dissociate set Θ and function $a: \Theta \to C$ as above.

Finally, let μ be the Riesz product based on Θ and a. Then μ is singular if $\sum_{\theta} |a(\gamma)|^2 = \infty$, μ is absolutely continuous if $\sum_{\theta} |a(\gamma)|^2 < \infty$, μ is continuous if $\sum_{\theta} (1 - |a(\gamma)|) = \infty$, and μ has independent powers if $\limsup\{|a(\gamma)|: \gamma \in \Theta\} > 0$. See [2], [3], [15] for more on these results.

2. Key lemmas.

LEMMA 5. Let G be a compact abelian group. Let $X \subset M(G)$ be a norm compact subset of continuous measures. Let $\varepsilon_1 > 0$, $\varepsilon_2 > 0$, ... be a sequence of positive numbers. Then there exists a sequence $\gamma_1, \gamma_2, \ldots$ of elements of Γ such that for each $n = 1, 2, \ldots$

(4) if
$$m_1, \ldots, m_n \in \{-2, -1, 0, 1, 2\}$$
 and $\prod_{j=1}^n \gamma_j^{m_j} = 1$, then $\gamma_1^{m_1} = \ldots = \gamma_n^{m_n} = 1$;

and

(5)
$$|\hat{\mu}(\prod_{j=1}^{n} \gamma_{j}^{m_{j}})| < \varepsilon_{n}, \text{ if } m_{1}, \ldots, m_{n} \in \{-1, 0, 1\}, m_{n} \neq 0, \text{ and } \mu \in X.$$

Proof. We may assume that if $\mu \in X$, then $\overline{\mu} \in X$. We shall produce an infinite countable subgroup Λ of Γ and a sequence $\lambda_1, \lambda_2, \ldots$ of distinct elements of Λ such that for each finite set $F \subset \Lambda$,

(6)
$$\lim_{k\to\infty}\hat{\mu}(\gamma\lambda_k)=0\quad \text{ uniformly for }\mu\in X \text{ and }\gamma\in F.$$

We first claim that there exists a compact subgroup H of G such that G/H is metrizable and such that the map $\Pi \colon \mathcal{M}(G) \to \mathcal{M}(G/H)$ (induced by the natural map $H \colon G \to G/H$) sends each measure in X to a continuous measure on G/H. The proof is not difficult and is left to the reader.

Let H be such a subgroup and let Λ be the annihilator of $H: \Lambda = \{ \gamma \in \Gamma: \langle y, \gamma \rangle = 1 \text{ for all } y \in H \}$. Then Λ is countable. Let $F \subset \Lambda$ be finite and let $\delta > 0$. Let μ_1, \ldots, μ_s be $(\frac{1}{2}\delta)$ -dense in X. Let ω be the continuous measure given by

$$\omega = \sum_{\gamma \in F} \sum_{j=1}^{s} (\overline{\gamma} \mu_j) * (\overline{\gamma} \mu_j)^{\sim}.$$

Let $a = \left\lceil \delta/(2s\operatorname{Card} F) \right\rceil^2$. Let V be any compact symmetric neighbourhood of H such that $\overline{H}|\omega| \left\lceil H(VV) \right\rceil < a$. Let f be the convolution square of the characteristic function of V, divided by the Haar measure of V. Then f is positive definite and f(0) = 1. If we take Fourier-(Stieltjes) transforms, then the estimate $\overline{H}|\omega| \left\lceil H(VV) \right\rceil < a$ becomes $\sum_{\lambda \in A} \hat{\omega}(\lambda) \hat{f}(\lambda) < a$. Since f is positive definite, $\sum \hat{f} = 1$, while $\hat{\omega} \geqslant 0$, we see that there exists $\lambda \in A$ such that $\hat{\omega}(\lambda) < a$. The Cauchy-Schwarz inequality then implies that

$$|\hat{\mu}_j(\gamma\lambda)| < \frac{1}{2}\delta$$
 for $1 \leqslant j \leqslant s$ and $\gamma \in F$.

Since the set $\{\mu_i\}_{i=1}^s$ is $(\frac{1}{2}\delta)$ -dense in X, we see that

$$|\hat{\mu}(\gamma\lambda)| < \delta$$
 for $\mu \in X$ and $\gamma \in F$.

The construction of the sequence $\lambda_1, \lambda_2, \ldots$ is now easy. We let F_1, F_2, \ldots be a sequence of finite subsets of Λ such that $F_1 \subset F_2 \subset \ldots$ and $\bigcup_{i=1}^{\infty} F_i = \Lambda$. We choose distinct $\lambda_1, \lambda_2, \ldots \in \Lambda$ such that

$$|\hat{\mu}(\lambda_j \gamma)| < 2^{-j}$$
 for $\mu \in X$ and $\gamma \in F_j$, and $j = 1, 2, ...$

This establishes the existence of Λ and λ_i such that (6) holds.

We now proceed to construct the sequence $\{\gamma_j\}$. We first suppose that $\{\lambda_j^2\}_{j=1}^{\infty}$ is finite, where $\{\lambda_j\}$ and Λ are as above. Then we may pass to a subsequence and assume that $\lambda_j^2 = \lambda_k^2$ for $1 \le j$, $k < \infty$. If we replace λ_j by $\lambda_j' = \lambda_j \lambda_1^{-1}$, then we may assume that $\lambda_j^2 = 1$ for all j. These changes do not affect the validity of (6).

Now, since the λ_j all have order two, there is an infinite subsequence $\{\lambda_{j(k)}\}_{k=1}^{\infty}$ which forms an infinite independent set. The independence ensures that (4) will hold if $\{\lambda_j\}_{j=1}^{\infty}$ is a subset of $\{\lambda_{j(k)}\}_{k=1}^{\infty}$ and an easy induction using (6) shows that there exists an infinite sequence $\gamma_1 = \lambda_{j(k(1))}$, $\gamma_2 = \lambda_{j(k(2))}$, ... such that (5) holds.

The proof of the lemma is almost finished. We only need to consider the case in which $\{\lambda_i^2\}_{i=1}^{\infty}$ is infinite. By passing to subsequence, we may

Multiplier theorem for continuous measures

assume that $\lambda_j^2 \neq \lambda_k^2$ if $1 \leq j \neq k < \infty$. Then for every finite set $F = F^{-1} \subset \Lambda$, there exists J = J(F) such that $\lambda_j \notin F$ and $\lambda_j^2 \notin F$, if $j \geqslant J$.

Choose (using (6)) $\gamma_1 = \lambda_{j(1)}$ such that

$$|\hat{\mu}(\gamma_1)| < \varepsilon_1$$
 for all $\mu \in X$.

Suppose that $\gamma_1 = \lambda_{j(1)}, \ldots, \gamma_k = \lambda_{j(k)}$ have been found such that (4) and (5) hold for $n = 1, \ldots, k$.

Let $F = \{ \prod_{j=1}^{\kappa} \gamma_j^{m_j} \colon m_1, \ldots, m_k \in \{-2, -1, 0, 1, 2\} \}$. Let J = J(F) be so large that $\lambda_j \notin F$ and $\lambda_j^2 \notin F$ if $j \geqslant J$. Since $F = F^{-1}$, we see also that λ_j^{-1} and $\lambda_j^{-2} \notin F$ if $j \geqslant J$.

Let $j(k+1) \ge J$ be so large that

(7)
$$|\hat{\mu}(\gamma \lambda_{j(k+1)})| < \varepsilon_{n+1}, \quad \text{if} \quad \mu \in X \text{ and } \gamma \in F.$$

This is possible by (6). Since $\mu \in X$ if $\mu \in X$, we also see that

(8)
$$|\hat{\mu}(\gamma \lambda_{i(k+1)}^{-1})| < \varepsilon_{n+1}$$
, if $\mu \in X$ and $\gamma \in F$.

Set $\gamma_{k+1} = \lambda_{j(k+1)}$. Then, because $\gamma_{k+1}^{\pm 1} \notin F$ and $\gamma_{k+1}^{\pm 2} \notin F$, formula (4) holds for n = k+1. Also, by (7)–(8) and the fact that $F = F^{-1}$, we see that (5) holds for n = k+1.

This completes the proof of Lemma 5.

The following Lemma is an elaboration of an old result for R; see Goldberg [5]. Our proof differs from that found in [5].

LEMMA 6. Let G be a compact abelian group and let $v \in M^+(T^n \times G)$. Then there exists $\omega \in M^+(R^n \times G)$ such that $\hat{\omega}(z, \gamma) = \hat{v}(z, \gamma)$ for all $(z, \gamma) \in Z^n \times \hat{G}$. Moreover, if v is continuous, absolutely continuous, singular, Hermitian, or has independent powers, then ω possesses the corresponding properties. Finally, $\omega \in M_0^+(R^n \times G)$, if $v \in M_0^+(T^n \times G)$.

Proof. For this proof \sum_{z} denotes *n*-fold summation $\sum_{k_1=-\infty}^{\infty} \dots \sum_{k_n=-\infty}^{\infty}$ over Z^n ; $x \leq y$ $(x, y \in R^n)$ means that this relation holds coordinatewise; and for $z = (z_1, \dots, z_n) \in Z^n$ we write

$$z+1 = (z_1+1, ..., z_n+1)$$
 and

$$I_z = [2z_1\pi, 2(z_1+1)\pi) \times \dots \times [2z_n\pi, 2(z_n+1)\pi].$$

Define Δ and δ on \mathbb{R}^n at $\alpha = (x_1, \ldots, x_n)$ by

$$\delta(x) = 2^n \prod_{j=1}^n x_j^{-2} (1 - \cos x_j);$$

$$\Delta(x) = \begin{cases} \prod_{j=1}^{n} (1-|x_j|), & |x_j| \leqslant 1; \ j=1, \ldots, n, \\ 0, & \text{otherwise.} \end{cases}$$

Then $\hat{\delta} = (2\pi)^n \Delta$. Let k be the function defined on \mathbb{Z}^n by

$$k(z) = \sup \left\{ \delta(x) \colon x \in I_z \right\},\,$$

and note that

$$\sum_{z} k(z) \leqslant \Big[\sum_{j=-\infty}^{\infty} \sup \left\{2x^{-2}(1-\cos x) \colon \ 2j\pi \leqslant x < 2(j+1)\pi\right\}\Big]^n < \infty.$$

Fix $x \in \mathbb{R}^n$ and let $p \in \mathbb{Z}^n$ be such that $p \leqslant x \leqslant p+1$. Then we claim that

(9)
$$\sum_{z} e^{-ix \cdot (t+2z\pi)} \, \delta(t+2z\pi) = \sum_{p \leqslant z \leqslant p+1} \Delta(x-z) e^{-iz \cdot t}$$

for all $t \in [0, 2\pi)^n$. This is seen as follows. Define ψ_1 and ψ_2 on \mathbb{R}^n by

$$\psi_1(t) = e^{-ix \cdot t} \, \delta(t) \quad (t \in \mathbb{R}^n);$$

$$\psi_2(t) = \begin{cases} (2\pi)^{-n} \sum_{p \leqslant z \leqslant p+1} \Delta(x-z)e^{-iz \cdot t}, & t \in [0, 2\pi)^n, \\ 0, & \text{otherwise.} \end{cases}$$

Then for $q \in \mathbb{Z}^n$

(10)
$$\hat{\psi}_1(q) = (2\pi)^n \Delta(x+q) = (2\pi)^n \hat{\psi}_2(q)$$

Since $\psi_j \in L^1(\mathbb{R}^n)$, the functions $g_j(t) = (2\pi)^n \sum_{g} \psi_j(t+2z\pi)$ $(t \in [0, 2\pi)^n)$ are in $L^1[0, 2\pi)^n$, and, as is easily seen, $\hat{\psi}_j(q) = \hat{g}_j(q)$ for all $q \in \mathbb{Z}^n$. Thus, in view of (10), $g_1 = (2\pi)^n g_2$ a.e. on $[0, 2\pi)^n$, i.e., (9) holds for almost all $t \in [0, 2\pi)^n$. In fact, it holds everywhere on $[0, 2\pi)^n$ by continuity. Now, let δ_1 and Δ_1 be defined on $\mathbb{R}^n \times G$ and $\mathbb{R}^n \times \hat{G}$ by

$$\delta_1(x,s) = \delta(x) \quad ext{ and } \quad \mathit{\Delta}_1(x,\gamma) = \left\{ egin{array}{ll} \mathit{\Delta}(x), & \gamma = 1, \\ 0, & \gamma
eq 1. \end{array}
ight.$$

and let $f: \mathbb{R}^n \times \hat{G} \rightarrow \mathbb{C}$ be defined by

$$f(x, \gamma) = \sum_{(z, \chi)} \hat{v}(z, \chi) \Delta_1(x-z, \gamma \chi^{-1}),$$

where the sum is over all $(z, \chi) \in \mathbb{Z}^n \times \hat{G}$. This sum actually has only finitely many non-zero terms for a given (x, γ) . Indeed, if $p \leq x \leq p+1$ $(p \in \mathbb{Z}^n)$, then $\Delta_1(x-z, \gamma\chi^{-1}) = 0$ unless $p \leq z \leq p+1$ and $\gamma = \chi$. Hence,

(11)
$$f(x,\gamma) = \sum_{\mathbf{z} \leqslant x \leqslant p+1} \hat{\mathbf{v}}(z,\gamma) \Delta(x-z).$$

In particular, it is easy to check that when x = p

(12)
$$f(p,\gamma) = \hat{\nu}(p,\gamma) \quad ((p,\gamma) \in \mathbb{Z}^n \times \hat{G}).$$

Let μ be the periodic extension of ν to $\mathbb{R}^n \times G$ (for \mathbb{E} in $\mathbb{R}^n \times G$, $\mu(\mathbb{E})$

 $=\sum_{\mathbf{z}}\nu\big(E\cap I_z\times G\cdot(2z\pi,1)^{-1}\big) \text{ and set } \omega=\delta_1\mu. \text{ Then } \omega\in M^+(R^n\times G) \text{ since }$ $(13) \qquad \int\limits_{R^n\times G}\delta_1(t,s)\,d\mu(t,s)=\sum_{\mathbf{z}}\int\limits_{I_z\times G}\delta_1(t,s)\,d\mu(t,s)$ $\leqslant \int\limits_{\{0,2\pi\}^n\times G}d\nu(t,s)\cdot\sum_{\mathbf{z}}k(z)<\infty.$

We will show that $\hat{\omega} = f$ on $\mathbb{R}^n \times \hat{G}$. This will establish, via (12), the first assertion of the lemma. Fix (x, γ) and let $p \in \mathbb{Z}^n$ be such that $p \leq x \leq p+1$. Then, using (9) and (11),

$$\begin{split} \hat{\omega}(x,\gamma) &= \int\limits_{\mathbb{R}^{n}\times G} e^{-ix\cdot t} \overline{\gamma}(s) \, \delta_{1}(t,s) d\mu(t,s) \\ &= \sum\limits_{z} \int\limits_{\{0,2\pi\}^{n}\times G} e^{-ix\cdot (t+2z\pi)} \overline{\gamma}(s) \, \delta(t+2z\pi) d\nu(t,s) \\ &= \int\limits_{\{0,2\pi\}^{n}\times G} \sum\limits_{p\leqslant z\leqslant p+1} \Delta(x-z) e^{-iz\cdot t} \overline{\gamma}(s) d\nu(t,s) \\ &= \sum\limits_{p\leqslant z\leqslant p+1} \hat{\nu}(z,\gamma) \Delta(x-z) = f(x,\gamma), \end{split}$$

where the interchange of sum and integral is justified by absolute convergence as in (13).

It is clear from the definition of f that ω is Hermitian if r is. Now, the map $R^n \times G \to R^n/2\pi Z^n \times G = T^n \times G$ induces a Banach algebra homomorphism $p: M(R^n \times G) \to M(T^n \times G)$ given by

$$(\mathbf{p}\tau)(\mathbf{E}) = \tau(\mathbf{E}')$$

for Borel sets $E \subseteq T^n \times G$, where

$$E' = \{(x, s) \in \mathbb{R}^n \times G : \text{ there exists } z \in \mathbb{Z}^n \text{ with } x + z \in [0, 2\pi)^n \text{ and } (x + z, s) \in \mathbb{B}\}.$$

Then if ω , which is ≥ 0 , is not continuous (or absolutely continuous, or singular), $\nu = p\omega$ is not continuous (or absolutely continuous, or singular). If ω does not have independent powers, ν does not have independent powers. Finally, the claim that $\omega \notin M_0(\mathbb{R}^n \times G)$ implies $\nu \notin M_0(\mathbb{R}^n \times G)$ is established as in Graham [6].

3. Proofs of Theorems 1 and 2.

Proof of Theorem 1. Let $X \subset M(G)$ be a norm compact subset of continuous measures on the compact abelian group G. Let $Y = (X \cup \{0\}) - (X \cup \{0\})$. Suppose that we can show that there exists a singular continuous independent power Hermitian probability measure ν such that every element of $\nu * Y$ has an absolutely convergent Fourier series

and such that the map $\mu \to (\nu * \mu)$ is continuous, at 0, from Y to $L^1(\Gamma)$. Then the map $\mu \to (\nu * \mu)$ is a continuous map from X to $L^1(\Gamma)$.

Thus, to prove Theorem 1 it will be sufficient to show that there exists for each norm compact set $X \subset M_c(G)$, containing 0, a singular continuous independent power Hermitian probability measure ν such that $(\nu*X)^{\hat{}} \subset L^1(\Gamma)$ and such that $\mu \to (\nu*\mu)^{\hat{}}$ is continuous at zero.

Let X_0 be defined by

$$(14) \hspace{1cm} X_0 = X \cup \bigcup_{n=1}^{\infty} \left\{ 2^n \mu \colon \ \mu \in X \ \text{ and } \ 4^{-n-1} \leqslant \|\mu\| \leqslant 4^{-n} \right\}.$$

Then X_0 is norm compact, since $0 \in X$.

We apply Lemma 5 to X_0 and $\varepsilon_n = 6^{-n}$, n = 1, 2, ...

We let $\Theta = \{\gamma_n\}_{n=1}^{\infty}$, where $\{\gamma_n\}_{n=1}^{\infty}$ satisfy (4)-(5) for all $n = 1, 2, \ldots$ and $\mu \in X_0$. Then, by (4), Θ is dissociate. Let ν be the Riesz product generated by Θ and $a(\gamma) \equiv \frac{1}{2}$. Then ν is a singular continuous independent power Hermitian probability measure. Also, if $\mu \in X_0$, then (5) implies that

(15)
$$\sum_{r} |\hat{\nu}(\gamma)\hat{\mu}(\gamma)| \leq |\hat{\mu}(1)| + \sum_{n=1}^{\infty} \frac{1}{2} 3^{n} \varepsilon_{n} \leq |\hat{\mu}(1)| + \sum_{n=1}^{\infty} 3^{-n}/2.$$

Now (14)-(15) show that if $4^{-n-1} \le ||\mu|| \le 4^{-n}$, then

$$\|(v*\mu)^{\hat{}}\|_{L^{1}(\Gamma)} \leqslant |\hat{\mu}(1)| + 2^{-n-1} \sum_{m=1}^{\infty} 3^{-m} \leqslant \|\mu\| + \frac{1}{2} \|\mu\|^{1/2},$$

that is, $\mu \rightarrow (\nu * \mu)^{\hat{}}$ is continuous at 0 as a function from X to $L^{1}(\Gamma)$. The proof of Theorem 1 is finished.

Proof of Theorem 2. We first observe that it suffices to prove Theorem 2 for the special case $X = \{v_j\} \cup \{0\}$, where $\sum ||v_j|| < \infty$. The theorem in general is then established as follows.

For each $n=1,2,\ldots$, let $\{\nu(n,j)\colon 1\leqslant j\leqslant J(n)\}\subset X$ be 2^{-n} -dense in X. Choose numbers $\alpha(n,j)>0$ such that

$$\sum_{n=1}^{\infty}\sum_{j=1}^{J(n)}\alpha(n,j)\|\nu(n,j)\|<\infty,$$

and set $X' = \{a(n,j)v(n,j): n = 1,2,\ldots,1 \le j \le J(n)\} \cup \{0\}$. Then the special case above implies the existence of a singular continuous independent power Hermitian probability measure μ such that $\mu * v(n,j) \in L^1(G)$ for all n,j. But if $v(n_k,j_k) \rightarrow v \in X$, then $\mu * v(n_k,j_k) \rightarrow \mu * v$ so $\mu * v \in L^1(G)$ for all $v \in X$.

It remains to prove Theorem 2 for $X = \{v_j\} \cup \{0\}$ with $\sum ||v_j|| < \infty$. By the structure theorem (Rudin [11], Hewitt and Ross [7]), G has an open subgroup of the form $R^n \times D$, where D is compact. Let $F = [0, 2\pi)^n \times D$. Then, because X is countable and each element of X has σ -compact support, there exists a sequence $\{y_k\}_{k=1}^{\infty}$ of elements of G such that

(16)
$$|\mu|(G \setminus \bigcup_{k=1}^{\infty} y_k F) = 0 \quad \text{for} \quad \mu \in X;$$

and such that

$$(17) \ |\mu| (\bigcap_{j=1}^{n} y_{k(j)} F) = 0 \quad \text{for} \quad \mu \in X \text{ and } 1 \leqslant k(1) < \ldots < k(n) < \infty.$$

(This follows by choosing $y_k = z_k x_k$, where the z_k are elements of $2\pi Z^n \times \{1\}$ and the x_k are in cosets of $R^n \times D$. An appropriate choice of the z_k and x_k will give a covering of the σ -compact "support" of X by disjoint sets. Then (16) and (17) follow.)

For each $k=1,2,\ldots$ let X_k denote the set of restrictions of elements of X to $y_k F$ and let $X_0 = \bigcup_{k=1}^\infty \delta_{y_k^{-1}} * X_k \cup \{0\}$. Then $\sum \{\|v\|: v \in X_0\} < \infty$ (by (16)–(17)) and $X_0 = M_c(F)$. We now let Π be the natural projection of $R^n \times D$ onto $T^n \times D$ given by $R^n \times D \to (R^n/2\pi Z^n) \times D = T^n \times D$, and let $\overline{\Pi}$ be the induced map of measures. Let $Y_0 = \overline{\Pi} X_0$. Let B denote the set of Borel functions f on $T^n \times D$ of the form

$$f(x_1, \ldots, x_n, d) = \exp(i(x_1t_1 + \ldots + x_nt_n))$$
 for $0 \le t_1, \ldots, t_n < 2\pi$.

Now $Y_0 = \{\mu_j\}$, where $\sum_{j=1}^{\infty} \|\mu_j\| < \infty$, since this property is inherited from X_0 . Let $\{b_j\}_{j=1}^{\infty}$ be a sequence of positive numbers such that $\lim b_j = 0$, $b_j \leq 1$, and such that $\sum_{j=1}^{\infty} \|\mu_j\|/b_j < \infty$. Let Y be defined by

$$Y = \bigcup_{j=1}^{\infty} \left\{ (b_j / \|\mu_j\|) f \mu \colon f \in B, \ \mu \in Y_0 \text{ and } \|\mu\| \leqslant \|\mu_j\| \right\} \cup \left\{ 0 \right\}.$$

Then Y is a norm compact subset of the unit ball. Thus, by Lemma 5, there exists a sequence $\{\gamma_k\} \subset Z^n \times \hat{D}$ such that (4)-(5) hold for all $\mu \in Y$, with $\varepsilon_n = 6^{-n}$, for n = 1, 2, ...

Let ν be the Riesz product on $T^n \times D$ generated by $\{\gamma_k\}$ and $\alpha(\gamma_k) \equiv \frac{1}{2}$. Then, for all $\mu \in Y$, we see that

$$\sum |(\nu * \mu)^{\hat{}}(\gamma)| \leq |\hat{\mu}(1)| + \sum_{n=1}^{\infty} 3^n 6^{-n} = |\hat{\mu}(1)| + 1 \leq 2.$$

Thus, if $\mu \in Y_0$ and $||\mu|| \leq ||\mu_i||$, then

$$\|(v*f\mu)^{\hat{}}\|_{L^1(\mathbb{Z}^n\times\hat{\mathcal{D}})}\leqslant 2\|\mu_j\|/b_j\quad\text{for}\quad f\in\mathcal{B}.$$

Let ω be the lifting of ν to $\mathbb{R}^n \times D$ which is given by Lemma 6. Then ω is a singular continuous independent power Hermitian probability

measure since ν is. Furthermore, $\hat{\omega}$ is supported on the set of elements of the form

(18)
$$(t, 1) \prod_{j=1}^{k} \gamma_j^{m_j}$$
, where $t \in [0, 2\pi)^n$ and $m_j \in \{0, -1, 1\}$ for $1 \le j \le k < \infty$.

This follows from (11).

Let t denotes an element of $[0, 2\pi)^n$, and let f_t denote the corresponding element of B. Then, if $z \in \mathbb{Z}^n$, $\varrho \in \hat{D}$, and $\mu \in X_0$, then we see that

$$(\omega * \mu)^{\hat{}}(t+z, \varrho) = (f_t \nu * f_t \overline{\Pi} \mu)^{\hat{}}(z, \varrho).$$

Thus, if $(t+z, \varrho)$ has the form (18), then

$$|(\omega * \mu)^{\hat{}}(t+z, \varrho)| \leq 6^{-k},$$

provided that not all m_j in (18) are zero. Therefore, for all elements $\mu_j \in X_0$, we see that

(19)
$$\|(\omega * \mu_j)^{\hat{}}\|_{L^1(\mathbb{R}^n \times \hat{D})} \leqslant 2 (2\pi)^n \|\mu_j\|/b_j.$$

Of course, translating μ_j by an element $y \in G$ does not change the estimate (19). Therefore, since each $\mu \in X$ is a sum,

$$\mu = \sum_{k=1}^{\infty} \delta_{y(k)} * \mu_{j(k)},$$

of translates of elements of X_0 , we have

$$\|(\omega * \mu)^{\hat{}}\|_{\mathcal{L}^1(\Gamma)} \leqslant \sum_{k=1}^{\infty} (\|\mu_{j(k)}\|/b_{j(k)}) < \infty.$$

The proof of Theorem 2 is finished.

4. A converse to Theorem 1.

THEOREM 7. Let G be an infinite compact abelian group and let f be a trigonometric polynomial on G. Let $\varepsilon > 0$. Then there exist singular continuous measures μ, ν on G such that $f = \mu * \nu$ and $\|\mu\| \|\nu\| \leqslant (1+\varepsilon) \|f\|$.

Proof. By Rudin ([11], 2.6.8) there exists a trigonometric polynomial g on G such that g*f=f and $\|g\|<(1+\varepsilon)^{1/2}$.

Let Θ be any infinite dissociate subset of the dual Γ of G. Let E denote the support of \hat{g} and F the support of \hat{f} . It is easy to see that there exists a finite subset Φ of Θ such that

(20)
$$\Omega(\Theta \setminus \Phi) \cap EE^{-1} = \{1\}.$$

 $(\Omega(\cdot))$ is defined at the end of Section 1.)

Let Θ_1 and Θ_2 be two disjoint infinite subsets of $\Theta \setminus \Phi$ and let μ_1 and μ_2 be singular continuous Riesz products based on Θ_1 , a_1 and Θ_2 , a_2 , respectively. For each finite subset Ψ of Θ_1 let $(\mu_1)_{\Psi}$ be the Riesz product based on $\Theta_1 \setminus \Psi$ obtained by restricting a_1 to $\Theta_1 \setminus \Psi$. Then the net $\{(\mu_1)_{\Psi}: \Psi \subset \Theta_1, \Psi \text{ finite}\}$ tends weak-* in M(G) to Haar measure. Hence, the continuity of f implies that

$$\inf\{\|f(\mu_1)_{\Psi}\|\} = \|f\|,$$

where the infimum is taken over all finite subsets Ψ of Θ_1 . Thus, we may assume that $\mu = f(\mu_1)_{\Psi}$ has norm at most $(1+\varepsilon)^{1/3} \|f\|$. Similarly, there exists a finite subset Λ of Θ_2 such that $\nu = g(\mu_2)_{\Lambda}$ has norm at most $(1+\varepsilon)^{2/3}$. The measures μ and ν are singular and continuous since both $(\mu_1)_{\Psi}$ and $(\mu_2)_{\Lambda}$ are. Comparing transforms using (20) yields $(\mu * \nu)^{\hat{}} = \hat{f}$ on F, while $(\mu * \nu)^{\hat{}}$ vanishes off F. Thus, $\mu * \nu = f$ and the inequality $\|\mu\| \|\nu\| \leq (1+\varepsilon) \|f\|$ follows from our estimates for $\|\mu\|$ and $\|\nu\|$.

This result is due to MacLean [10]. Whether a similar factorization holds for all elements of $L^1(G)$ seems to be an open question.

References

- A. Bernard and N. Th. Varopoulos, Groupes de fonctions continues sur un compact, Studia Math. 35 (1970), pp. 199-205.
- [2] G. Brown, Riesz products and generalized characters, Proc. London Math. Soc. (3) 30 (1975), pp. 209-238.
- [3] and W. Moran, On orthogonality of Riesz products, Proc. Cambridge Phil. Soc. 76 (1974), pp. 173-181.
- [4] R. Doss, Convolution of singular measures, Studia Math. 45 (1973), pp. 111-117.
- 5] R. Goldberg, Restrictions of Fourier transforms and extension of Fourier sequences, J. Approx. Theory 3 (1970), pp. 149-155.
- [6] C. C. Graham, M₀(G) is not a prime L-ideal of measures, Proc. Amer. Math. Soc. 27 (1971), pp. 557-562.
- [7] E. Hewitt and K. A. Ross, Abstract harmonic analysis, Volumes I and II, Grundlehren der Math. Wiss, Band 115 and 152, Springer-Verlag, New York-Heidelberg-Berlin 1963 and 1970.
- [8] E. Hewitt and H.S. Zuckerman, Singular measures with absolutely continuous convolution squares, Proc. Cambridge Phil. Soc. 62 (1966), pp. 399-420, Corrigendum, ibid. 63 (1967), pp. 367-368.
- [9] T. W. Körner, Some results on Kronecker, Dirichlet, and Helson sets, II, J. d'Analyse Math. 27 (1974), pp. 260-388.
- [10] A. Mac Lean, Trigonometric polynomials as products of singular measures, Kansas State University, Thesis, 1974.
- [11] W. Rudin, Fourier analysis of groups, Interscience Tract No. 12, Wiley, New York 1962.

- [12] M. Talagrand, Sommes vectorielles d'ensembles de mesure nulle, Ann. Inst. Fourier (Grenoble) 26, No. 3 (1976), pp. 137-172.
- [13] N. Th. Varopoulos, Groups of continuous functions in harmonic analysis, Acta Math. 125 (1970), pp. 109-152.
- [14] A. Zygmund, On lacunary trigonometric series, Trans. Amer. Math. Soc. 34 (1932), pp. 435-446.
- [15] C. C. Graham and O. C. McGehee, Essays in commutative harmonic analysis, Grundlehren der Math. Wiss., Band 238, Springer-Verlag, New York-Heidelberg-Berlin, 1979.

Received January 18, 1977
Revised version August 29, 1977 (1250)