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A wmultiplier theorem for continuous measures
by

COLIN C. GRAHAM (Evanston, Ill.) and ALAN MACLEAN (Wichita, Kan.)

Abstract. Let G bo a non-diserete LCA group and X a norm-compact subset
of continuous measures on G. Then there exists a singular continuous independent
power Hermitian probability measure g on @ such that px» ¢ I () for all ve X.
Some applications of this are given, as well as a partial converse: If f is a trigonometrie
polynomial on the compact abelian group G and &> 0, then there exist gingular
continuous measurcs g, » € M (G) such that uxv = f and |ju|l Ivll < (1+ &)l Riesz
produets are used.

1. Introduction and statement of results. In this section we state
our main results (Theorems 1 and 2) and two applications (Corollaries 3
and 4). In Section 2 we prove two lemmas. Theorems 1 and 2 are proved
in Section 3. A converse to Theorem 1 appears in the last section.

Riesz products are described at the end of this first section.

THEOREM 1. Let G be a compact abelian group with dual group I'. Let
X be a norm-compact subset of continuons measures on @. Then there ewists
o singular continuous independent power Hermitian probability measure
on G such that wxv has an absolutely oonvergent Fourier—Stieltjes senes
for all v e X, and such that the map from X to NI given by v—(u%v)”
18 continuous.

TamoreMm 2. Let G be o nmon-compact, non-discrete, locally compact
abelian group with dual group I'. Let X be a norm-compact subset of con-
tinuous measures on G. Then there exists o singular continuous mdependent
power Hermitian probability measure p on G ‘such that uxv e L'(@) for
all ve X.

Romarks. Doss [4] proved Theorem 1 when X is a singleton.
The proofs of Theorems 1 and 2 are hased o a large extent on his
paper. Korner [9] shows that there exist probability measures u,» on
Kronecker sets in T such that gxv is a C®-function. Doss [4] obtains
the following corollary for compact abelian groups; his proof carries
over nearly verbatim to our more general conbext and will be omitted.
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COROLLARY 3. Let G be a o-compact, locally compact abelian group.
Let F be a perfect non-empty subset of G. Then there ewists a Borel subsel
8 of & of zero Haar measure such that FS = G.

Remarks. (i) When @& has a countable bage, Corollary 3 hag the
following form: Let 7 be any uncountable closed subset of @; then there
exists a Borel subset § of @ of zero Haar measure such that FS = G.

(i) Koérner [9], Bernard and Varopoulos [1], and Varopoulos [13]
have shown that if ¥ is a perfect Kronecker seft in a compact metrizable
abelian I-group &, then there exists another Kronccker set 8 in ¢ such
that 8 = @.

(iii) Talagrand [12] has shown that if F is a compact porfect subset
of the locally compact abelian group &, then there exists a compach
subset 8 of @ such that 7S has non-empty inberior and & hag zero Haar
measure. We can obfain, by our methods, only the weaker version that
F8 has non-zero Haar measure. )

(iv) After a version of these results had been prepared and circulated,
we received a communication from S. Saeki pointing out that “norm
compact” can be replaced by “pscudonorm compact” in Theorems 1
and 2, and that the conclusion of Theorem 2 holds in the (new) situation
of Theorem 1; see [15], Theorem 7.5.1.

COROLLARY 4. Let G be a non-discrete locally compact abelian group.
Then

(i) AM,(Q) is not o-compact;

(i) 8M (@) is not a Gy; and

(fii) I'™N\TI is not a Gy.

Proof. (i) If AM,(G) were o-compact, then there would exist & so-
quence of measures {u,, us, ...} = M,(G) such that limu; = 0, and such
that for each y e AM,(@), there exists 1 <j < oo such that 4 (x) # 0.
Let X = {u,, pa, ...} U {0}. Then X satisfies the hypotheses of Theorem 2.
“Therefore, there exists ue M,(§) such that

(1) pep e L@  for §j=1,2,...

and such that u is a Hermitian, independent power probability meagure.
X This last sentence implies that there exists y e AM (NI such that
H{x) == 1. Inldeed, p"_LRadLI(G) for n = 1,2, ..., so the spectral radius
of ,u-l:RadL in M,(6)/Rad L' is one. If 1 € AM,(G)/Rad I = AM (NI
has |i(x)l =1, then a(lgl) =1 and g ¢ I

Now, if ye AM,()\I" and fa(y) # 0, then (1) implies that

mlx) =0 for j=1,2,...
This proves that AM.(G) is not o-compact.

_—
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(ii)~(iii). Let X equal either M (@) or I'"\I". Let {U,} be a sequence
of open sets in AM (6) such that X = () U,. Bach set U, is of the form

n=1

K{n,a) . .
(2) Lﬁ) I«ﬂ {X ]l“k,n,a(x) *ﬂk,qz,a(@k,n,u)l < 1}
Sinee each U, containg the compact set X, we may assume that the union
over a in (2) is finite. We may also assume that each measure u, . is
either diserete or continuous. It is not hard to see that the diserete mea-
sures bring about no e¢xclusion. Thig follows from the fact that I'™\I"c X,
and the details are left to the reader. We may thuyg assume that the mea-
BUTES iy, ., are all continuous. It is casy to see that for each n=1,2, ...,
there cxists an a = a(n) such that fy . umy(0kn.m) =0 for k=1, ...
..vy B(n, a). This follows from the fact that the zero functional is in the
weak* closure of I" in L*®(u) for any continnous measure x on G. Let

Y = {tpnam: b =1,..0, Kn, a(n)) and n =1,2,...}.

Then there exists @ measure w € M (G) such that wxv e LI(G) forall ve Y.
(This follows from Theorem 2.) This measure is the extension of a Rienz
product on a eompact quotient of an open subgroup of @, and hence is
“tame”, by Brown [2]. Therefore, there exist (by the arguments of Brown
[2]) clements g of AM (@) such that @(y) = 0, and g ¢ M (F). In par-
ticular, y ¢ X.

The corollary is proved.

Before proving Theorems 1 and 2 we present here a short description
of Riesz products. Further discussion and references may be found in
Zygmund [14], Hewitt and Zuckerman [8], Brown and Moran [3], and
Brown [2].

Let @ be a compact abelian group with dual group I. We shall use
multiplicative notation for the group operation, except in R" and Z".
Tor y e I', let O(y) denote the order of y. A subset @ = I' is said to be
dissociate it it does not contain 1 and if every o € I"has at most one factor-
ization (except for the order of the factors) of the form

k13
(3) y =[]
Jw=l
Where yy, Vs, --«) ¥, are distinet elements of @, my e {41} if O(y) > 2,
and m; = 1 if O(y;) = 2. We let 2(0) denote the subset of I' consisting
of 1 and all characters of the form (3). Infinite dissociate sets exist in
any infinite abelian group I
Let @ be dissociate and let a: ©—C be a function satisfying |a(y)| < %
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it O(y)>2, and a(y)e(—1,1) if O(y) = 2. For y €0, set

_[14ay@+aly)yl@) i O@)>2,
(1-+a(y)y () it 0() =2,

and for each finite subset @ of @ define
pa(@) = [ [4,().
ye®
We regard the trigonometric polynomials ps as absolutely continuous
probability measures on @. Then the net {py: ® < 0, D finite}, directed
by inclusion, converges weak-* to a probability measure u. It is not
“Aifficult to see that i vanishes off 2(@), while

¢,(®)

7

w([] ) = [[atmm
J=1 j=1

k2
for [Ty e (@), where a(y))™) = a(y,) if m; =1 and a(y,)™ = a(y,)
J=1
if my= —1. The mr-asure u is called the Riesz product based on € and a.
The pbrase “a Ricsz product x” is used with the understanding that u
is the Riesz product based on some dissociate set ® and function a: @—-C
as above. '
Finally, let x bc the Riesz product based on @ and a. Then g is sin-
gular if 20”0,('}1)[2 = oo, u ig absolutely continuous if > |a(y)[® < oo, u is
2 []

o

continuous if 3(1—la(y)l) = o0, arl u has independent powers if
-]
Lmsup {Ja(y){: y € O} > 0. See [2], [3], [18] for more on these results.

2. Key lemmas.

LevmA 5. Let @ be a compact abelian group. Let X < M (G) be & norm
compact subset of continuous measures. Let & > 0, 5> 0, ... be a sequence
of positive. numbers. Then there exists o sequence yy, s, ... of eclements
of I' such that for each n =1,2, ...

€n
(4) of my, ..., m,e{—2, —1,0,1,2} and [] y/ =1, then
j=1

y’i"l =...=9ypn =13
and
n
(5} |ﬁ(1‘!y‘;"j)| < &y if My, .ymye{—1,0,1}, m, %0, and ueX.
o .

Proof. We may assume that if 4 e X, then z € X. We shall produce
an infinite countable subgroup A of I" and a sequence Ay, A,, ... of distinet
elements of A such that for each finite set 7 < 4,

(6) lim zz(pd) = 0 uniformly for ye X and y e P.
L~s00
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We first elaim that there exists a compact subgroup H of G such
that G/H is metrizable and such that the map II: M(G)—~M (G/H) (in-
duced by the natural map I7: ¢—G/H) sends each measure in X to a con-
tinuous measure on G/H. The proof is not difficult and is left to the reader.

Let H be such a subgroup and let 4 be the annihilator of H: A = {y
el {y,y> =1 1or all y € H}. Then A is countable. Let # < A be finite
and let 8 > 0. Let x,, ..., 4, be (}d)-dense in X. Let w be the continuous
measure given by

o = D' 3 yu) ()"
yeR =1
Let a = [§/(2s CardF)]Z. Let V be any compact symmetrie neighbourhood
of H such that IT|w|[H(VV)] < a. Let f be the convolution square of the
characteristic function of V, divided by the Haar measure of V. Then f
is positive definite and f(0) = 1. If we take Fourier-(Stieltjes) transforms,

A

then the estimate IT|w][II(VV)] < a becomes 3 @(A)f(A) < a. Since f
Aed

iy positive definite, 2]2 =1, while @ > 0, we see that there exists 1e 4
such that @(1) < a. The Caunchy-Schwarz inequality then implies that

g (pA) < 36 for 1<j<s and yelF.
Since the set {g;}j., is (406)-dense in X, we see that
#(yA) <8 for peX and yel.

The construction of the sequence Aj, 4y, ... is now easy. We let
F,, F,, ... be a sequence of finite subsets of A such that F; « F,c ...

and |J F; = 4. We choose distinet ;, 2;,... € 4 such that
J=1

lwyy)| <2~ for weX and yelF;, and j =1,2,...

This establishes the existence of A and A; such that (6) holds.

We now proceed to construct the sequence {y;}. We first suppose
that {47}52, is finite, where {4} and A are as above. Then we may pass
to a subsequence and assume that 4 = A} for 1 < j, k& < oo. If we replace
A by A = 4,27}, then we may assume that 43 = 1 for all j. These changes
do not affect the validity of (6).

Now, since the 4; all have order two, there is an infinite subsequence
{Aties which forms an infinite independent set. The independence
ensures that (4) will hold if {4,}52, is a subset of {4;}i-, and an casy
induetion nsing (6) shows that there exists an infinite sequence y; = Zjzy)»
Y2 = Ajriz))s o such that (5) holds. _

The proot of the lemuma is almost finished. We only need to consider
the case in which {47};2, is infinite. By passing to subsequence, we may
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assume that 13 s 1 i 1<<j # k< oo, Then for every finite set F = F~
< 4, there ex1sts J = J(F) such that 4, ¢ F and A} ¢ I, if j=J.
Choose (using (8)) y, = 4y, such thab

li(y)] <& for all pueX.

Suppose that 9, = gy -+y Ve = iy have been found such. that (4)
and (5) hold for n =1,..., &
].

Let If’={ﬁy}"J: Mgy ooy € {—2, —1,0,1,2}}. Let J=J () be
so large that Aj ¢P and 2 ¢ ¥ if j > J. Since F = P~ we see also that

At and AR i j=J.
Let j(k-+1)>J be so large that

(mn B (Phygen)| < gngay i peX and ye F.
This is possible by (6). Sinee x e X if y € X, we also see that
(8) |4 (P27G4n)) < €ag1s 1E peX and yel.

Set yg11 = A4y Then, because yEL ¢ F and yifl, ¢ 7, formula (4) holds
for n = k1. Also, by (7)—(8) and the fact that F = F~1, we see that
(8) holds for m = k1.

This completes the proof of Lemma 5.

The following Lemma is an elaboration of an old result for E; see Gold-
berg [5]. Our proof differs from that found in [5].

LEvMMA 6. Let G be a compact abelian group and lot v € M+ (T"XG).
Then there exists o € MT(R" XG) such that o(z,y) = »(z, y) for all (2, )
e Z"xG. M oreover, if v is continuous, absolutely comtinuous, singular, Her-
mitian, or has independent powers, then o possesses the corresponding pro-
perties. Finally, o € MF (B" X&), if »e MF(I"xG).

o

Proof. For this proof Z‘ denotes n-fold summation Z >
ky=-— k =—00
over Z"% z <y (8,9 € R") meams that this rela.uon holds coordmmte%vlsc,

and for 2z = (2, ...,2,) €Z" we write
2+l = (#,+1, ..., 2, +1) and
I, = [26y7, 2(2, +1)7) X ... X[28,7, 2(2,+1) 7).
Define 4 and é on B® at & = (@4, .:., %,) by

n
5(z) = 2"” 27 (1 —coswy);
7=1

:1;

(L—lzl), Izl<1;5=1,..,n,
_otherwise.

It
-

=
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Then & = (2m)* 4. Let & be the function defined on Z" by

k() =sup{é(z): s el,},
and note that
Z'k [Z sup {207(1 —cos): 2jm <o < 2(j+1)m}] < oo
j=—00

Fix » € B® and let p € Z" be such that p < » < p-+1. Then we claim
that

9) D (i 2om) = N A(w—2)e
E] pLe<p+1
for all ¢ € [0, 2=)". This is seen as follows. Define ¢, and ¢, on B" by
pu(t) = 67™18(t) (e R");
(2m)™ 3 A(@—e)e ™Y, te[0,2n)"

e (t) = A<D+
0, otherwise.

Then for ¢ eZ” )
(10) (@) = @r)"d(@+q) = (2m)"p(g).
Sinee 3, € Ll(.R”), the functions g;(#) = (2n)" > v;(¢+22x) (¢ € [0, 27)") are
2
in Z'[0, 2x)" and, as is easily seen, 9;(g) = g;(¢) for all g 2" Thus,
in view of (10), g, = (27)"g, a.e. on [0, 2x=)", i.e., (9) holds for almost
all te[0,2m)" In fact, it holds everywhere on [0, 2w)" by continuity.
Now, let d, and 4, be defined on R"XG and R %@ by
A(w) =1
S (m,s) = 6(x) and 4 . ! ’
(@,9) = 8(a) L P Ay
and let f: R*xG—C be defined by
f@, ) = D'ile, p) dalo—z, yi),
(2,%)

where the sum is over all (2, ) € Z" x@. This sum actually has only
finitely many non-zero terms for a given (z, y). Indeed, if p < <<p-+1
(p € Z%), then 4,(x—z, yx~!) = 0 unless p <2 << p+1 and y = y. Hence,

(11) flo,y) = D vz, n) d(@—2).

pLeLp+1

In particular, it is easy to check that when x = p

(1z) Fw, ) =@,y (2,9) 22" xE).
Let 4 be the periodic extension of » to B* <@ (for B in E" X6, u(E)
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= Y »(BnI, xG (22w, 1)7") and set o= 6;u. Then o e M (R™ X@) since

(13) [ ity s)ap(s,8) =D [ bult, s)dult, )
R'x G z IX@
< f dv(t, s)-Zk(z)< 0.
{0,2m)t <G z

We will show that & = f on B* x@. This will establish, via (12), the
first assertion of the lemma. Fix (#,y) and let peZ® bo such that
p <2< p-+1. Then, using (9) and (11),

o@,y) = [ e=5(s) b, 8)dplt, )

RUxE&

=) [ emERm(s)(t+2em) A3, 8)
7 [0,2m)x@G

= f D A@—2)e " (s)dr(t, 5)
[0,2m)" X & p<2<D+1

= D e pd@—2) =f@,7),
p<Esp+l

where the interchange of sum and integral is justified by absolute con-
vergence as in (13).

It is clear from the definition of f that » is Hermitian if » is. Now,

the map R"XG—R"2rZ"x@G = T" x@ induces a Banach algebra ho-
momorphism p: M(R" X@)—>M(T" X@G) given by

(pr)(#) = =(B')
for Borel sets B < T" x@, where

B = {(», s} e R" X@: there exists 2z ¢ Z" with 42 € [0, 2=)" and
(w2, 8) € B}.

Then if w, which is > 0, is not continuous (or absolutely continuous,
or singular), » =pow is not continuous (or absolutely continuous, or
singular). If o does not have independent powers, » does not have inde-
pendent powers. Finally, the claim that o ¢ M,(R"” X @) implies » ¢ Mo (T" X
X @) is established as in Graham [6].

3. Proofs of Theorems 1 and 2.

Proof of Theorem 1. Let X <« M(G) be a norm compact subset
of continuous measures on the compact abelian group G. Let ¥ = (Xu
w {0}) — (X U {0}). Suppose that we can show that there exists a singular
continuous independent power Hermitian probability measure » such
that every clement of »+Y has an absolutely convergent Fourier scries
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and such that the map p—(v+p)" is continuous, at 0, from ¥ to LI(I’).
Then the map p—(w#u)" is 4 continuous map from X to oiI).

Thus, to prove Theorem 1 it will be sufficient to show that there
exists for each norm compact set X « M, (@), containing 0, a singular
continuous independent power Hermitian probability measure » such
that (v+X) < L'(I") and such that p—(v#x)" is continuous ab zero.

Let X, be defined by

- :
(14) X, =XolU 2"u: peX and 4" < {lull < 477
=1
Then X, is norm compact, since 0 e X.
We apply Lemma 5 to X, and g, = 67", n =1,2,...
We let @ = {y,}2_,, where {y,}o., satisfy (4)-(5) for all n =1,2, ...

and g e X,. Then, by (4), @ is dissociate. Let » be the Riesz product

generated by @ and a(y) = }. Then » is a singular continuous independent
power Hermitian probability measure. Also, if pe X,, then (5) implies
that

(15) S B A < AQ+ D) 187 <)+ 872

Now (14)~(15) show that if 47""' < |pl< 47", then

o) gy < ()42 31877 <l + Rl
m=1

that is, g—(v+x)~ is continuous at 0 as a funetion from X to LI(P).

The proof of Theorem 1 is finished.

Proof of Theorem 2. We first observe that it suffices to prove
Theorem 2 for the special case X = {y}u {0}, where Dl < co. The
theorem in general is then established as follows.

For each n =1,2, ..., let fp(n,j): 1<j<I(n)} =« X be 27"-dense
in X. Choose numbers a(n,j)> 0 such that

o J(n)

22 a(n, §)lp(n, i)l < oo,

M=l Fe=1

and set X' = {a(n,Hrm,f: v =1,2,..,1<j< J(n)}u {0}. Then the
special case above implies the existence of a singular continuous inde-
pendent power Hermitian probability measure u such that px»(n,])
e IM@) for all m,j. Bub if »(n,j)—>veX, then wiy(ng, j,)—>u*r so
uxv e L'(@) for all v e X.

Tt remains to prove Theorem 2 for X = {n}u {0} with 3'|lwll < oo.

By the structure theorem (Rudin [11], Hewitt and Ross [7]), 6
has an open subgroup of the form R"Xx.D, where D is compact. Let
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F = [0, 2x)" x.D. Then, because X is countable and cach clement -of X
has c-compact support, there exists a sequence {y}i_, of clements of @
such that

(16) E\UyF) =0 for  peX;
k=1

and such that
n '

@7 Ny =0 for peX and I<EL) <. o< k(n) < oo,
=1

(This follows by choosing ¥, = 2,2, where the 2, are clements of 2nZ™ x {1}

and the @, are in cosets of R"x.D. An appropriate choice of the 2, and

@, will give a covering of the o-compact “support” of X by disjoint sebs.

Then (16) and (17) follow.)

For each k& =1,2,... let X; denote the set of restrictions of el-

o

ements of X to 4, F and let X, = kU 6”_1*X,h.u {0}. Then 3 {l: »
=1 T

€ X,} < oo (by (16)—(17)) and X, « M (F). We now let II be the natural

projecti(g of R* x D onto T" x D given by R" x D—(R"[2nZ™) x.D = T"x D,

and let 17 be the induced map of measures. Let ¥, = IIx o Liet B denote

the set of Borel functions f on I™ XD of the form

Fl@y, .oy @y, @) = oxp (i(@yt +... +2,8,))  for 0<4y, ..., 1, < 2n.

o0
Now ¥, = {4}, where 12 flss]l < oo, sinee this property is inherited
=1
from X ;. Let {b;}72., be a sequence of positive numbers such that limb; = 0,

b; <1, and such that Z lewsll [b; < oo. Let ¥ be defined by
©0 =
Y =
j=1
Then Y is a norm compact subset of the unit ball. Thus, by Lemma 5,
th.ere exists a sequence {y,} = Z" x.D such that (4)~(5) hold for all nelX,
with ¢, = 67" for n =1,2, ...
Let v be the Riesz produet on I™ X D generated by {y,} and a(y,) = }.
Then, for all ye¥Y, we see that

{0/ psl)fs: fe B, peXyand Jul < lul}o {0}

Do) <)+ D876 = A1) +1< 2.

. =1

Thus, if 4 e ¥, and [jul] < |gl, then

“(”*fﬂ)A”Ll(znxﬁ) gz"ﬂjl”bj _for  feB.

. Let » be the lifting of » to R" x D which is given byb Lemma 6. Then
o is a singular continuous independent power Hermitian probability
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measure fince » is. Furthermore, o is supported on the set of elements
of the form

(18) (¢,1) J [y, where te[0,2=)" and m; e {0, —1,1}

—=

J

i
—

for 1<j<k< oo,

This follows from (11).
Let ¢ denotes an element of [0, 2x)% and let f; denote the corre-

sponding element of B. Then, if 22", ¢ e D, and peX,, then we see
that
| (@xp)" (t+2, 0) = (fwxfildp) " (2, o).
Thus, if .(f-+-#, ¢) has the form (18), then
i) (42, 01 < 67

provided that not all m; in (18) are zero. Ther'eforey, for all elements u; € X,
we see that .

(19) i [[(e */tj)A”Ll(Rﬂxﬁ) < 2(27)" ||l [y

Of course, translating u; by an element y e @ does not change the
estimate (19). Therefore, since each u e X is a sum,

o
# = 2 Oy * iz »
k=1
‘of translates of elements of X,, we have

|[(4J *H) ey < Z(H_Mj(k)”/bj(k)) ,< 0.

Jo=

-

The:proof of Theorer 2 is finished.

4. A converse to Theorem 1. '

TuporEM 7. Let G be an infinite compact abelian group and let f be
a trigonometric polynomial on G. Let ¢ > 0. Then there oxist singular con-
tinuous measures p,v on G such that f = pxvy and || vl < (X4 I

Proof. By Rudin ([11], 2.6.8) there exists a trigonometric poly-
nomial g on G such that gsf =F and gl < (148"

Let @ be any infinite dissociate subset of the dual I' of G Let B
denote the support of g} and F the support of f Xt is easy to see that there
exists a finite subset @ of @ such that

(20) Q(ONB)NEE- = {1},
(£(-) is defined at the end of Section 1)
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Let 0, and 6, be two disjoint infinite subsets of ON® and let u,
and u, be singular continuous Riesz products based on @y, ¢, and @, a,,
respectively. For each finite subset ¥ of @, leb (u,) be the Riesz product
baged on @,\¥ obtained by restricting ¢, to @;\¥. Then the net {(u;)y:
¥ = @, ¥ finite} tends weak-* in M(G) to Haar measure. Hence, the
continuity of f implies that

i {1f (udel} = 1],

where the infimum is taken over all finite subsets ¥ of @,. Thus, we
may assume that g = f(u,)e has norm at most (L-+&)?[f|. Similarly,
there exists a finite subset 4 of @, such that » = g(uy), has norm at
most (1+6)?%. The measures x and » are singular and continuous since
both (u;)w and (u,), are. Comparing transforms using (20) yields (u#v)" = }
on F, while (u+»)" vanishes off F. Thus, uxy =f and the inequality
lell vl < (1 +¢) lifil follows from our estimates for [ull and [

This result is due to MacLean [10]. Whether a similar factorization
holds for all elements of LI(G) seems t0 be an open question.
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