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Complex analytic properties of certain umiform
Fréchet—Schwartz algebras

by
BRUNO ERAMM (Bayreuth)

Abstract. For a class of uniform Fréchet—Schwartz algebras we prove some
theorems which hold for Stein algebras; in particular, the principle of semicontinuity
of fiber-dimensions and a hereditary maximum modulus principle. The proofs in
complex analysis depend on the classical Weierstrass theorems. Since such a local
theory is not available in our Fréchet—Schwartz setting, we had to develop new proofs.
Besides their interest in themselves these theorems serve for a functional-analytic
characterization of Stein algebras.

Let o be a uniform Fréchet algebra with locally compact spectrum X.
Then the elements of o may be understood as continuous complex-valued
functions on X. Thus the pair (o, X) constitutes a natural system (or
natural algebra) in the sense of Rickart (ef. [7]). We shall always assume
that s/ is, moreover, a Schwartz space; thercby we know that certain
restriction maps are ecompact operators (see (1.3)). (Note that any Fréchet
nuclear space is & Schwartz space.) A wide class of examples is provided
by the algebras @(X) of all holomorphic functions on reduced complex
analytic spaces (X, ¢) having a countable basis for the topology of X.
@(X) becomes a uniform Fréchet-Schwartz algebra when endowed with
the compact open topology. ’

Now, assume that (X, @) is a Stein space. Then the Siein algebra
0(X) contains all information on the complex space (X, @); in particular,
the underlying topological space X is rediscovered by ¢(X) as a homeo-
morphic copy of its spectrum (cf. Forster [1]). Stein spaces enjoy a rich
function theory (cf. [37]).

In this paper we shall prove some theorems, valid for Stein algebrag,
in the gencral uniform Fréchet—Schwartz setting. We summarize our
results without listing up the hypotheses, for just now:

Recall that a hull in X is the zero set of some ideal in «/. There are
no compact hulls besides finite sets (4.3). An important theorem in com-
plex analysis asserts that the fiber dimensions of a holomorphic map vary
semicontinuously; using the notion of Chevalley dimension, we prove
thig theorem in our setting (5.2). If a point of X, understood as a closed
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maximal ideal in s, is topologically gencrated by & finite number of fune-
tions (on relatively compact neighbourhoods), then the specirum has
findte @imension in this point (5.3). As a byproduet we obtain the fact
that the topology of X has a countable basis, and thus is metrizable (5.4).
In Section 6 we shall establish a maximum modulus principle which holds
for X as well as for all hulls in X.

Ditficulties for the above theorems, in our setting, arise from a lack
of @ local theory. In complex analysis such a local theory is provided by
the classical Weierstrass theorems. Therefore, the standard proofs in
complex analysis are not transferable to our situation, when local prob-
lems are involved. So we had to develop independent proofs.

A hypothesis often assumed in this paper is strong uniformity (seo
(2.2)). o is called strongly uniform if for all kernel ideals # < o the quo-
tient algebras «f/#, endowed with the natural quotient topology, are
uniforin Fréchet algebras, too. It might be of interest to know con-
ditions for uniform Fréchet algebras which assure strong uniformity.

An application of the theory developed in this paper will be given
in [6]. We shall charaeterize (reduced) Stein algebras by functional ana-
Iytic conditions of the type we are using in this paper.

Acknowledgement. The author wishes to thank Ians Werner
Schuster for stimulating discussions.

1. Preliminaries

(1.1) A Préchet algebra (= (F)-algebra) is a commutative, locally
convex, complete algebra over the complex field C with unit whose top-
ology is gemnerated by a countable number of seminorms.

Now let o« be a Fréchet-algebra. By ¢« we denote the spect'rum of
s, the set of all continuous C-algebra homomorphisms ¢: &/—C with
o #0; as usual it is endowed with the Gelfand topology (= weak-*
topology o(s’, o). Let %(os/) denote the algebra of all continuous
functions on osf endowed with the compact open topology.

Then the standard Gelfand representation

I't -6 (csd), a—>a,

given by setting d(p): =¢(a) for a e, ¢ € o, iy a continuouy C-al-
gebra homomorphism.

Call o & uniform Fréchet algebra (= (uF)-algebra) if the Gelfand
representation I' induces a topological isomorphism of o onto a closed
subalgebra I'(&f) ¢ € (osf).

We shall identify of and I'(o); also, we shall identify the elements
fesl of the algebra and their Qelfond transforms f e I'(«).
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For the most part we shall congider (uF)-algebras whose spectra
are assumed o be locally compact.

Note that the pair (o, o) is a natural system in the sense of Rlcka,rt
(cf. [7], p. 357).

(1.2) Let X be a topological space. Then we call a countable exhaustion

e K,c K, c...of X by compact subsets an admissible one if for

every compact subset K — X there exists an index m e N such that

Kc K, If Xisassumed to be locally compact and if there exists an

admissible exhaustion of X, then one can even choose an admlsmble
exhanstion satisfying K, K,, +1s B EN.

Now, let X be the spectrum of a (uF)-algebra «. Then every admiss-
iple exhaustion ... < K, = K, e ... of X describes the topology of
A by means of the correspondent seminorms ||- lz,,s » eN. Here for
feof and a compact set K = X the seminorm II*lz is defined as usual

Iflg: = sup [f(g)].
Pk

Let M < X be an arbitrary subset. By o/, we denote the separated com-
pletion of the restriction algebra {fi,: fesf} under the topology of
uniform convergence on compact subsets of M. Obviously we have
cme = M where M is the s-convex hull of M in X; more preclsely
M s the union of all sets

={peX: flp)<

with K < M compact.

If M has been compact, then o, is even a uniform Banach algebra
with norm |[|-|[;. But in general o, need not even be a (uF')-algebra;
namely, if M is not hemicompact, then o, is auniform locally m-convex
complete algebra.

Ifllz for all fe o}

(1.3) Recall that a locally convex complete space o is a Schwartz
space if for all Banach spaces @, all continuous linear operators o->&
are compact operators. For the theory of Schwartz spaces confer Horvath’s
book [4], p. 271 ff. For uniform Fréchet algebras this condition can be

reformulated inove conveniently:

Levma. Let of be a (ulr)-algebra with spectrum X. Then of is o Schwarts
algebra if and only if for every compact subset K < X there exists a (larger)
compact subset L < X such that the resiriction map o, —~ofx 18 a compact
operator. ‘

We omit the simple prootf.
(1.4) Let o be a (uF)-algebra with locally compact spectrum X.
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We shall often assume the following condifion:

(f) For every gpeX, the ideal kerg is topologically fqzmtelg/ generated
on (relatively) compact subsets U = X; more precisely: for every
(relatively) compact neighbourhood U < X of pthere existfy, ..., f, € Ly
such that the ideal (fi,...,f,) s demse in (kere)y.

In particular, it all ideals of the form kerp with ¢ e X are 'topc»
logically finitely generated in «, then o satisfies (f). Examples will be
given in (2.4) below.

2. Strongly uniform Fréchet algebras ((4*F)-algebras)

(2.1) We shall use the terms “hull”, “kernel” analogically ag in the
theory of uniform algebras (ef. [2]).

Again, let o De a (uF)-algebra with spectrum X, and let & oo/
be a set of functions on X. (In most cases & will be an ideal.) Then the set

V(F): ={peX: flp) =0 for all feF}

is called the hull (in X) with respect to &F. A set M < X ig called & hull
if there exists a family & < & of functions such that M = V(F).
For a given subset M = X we consider the ideal

B(M): = {feo: fi =0}.
It is called the kernel (in o) with respect to M. An ideal S < o is said to
be a kernel ideal (or a kernel, for short), if it is the kernel with respect
to V(#).
(2.2) Let F < be a closed ideal and ...c K, c K, , = ... an

admissible exhanstion. Then the quotient algebra of[# carries the natural
quotient topology given by the sequence of seminorms

0+, =in:f¢ If+9lg,, mneN.
ge.

sZ[f is an (F)-algebra under thig topology. Now assume, moreover, th:n“n
# is a kernel in &. Then «/.# is a semisimple (F)-algebra whose semi-
normg gatisfy

Iz, nren < If+Plg, -for all fes.

But the natural quotient topology and the coarser uniform quotient
topology seem not to be equivalent, in general. Since we must consider
such quotient algebrag without leaving the ca,tegory of (ul)-algebras,
we are induced to define as follows:

DEFINITION. A (uF)-algebra of is called strongly wniform (= (w*),
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for short) if for any kernel ideal & < «/, the quotient algebra o/ /# endowed
with the natural quotient topology is again a (ul)-algebra.

(2.3) Let o be a (uF)-algebra and .# = o a kernel ideal. Then we
have the following stability properties:
(i) if o is & (u*¥F)-algebra, then o£/.# is one as well;
(ii) if o satisfies condition (f), then s#[F does s0, to0;
(iii) if o is & Schwartz-algebra, then o /.# is one as well.
The proofs of (i) and (i) are trivial; for (ifi) confer [4].

{(2.4) There are two classes of standard examples for (u*F)-
algebras.

(i) The algebras ¥(X) of all continmous C-valued functions on
a locally compact hemicompact space X.

%(X) never is a Schwartz-algebra, except for trivial cases of X.
If X is a subspace of C*, then %(X) satisfies condition (f). We omit the
cagy proofs.

(ii) The algebras @(X) of all holemorphic functions on a (reduced)
Stein space (X, 0).

0(X) is a Schwartz-algebra (¢f. Gunning and Rossi [3], p. 236)
and satisfies condition (f) (ef. Forster [1]).

3. On the topology of spectra

(3.1) The spectrum of a (uF)-algebra is hemicompact. This seems
to be the only obvious topological property of such a spectrum. We shall
give conditions for the algebia which imply good topological properties
of the spectrum, except for local compactness which we shall always
assume, explicitly, First we show that the rather weak condition (f)
see (L.4), assures first countability of the spectrum.

TeROREM. Let o be o (uF)-algebra with locally compact spectrum X.
If o satisfies condition (f), then every point g € X possesses a countable
neighbourhood basis consisting of of-convew sets.

Proof. Let ¢ € X be given. Since X is locally compact, we can choose
& compact and &/-convex neighbourhood U, of @. By assumption (f),
there exist functions fi,...,f, € oy, such that the ideal (fi,...,f,) is

a dense subspace of (kerzp)U For any &> 0 we consider the neighbour-
hood of ¢

’

Ui =i (4o nf (4.,
where 4,: = {2 € C: |2| < g}. We shall show that for any neighbourhood
V of p there exists an &> 0 such that U,nU, = V.
According to the definition of the Gelfand topology for X we may
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agsume without logs of generality, that V has the shape
V =k 4) 0 .. ol (4y)

with appropriate hy, ..., b, €kere.

Now choose an arbitrary § with 0 < 6 < 1 and fix it for the scquel.
Sinece the ideal (fy,...,f,) i8 a dense subspace of (kerp)y,, there exist
funetions gy, ¢;; € & such that, when restricted to U,,

g = D 9ufi e (kerp)g, [L<j<m,

i=
satisfy
1A — gyller, < -

Setting V': = UyngyH(dys) 0 -oo ngnt(41y), we have V' < V. Choose
an &> 0 satisfying .

e 2 l95iller, <1—38.
o _
Then, for all ¢ € UynTU, and 1< j < m, we obtain the estimation

0@ = | X 0(@)fulo) | < e+ 3 laslo)

<=8 Dlgulo)- ( X lgslo,) " < 1=3,
7 .3

hence ¢ e V' and UynU,<= V, as desired.

(3.2) In order to obtain further topological qualities for X we must
add two more hypotheses. Not until (5.4), we shall be able to show that
the locally compact spectrum X of a (u*F)-Schwartz algebra & satistying
(£) has a countable basis for its topology. From this it follows that any open
or closed subset U « X is hemicompact and hence the correspondent
algebras «/y (see (1.2)) are also (ul)-algebras.

In particular, such spectra are metrizable. Using the stability proper-
ties (2.3), we obtain that all hulls in X enjoy these properties, too.

In our paper [5] we have intensified the Schwartz property locally,
in a natural way. Theorem 6 in [5] asserts that X and all hulls in X are
under this assumption locally connected (even without satistying con-
dition (f)).

4. Chevalley dimension for (uF")-algebras and a main lemma

(4.1) We introduce the notion of a complex dimension for (uF)-
algebras, which is motivated by the Chevalley dimension in complex
analysis.

Uniform Fréchet~Schwartz algebras 253

-Let o be a (uF)-algebra with spectrum X. For any ¢ e X we con-

- sider the integer d(p), defined as the minimum of all » € N such that

there exist f;,...,f, ekerp and there exists a neighbourhood T of
¢ such that the fibers of the mapping (fy, ..., f,): U—~C" are finite
sets.

If this minimum does not exist, we set d(g) = co.
The dimension of ¢ in X iy defined by

. 2 if ¢ is an isolated point in X,
dim, X'z = {d((p), otherwise.

Let ¥ be a hull in X with ¢ € ¥. Then we canonically define the dimen-
sion of @ with respect to the hull ¥
R TN
dim, ¥: = dim,o{« [k(Y)).

It is well known that for example for Stein algebras the -above dimension
equals the topological Krull dimension (ef. [1]).

(4.2) Definition (4.1) immediately yields the
PROPOSITION. Let o, ¥ =« X be as above. Then
(i) the mapping Y+>Nu {0, oo},

p—~dim, ¥

“is semicontinuous,: more precisely, for every @ € X lhere exists a neighbour-

hood U < X of ¢ such that dim,Y > dim, ¥, for all pe U.
If dim, Y < oo for all 9 € ¥, then this mapping is bounded on any
relatively compact subset of Y.

(ii) The set {p € ¥: dim, Y << n} is open, the set {pe ¥: dim, ¥ > n}

- 18 closed, for all m € Nu{0}.

"In order to prove our theorem on the semicontinuity of fiber dimen-
sions, we need Theorem (4.3) and Lemma (4.4). Theorem (4.3) is an im-

“portant theorem in Complex analysis of Stein spaces (ef. T3], p. 241),

whereas. Lemma (4.4) has a more technical character.

(4.3) TEEOREM. Let of be a (0*F)-Schwartz algebra.and Y a compact
hwll in X = oof. . Then Y s a finite set.

Proof. Let #F = o be the kernel with respect to ¥ (see (2.1)). Then
the spectrum of o [f obviously equals ¥. By the strong uniformity of of
the quotient algebra o/ is also a (uF)-algebra; it is even a uniform
Banach algebra with norm |-z since Y has been assumed to be com-
pact: On the other hand &/ is a Schwartz space since # is & closed ideal.
But a Banach—~Schwartz space is a finite dimensional vector space (of. [4]).

i Hence the spectrum .Y of «f/# consists-of a finite mumber of poinbs.
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(4.4) Lma. Let o be o (w*F)-Schwartz algebra with locally compact
spectrum X. Let Y = X be o hull and fy, ..., f, € of functions such that
YaV(fi,.-, fn)nf is a finite set for a compact subset K < X.

Then there exists @ 8> 0 such that

an(fl"‘glf "';fn—gn)nK

is a finite set for oll gy, ..., g, € & with |igllz < 9.

DProof. Abbreviate f: = (fi, -3 fa)y 95 = (g1 -+ Jn)- Lic YnaV(fin
~K be the finite scb {@1 ey O}

We wanb to prove our lemma by contradietion. Supposo there is
no &> 0 with the asserted property. Then there exist a sequence J,, > 0,
m e N, tending to zero, and n-tuples g™ e o satistying g™ lx < b,
1 < i < n, such that K AY,, is an infinite set, where ¥,,: = XV (f—g™).
Y,, is obviousty a hull as well as its rela.tivcly open connected compo-
nents, since hulls are «/-convex. Now choose open neighbourhoods U, of

o, satistying U, = K, 1< ¢ <7 For all m e N, we then have
Y.n(E—U U, #9;
o=1

for, if the contrary were the case, then ¥, nK would be a compact hull

and hence a finite set by (4.3), in contradiction to the construction of ¥,,.
7

Select arbitrary points v, e Y, n(K—{J U,). By the compactness

e=1
of K there exists a convergent subsequence y,, with limit y, € K. Olearly

r
v ¢\ J U,, thus there is an index ¢ such that fi(y,) # 0.
=1

P
But on the other hand we have
f(ka)“g(mk)(wmk) =0,

since v, € ¥, 5 thus  |f(yy, )] < 6y, and limf(yp,) = f(,) = 0. Con-
tradiction.

5. Semicontinuity of fiber dimensions and further applications of Section 4

(5.1) The semicontinuity of fiber dimensions iy an important prin-
ciple for complex analytic mappings (for a proof ef. [3], p. 114). We do
not have a local theory for our function algebraic setting like in com-
plex analysis, where such a theory is provided by the Weierstrass the-
orems. So we must give an independent proof for Theorem (5.2); it will
be hased on (4.3) and (4.4).

As further applications of Section 4 we shall obtain the finite di-
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mensionality (Theorem (5.3)) and the second countability (Theorem (5.4))
for spectra satisfying condition (f).

(5.2) TEmOREM (Semicontinuity of fiber dimensions). Let o be a
(u*T")-Schwartz algebra with locally compact spectrum X, and let f = (fy, ...
vy fu)t XC" be a map with fiesd, 1K1 n.

Then the map

X—+Nu{0, oo}, ‘P"”dimwf—l(f(‘?))

is semicontinuous, i.e. for every ¢ € X there ewists a neighbourhood U of
such that

dimg,f"l(f((p)) = dim‘pf’l(f(w)) for oll e U.

Proof. Let ¢ e X be given. We may assume: dimf~(f(g)): =7 < oo
and f(p) = 0. Thus there exist functions h,,..., k., lying in the (uF)-
algebra o [k(f~'(f(p))), such that the fibers of the map

(Fryy oevy By): fdl(f(q’))*cr

are finite sets in a neighbourhood of ¢. Select represenfatives g, e o
of h,, that is,

Gl F @) =hyy 1<eo<r.
Then the set

Vifis - L)V {guy ooy 6r) V(fuseoosFur Guyoes G0)

is a finite set, when intersected with an appropriate relatively compact
neighbourhood U < X of ¢.

Now apply Lemma (4.4), setting ¥ = X. Thus there exists a- 6> 0
sueh that

V(fi—81s «oos Ja=0ns J1— Oy -+ s G — Gy ) 0T

is a finite set for all §; € C satisfying |6, < 6, 1 < i < n+r. This means
that the map (gy, ..., g,) restricted to f~}(4%)NU, has finite fibers (47
denotes the open m-polyeylinder centered at 0 with radius 6). Thus for
all p ef~(AM AU we have obtained dim,f*(f(y))<r, as desired.

(5.3) THEOREM. Let o be a (u*F)-Schwartz algebra with locally com-
pact spectrum X. If sof satisfies condition (f), then we have dim,X < oo
for all p e X.

Proof. Let ¢ e X and a compact neighbourhood U of ¢ be given.
Then condition (f) yields functions gy, ..., 9, € &y which generate an
ideal that is dense in (kerg)y. Obviously we have V(gy, ..., g,) = {¢}.

In order to obtain dim,X < » we wish to apply Lemma (4.4). For
that purpose, however, we need global functions hy, ..., h, € o/ such that
Vi(hyy «..y hy) = {g}, locally around ¢. We proceed as follows. According
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to the proof of Theorem (3.1) we can choose an & > 0 such that g7*(4,)n
A .. ngo (4 AT is an open neighbourhood of ¢. Sinee & has densc
restriction image in &7y, there exist hy, ..., b, € kerg such that W, — gl
<g lKign. .

. By the above choice of & we obtain that V(hyy ooy By U i3 & com-
pact hull and hence a finite set, by Theorem (4.3). Thus there is a small
neighbourhood W= U of ¢ such that

Vb, .o 1) AW = {5}

Now we are ready to apply Lemma (4.4). I6 asserts for our situation
the existence of a 6> 0 such that

V{(hy— by, 2eny hy— 08y AW

is a finite set for all 8, € 4,. L
Thus the mapping (kg .- ., hy,) restricted to the set ((hy, -, k)™ (49)n
AW has finite fibers, and hence .

dim, X < n < oo,

Remark. The proof yields even the result that the dimension in
o point ¢ € X is bounded by the minimal number of topological gencr-
ators of the ideals (kerp)y;, the minimum taken from all relatively compact
neighbourhoods U of ¢. )

In complex analysis this number is interpreted as the embedding
dimension of ¢ in X. - '

(5.4) THEOREM. Let o be a (u*F)-;S’chw&r_té algebra with Zooaily comjoaét
spectrum X. If of satisfies condition (£), then the topology of X has a coun-
table basis. )

For further consequences see (3.2). )

 Proof. First we shall show that any compact subset K "X has
a. countable. basis for its relative topology. By Theorem (5.3) we know
that dim,X < oo for all p e K. Since K is compact, we can choose an
open covering Uy, ..., U, of K and functions f0, ..., 705 /%, ..., f;

IS TP
(n) -

vens I ,...,f:‘n e« such that the mapping
R ) .
(%, --‘:fﬁ?i 1, afg?) U T, = Cttrn
Y=l

has finite fibers. It can easily be seen that, by adding further a_,ppropriate
funetions gy, ..., ¢y, € &, one can cven achieve the injéctivity of the
mapping

(PO o 80, Gay vy )t oGP,

RSO
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Moreover, this map embeds K homeomorphically into C7o++™n —since
K iz compacet —and thus there is a countable basis for the topology of K.
Choose an admissible exhaustion ... < K, c Kppy < ... of X. By
the above considerations there is a countable basis B, for the topology
of K,, meN. Using the clements of B,, we shall construct families
8B,, of open subsets of X, as follows: let all the elements B,, e B,, satisfying
B,, c K, belong to B,, as well; for any B,, €B,, with B;, ¢ K,,, choose
an X-open U, such that ¥,nB, =K, and send this element U,, to
the family B,,. From the local compactness of X it follows easily that
the union | %B,, provides a countable basis for the topology of X.
meN
(5.5) Remark. It turns out that all theorems of this paper renmain
valid, if one replaces assumption (f) by dim,X < oo, for all '@ eX, In
particular: (3.1), (3.2), (5.3), (5.4), (6.3). (The proofs are slightly more
complicated.)

6. A hereditary maximum modulus theorem

(6.1) Let o be a (ul)-algebra with locally compact spectrum: -X.
DEFINITION. (i) & is called a local mamimum modulus algebra with
“respect to ¢ ¢ X if there is a relatively compact neighbourhood U of ¢

such that |[flly = Iflse, for all f e o£. (U denotes the topological bound-
ary of U.)

(i) & is called a mamimum modulus algebra if it is a local maximum
modulus algebra with respect to ¢, for all non-igolated ¢ e X.

(iii) o is called a hereditary maximum modulus algebra if |7 i8
o maximum modulus algebra for all kernel ideals / < o (see -(2.1)).

(6.2) LEMMA. Let of, X be as above. o is @ mamimum modulus algebra
if and only if the equation

Ifile = Ifllax
holds, for all compact subsets K < X without isolated points and for all
fed.

Proof. Only necessity needs to be shown. Without loss of gener-
ality, let a compact K < X be given such that K #+ @. By hypothesis,
for any ¢ e K there is & compact neighbourhood L(p) such thab [If ”L‘.,’P)

- = || llor(m for all f € . Choose a compact neighbourhood K (@) = Lig)nK.
Again, we have [flgwm = Iflox for all f € o, by Rossi’s local maximum
,modulus‘prin‘ciple (cf. [2], p. 92). Sinée‘(p 1ie§ .in the s/-convex hull of
0K (’qa)7 there exists a (positive) representing measure i, for ¢ which is
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supported on a subset of 8K (¢) (cf. [2], p. 33). Clearly, u, # 6, (4,—unib
point mass at ¢). Therefore, ¢ cannot belong to the Choquet boundary
x:szlz‘: with respect to /5 (cf. [8]). As this is true for all ¢ eff, we have
Knysofg = 9; consequently even inde = (. Since the closure of
the Choguet boundary equals the Shilov boundary ys/z, we obtain the
desired result: yofy < OK.

(6.3) TEEOREM. Let o be a (u*F)-Schwarte algebra, satisfying condi-
tion (£), with locally compact spectrum X. Then £ 18 a heveditary magimum
modulus algebro.

Proof. By the stabiliby properties as listed uwp in (2.3), we know
about all kernel ideals # < & that the quotient algebras o [# algo fulfill
the assumptions of our theorem. Thus it suffices to show that o is a
local maximum modulus algebra with respect to ¢, for all ¢ e X.

We shall proeeed indirectly. Let ¢, € X be non-isolated and a com-
pact oZ-convex neighbourhood K of ¢, be given. Suppose that o is not
a local maximum modulus algebra with respeet to ¢,. For any compach
neighbourhood L < K of ¢, we then have yof/;, ¢ 0L. Rossi’s local maxi-
mum modulus principle asserts on the Shilov boundary for o/,

yolly, < 0L (Ln(ydy)).

Hence ygnL 5 @. Thus @, is a cluster point for yo/ and, since Shilovy
boundaries are compact, @, is an element of yofg.

Now, choose an admissible exhaustion ...c K, < K,,, < ... of X
and a neighbourhood bafsis .2 U, U,y > ... of gy (which exists by
(3.1)), satisfying U, < K,. By the above considerations we know thatb
@ €yAdg,, neN.

We use a standard argument from the theory of Shilov boundaries
{ef. [8], p. 62) and obtain the following. For any = e N, thore exists
a function h, € o/g,_ such that :

Pollg, =1 and  |hyllg, g, < 1/n.
Approximate the h,’s on K, by global functions g, € #:
19— haliz, < Lfn.
Setting 0,: = %g 9k, We obtain the estimation

C for m < n

< n
19ulz, < {1+1/n for m > n

}gma,x(2, 0,) < oo,

for all my 1 € N. As the right-hand side is independent on m, the sequence
(9mdmew 18 bounded in . Every Fréchet-Schwartz space is Montel, in

Uniform Iyréchet-Schwarlz algebras 259

particular (ef. [4], p. 277); hence there exists a convergent gubgequence
(g, e With limit g € o/. Now observe that g is the zero function, because
(gmy,) 18 converging pointwise to zero on X —{p,} and g is a continuous
funetion.

But contradicting this fact, we know that

1€ Wyl = 19—y ll,  for all B, 1eN.

Tlence there exists & neighbourhood L « K of g, satisfying ye/z < 8L,
which establishes our theorem.

(6.4) If Lone relinquishes the heredity of the maximum modulus
principle, then the proof of Theorem (6.3) yields the maximum modulus
principle under weaker hypotheses:

COROLLARY. Let &f be a (uF) Montel algebra with locally compact
and conneoted spoctrum. Then s is a mazimum modulus algebra.
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