Sets with the Radon-Nikodým property in conjugate Banach space

by

J. BOURGAIN* (Brussel)

Abstract. We prove that if l^1 does not inhed in X, then every subset $\mathcal O$ of X^* with the Radon-Nikodým property is w^* -dentable. From this we deduce that if, moreover, X is separable, those sets in X^* are separable. However, if X is separable and X^* is not separable, then there exists a set in X^* with the Radon-Nikodým property and with non-separable w^* -closure.

Let H, $\| \|$ be a real Banach space. If $x \in E$ and $\varepsilon > 0$, then $B(x, \varepsilon)$ denotes the open ball with midpoint x and radius ε . We establish some notations, referring to [6]. Let A be a non-empty and bounded subset of E. If $x^* \in E^*$, we define $M(x^*, A) = \sup x^*(A)$ and if $\alpha > 0$, we let $S(x^*, \alpha, A) = \{x \in A; x^*(x) \ge M(x^*, A) - a\}$, which will be called a slice of A. Let E be a subspace of E separating the points of E. The set E is said to be E-dentable if for each E is a point E a such that E does not belong to the E-dentable of the outer E-dentable with the existence of slices E and E is a subspace of E thus E-slices, with arbitrarily small diameter. If in particular E is E, we say that E is dentable. If E is a conjugate space E and E is E, we say that E is E is a conjugate space E and E is E. We say that E is E-dentable. Obviously E-dentability implies dentability. This paper deals with the other implication.

A set with the Radon-Nikodým property is a bounded, closed and convex subset of E such that each of its non-empty subsets is dentable. For some remarkable properties of these sets, I refer the reader to [1].

A diadic tree in E is a bounded sequence $(x_n)_n$ in E so that for some $\varepsilon > 0$ we have that each point x_p is the midpoint of 2 points x_q and x_r with $||x_q - x_r|| > \varepsilon$.

We let X be a real Barneh space and X^* is dual.

In the first four lemmas, U is a bounded, closed and convex set in X^* and \tilde{U} is its w^* -closure.

IMMMA 1. If there is $\varepsilon > 0$ and a system $((S_{n,k})_{1 \le k \le 2} n)_n$ of X-slices of \tilde{C} such that:

^{*} Aspirant, N.F.W.O., Belgium, Vrije Universiteit Brussel.

$$1^{\circ} S_{n+1,2k-1} \subset S_{n,k}, S_{n+1,2k} \subset S_{n,k},$$

$$2^{\circ} \operatorname{dist}(S_{n+1,2k-1}, S_{n+1,2k}) \geqslant \varepsilon,$$

3°
$$\lim_{n} \operatorname{diam} \sum_{k=1}^{2^{n}} \frac{1}{2^{n}} S_{n,k} = 0,$$

then C contains a diadic tree.

Proof. Since for each integer N we have that

$$\sum_{k=1}^{2N+n} \frac{1}{2^{N+n}} \, S_{N+n,k} = \sum_{K=1}^{2^N} \frac{1}{2^N} \sum_{k=(K-1)2^n+1}^{K2^n} \frac{1}{2^n} \, S_{N+n,k}$$

it follows that $\lim_n \operatorname{diam} \sum_{k=(K-1)2^n+1}^{K2^n} \frac{1}{2^n} S_{N+n,k} = 0$ for each $K=1,\ldots,2^N$.

Therefore, because it is decreasing, the intersection

$$\bigcap_{n} \sum_{k=(K-1)2^{n}+1}^{K2^{n}} \frac{1}{2^{n}} S_{N+n,k}$$

consists of a unique point $x_{N,K}^*$ which is clearly in $S_{N,K} \cap C$. It is easily verified that $x_{N,K}^* = \frac{1}{2}(x_{N+1,2K-1}^* + x_{N+1,2K}^*)$, where $||x_{N+1,2K-1}^* - x_{N+1,2k}^*|| \ge \varepsilon$. Hence $((x_{N,K}^*)_{1 \le K \le 2})_N$ is the required diadic tree.

LEMMA 2. Let $(x_n)_n$ be a sequence in X and $((S_{n,k})_{1 \le k \le 2^n})_n$ a system of X-slices of \tilde{C} , such that

$$1^{\circ} \|x_n\| = 1,$$

$$2^{\circ} S_{n+1,2k-1} \subset S_{n,k}, S_{n+1,2k} \subset S_{n,k},$$

$$3^{\rm o} \ S_{n+1,2k-1} {\cap} S_{n+1,2k} = \varnothing,$$

$$\begin{array}{lll} 4^{\circ} & \lim_{n \to \infty} \sup_{1 \le k \le 2^n} o\left(x_m \mid S_{n,k}\right) = 0 & \text{for each integer } m. \end{array}$$

If l1 does not inbed in X, then

$$\overline{\lim_{n}} \sum_{k=1}^{2^{n}} \frac{1}{2^{n}} \left[\inf x_{n}(S_{n+1,2k-1}) - \sup x_{n}(S_{n+1,2k}) \right] \leqslant 0.$$

Proof. Let $\Delta = \bigcap_{n} \bigcup_{k=1}^{2^n} S_{n,k}$, which is a w^* -compact subset of \tilde{C} , and $\Delta_{n,k} = \Delta \cap S_{n,k}$ for each $n \in N$ and $k = 1, \ldots, 2^n$. We consider the σ -algebra $\mathfrak S$ of subsets of N, generated by $\{\Delta_{n,k}; \ 1 \leqslant k \leqslant 2^n, \ n \in N\}$. Defining $\lambda(\Delta_{n,k}) = 1/2^n$, a probability λ on $\mathfrak S$ is obtained. By (4), each $\mathscr A_n$ viewed as a function on Δ is $\mathfrak S$ -measurable. Assume the claim untrue. Then there is $\varepsilon > 0$ and an infinite subset N of N with

$$\sum_{k=1}^{2^n}\frac{1}{2^n}\left[\inf x_n(S_{n+1,2k-1})-\sup x_n(S_{n+1,2k})\right]>\varepsilon\quad \text{ for each }n\in \mathbb{N}.$$

If l^1 does not inbed in X, then by Rosenthal's theorem [7], $(x_n)_{n\in\mathbb{N}}$ has a w^* -converging subsequence $(x_n)_{n\in\mathbb{M}}$. Applying the Lebesgue theorem, we find some $m\in M$ satisfying $\int |x_m-x_n|\,d\lambda < \varepsilon/3$ whenever $n\in M$ and $n\geqslant m$. Take then some $n\in M$ such that $n\geqslant m$ and $\sup_{x\in\mathbb{N}^n} o(x_m\,|\,S_{n,k})<\varepsilon/3$.

Since

$$\begin{split} \int\limits_{A_{n+1,2k-1}} |x_m - x_n| \, d\lambda &\geqslant \frac{1}{2^{n+1}} \left[\inf x_n(S_{n+1,2k-1}) - \sup x_m(S_{n,k})\right], \\ \int\limits_{A_{n+1,2k}} |x_m - x_n| \, d\lambda &\geqslant \frac{1}{2^{n+1}} \left[\inf x_m(S_{n,k}) - \sup x_n(S_{n+1,2k})\right], \end{split}$$

it follows

$$\begin{split} \frac{\varepsilon}{3} &> \sum_{k=1}^{2^n} \Big(\int\limits_{A_{n+1,2k-1}} |x_m - x_n| \, d\lambda + \int\limits_{A_{n+1,2k}} |x_m - x_n| \, d\lambda \Big) \\ &\geqslant \frac{1}{2^{n+1}} \sum_{k=1}^{2^n} \left[\inf x_n(S_{n+1,2k-1}) - \sup x_n(S_{n+1,2k}) - o(x_m | S_{n,k}) \right] \\ &> \frac{1}{2} \sum_{k=1}^{2^n} \frac{1}{2^n} \left[\inf x_n(S_{n+1,2k-1}) - \sup x_n(S_{n+1,2k}) \right] - \frac{\varepsilon}{6}. \end{split}$$

Hence $\sum_{k=1}^{2^n} \frac{1}{2^n} \left[\inf w_n(S_{n+1,2k-1}) - \sup w_n(S_{n+1,2k})\right] < \varepsilon$, which is the required contradiction.

LEMMA 3. E will denote the extreme points of \tilde{C} . If $S = S(x, \alpha, \tilde{C})$ is an X-slice of \tilde{C} , we let

$$\ddot{S} = \ddot{S}(x, \alpha, C) = \{x^* \in \tilde{C}; x^*(x) > M(x, \tilde{C}) - \alpha\}.$$

For each $\varepsilon > 0$, there exists an X-slice T of \tilde{C} , satisfying:

$$1^{o} T = S,$$

 $||x_n|| = 1,$

$$2^{\circ} \mathcal{I} \subset \tilde{o}(\mathring{S} \cap \mathcal{H}) + B(0, \varepsilon).$$

Proof. Let $d = \operatorname{diam} \ \tilde{U}$ and take $T = S(w, \beta, \tilde{U})$, where $\beta = \min(\alpha, sa/2d)$. Obviously $T \in S$ and we show that also 2° is verified. We first remark that $\tilde{U} = \sigma(\tilde{S} \cap E) \cup (\tilde{U} \setminus \tilde{S})$. Take $w^* \in T$ and consider $w_1^* \in \tilde{\mathcal{O}}(\tilde{S} \cap E)$, $w_2^* \in \tilde{U} \setminus \tilde{S}$ and $\lambda \in [0, 1]$ with $w^* = (1 - \lambda)w_1^* + \lambda w_2^*$. Since $M(w, \tilde{U}) - \beta \leq w^*(w) = (1 - \lambda)w_1^*(w) + \lambda w_2^*(w) \leq M(w, \tilde{U}) - \lambda a$, it follows that $\lambda \leq s/2d$ and therefore $||w^* - w_1^*|| < s$. Thus $T \in \tilde{O}(\tilde{S} \cap E) + B(0, s)$.

LEMMA 4. If C is not w^* -dentable, then there exist $\varepsilon > 0$, a sequence $(w_n)_n$ in X and a system $((S_{n,k})_{1 \le k \le 2^n})_n$ of slices of \tilde{C} , such that:

$$2^{\circ} S_{n+1,2k-1} \subset S_{n,k}, S_{n+1,2k} \subset S_{n,k},$$

3° dist
$$(S_{n+1,2k-1}, S_{n+1,2k}) \ge \varepsilon$$
,

$$\begin{array}{ll} 4^{\circ} \sup_{1 \leqslant k \leqslant 2^{n}} o(x_{m} | S_{n,k}) \leqslant 1/n \ \text{for each} \ m = 0, \dots, n-1, \end{array}$$

$$5^{\circ} \operatorname{diam} \sum_{k=1}^{2^{n+1}} \frac{1}{2^{n+1}} S_{n+1,k} \leqslant \sum_{k=1}^{2^{n}} \frac{1}{2^{n}} \left[\inf x_{n}(S_{n+1,2k-1}) - \sup x_{n}(S_{n+1,2k}) \right] + \frac{1}{(n+1)}$$

Proof. By Lemma 3, since C is not w^* -dentable, there is $\delta > 0$ such that $\dim(\mathring{S} \cap E) > \delta$ whenever S is a slice of \widetilde{C} . Take $\varepsilon = \delta/2$. Starting from $S_{0,1} = \widetilde{O}$, we will define x_n and $(S_{n+1,k})_{1 \le k \le 2^{n+1}}$ inductively. We use the fact that a w^* -neighbourhood of a point in E contains a w^* -neighbourhood of that point which is an X-slice.

Take $x_0 \in X$ with $||x_0|| = 1$ satisfying

$$o(x_0 \mid \mathring{S}_{0,1} \cap E) \geqslant \operatorname{diam} (\mathring{S}_{0,1} \cap E) - \frac{1}{3}$$
.

We consider slices $S'_{1,1} \subset S_{0,1}, S'_{1,2} \subset S_{0,1}$ such that

$$\inf x_0(S'_{1,1}) \geqslant \sup x_0(\mathring{S}'_{0,1} \cap E) - \frac{1}{6}, \quad \sup x_0(S'_{1,2}) \leqslant \inf x_0(\mathring{S}'_{0,1} \cap E) + \frac{1}{6}.$$

By Lemma 3, there are slices $S_{1,1}^{"} \subset S_{1,1}^{'}, S_{1,2}^{"} \subset S_{1,2}^{'}$ with

$$S_{1,1}^{"} \subset \tilde{c}(\mathring{S}_{1,1}^{"} \cap E) + B(0, \frac{1}{6}), \quad S_{1,2}^{"} \subset \tilde{c}(\mathring{S}_{1,2}^{"} \cap E) + B(0, \frac{1}{6}).$$

Finally, it is easily seen how to obtain slices $S_{1,1} \subset S_{1,1}''$, $S_{1,2} \subset S_{1,2}''$ so that $\operatorname{dist}(S_{1,1}, S_{1,2}) \ge \varepsilon$ and $o(x_0 | S_{1,1}) \le 1$, $o(x_0 | S_{1,2}) \le 1$. Since

$$\begin{split} \dim(\frac{1}{2}S_{1,1} + \frac{1}{2}S_{1,2}) & \leq \dim(\frac{1}{2}S_{1,1}'' + \frac{1}{2}S_{1,2}'') \\ & \leq \dim\left[\frac{1}{2}\tilde{c}(\mathring{S}_{1,1}' \cap E) + \frac{1}{2}\tilde{c}(\mathring{S}_{1,2}' \cap E)\right] + \frac{1}{3} \leq \dim(\mathring{S}_{0,1} \cap E) + \frac{1}{3} \\ & \leq o\left(x_0 \mid \mathring{S}_{0,1} \cap E\right) + \frac{2}{3} \leq \inf x_0(S_{1,1}) - \sup x_0(S_{1,2}) + 1, \end{split}$$

all conditions are satisfied.

Assume now $(S_{n,k})_{1 \le k \le 2^n}$ obtained. Take $x_n \in X$ with $\|x_n\| = 1$ satisfying

$$\sum_{k=1}^{2^n} \frac{1}{2^n} o(\omega_n \mid \mathring{S}_{n,k} \cap E) \geqslant \operatorname{diam} \sum_{k=1}^{2^n} \frac{1}{2^n} \left(\mathring{S}_{n,k} \cap \mathcal{U} - \frac{1}{3(n+1)}\right).$$

Let $k=1,\ldots,2^n$ be fixed. We consider slices $S'_{n+1,2k-1}\subset S_{n,k},\,S'_{n+1,2k}\subset S_{n,k}$ such that

$$\inf x_n(S'_{n+1,2k-1}) \geqslant \sup x_n(\mathring{S}_{n,k} \cap E) - \frac{1}{6(n+1)},$$

$$\sup x_n(S'_{n+1,2k}) \leqslant \inf x_n(\mathring{S}_{n,k} \cap E) + \frac{1}{6(n+1)}.$$

Again by Lemma 3, there are slices $S''_{n+1,2k-1} \subset S'_{n+1,2k-1}, S''_{n+1,2k} \subset S'_{n+1,2k}$ with

$$\begin{split} S_{n+1,2k-1}^{\prime\prime} &\subset \tilde{c}(\mathring{S}_{n+1,2k-1}^{\prime} \cap E) + B\left(0\,,\,\,\frac{1}{6\,(n+1)}\right), \\ S_{n+1,2k}^{\prime\prime} &\subset \tilde{c}(\mathring{S}_{n+1,2k}^{\prime\prime} \cap E) \, + B\left(0\,,\,\,\frac{1}{6\,(n+1)}\right). \end{split}$$

There are slices $S_{n+1,2k-1} \subset S_{n+1,2k-1}'', S_{n+1,2k} \subset S_{n+1,2k}''$ so that

$$\begin{aligned} \operatorname{dist}(S_{n+1,2k-1},\,S_{n+1,2k}) &\geqslant \varepsilon \quad \text{ and } \quad o(x_m \,|\, S_{n+1,2k-1}) \leqslant \frac{1}{n+1}, \\ o(x_m \,|\, S_{n+1,2k}) &\leqslant \frac{1}{n+1} \quad \text{ for each } m = 0, \ldots, n. \end{aligned}$$

We have that

$$\dim \sum_{k=1}^{2^{n+1}} \frac{1}{2^{n+1}} S_{n+1,k} \leq \dim \sum_{k=1}^{2^{n+1}} \frac{1}{2^{n+1}} S_{n+1,k}''$$

$$\leq \dim \sum_{k=1}^{2^{n+1}} \frac{1}{2^{n+1}} \tilde{c}(\mathring{S}_{n+1,k}' \cap E) + \frac{1}{3(n+1)}$$

$$\leq \dim \sum_{k=1}^{2^{n}} \frac{1}{2^{n}} \tilde{o}(\mathring{S}_{n,k} \cap E) + \frac{1}{3(n+1)} = \dim \sum_{k=1}^{2^{n}} \frac{1}{2^{n}} (\mathring{S}_{n,k} \cap E) + \frac{1}{3(n+1)}$$

$$\leq \sum_{k=1}^{2^{n}} \frac{1}{2^{n}} o(w_{n} | \mathring{S}_{n,k} \cap E) + \frac{2}{3(n+1)}$$

$$\leq \sum_{k=1}^{2^{n}} \frac{1}{2^{n}} [\inf w_{n}(S_{n+1,2k-1}) - \sup w_{n}(S_{n+1,2k})] + \frac{1}{n+1}.$$

This completes the construction.

THEOREM 1. If C is a bounded, closed and convex set in X^* which is not w^* -dentable, then either l^1 indeeds in X or C contains a diadic tree.

Proof. We consider $s_i(w_n)_n$ and $((S_{n,k})_{1 \le k \le 2^n})_n$ as in Lemma 4. If l^1 does not inbed in X, then

$$\lim_{n} \sum_{k=1}^{2^{n}} \frac{1}{2^{n}} \left[\inf w_{n}(S_{n+1,2k-1}) - \sup w_{n}(S_{n+1,2k}) \right] \leq 0,$$

by Lemma 2. By (5) of Lemma 4, we find that

$$\lim_{n} \dim \sum_{k=1}^{2^{n+1}} \frac{1}{2^{n+1}} S_{n+1,k} = 0.$$

Now Lemma 1 applies and hence C contains a diadic tree.

COROLLARY 1. X is an Asplund space if and only if X* has the RNP.

Proof. The "only if" part was obtained in [4]. If conversely X* has RNP, then by Stegali's theorem [8], l^1 does not inbed in X. If Kis a w^* -compact convex subset of X^* , then K does not contain a diadic tree. By Theorem 1, K is w^* -dentable. Therefore X is an Asplund space (see $\lceil 4 \rceil$).

COROLLARY 2. If l' does not inbed in the separable Banach space X, then every subset of X^* with the Radon-Nikodým property is separable.

Proof. Let C be a Radon-Nikodým set in X^* and assume C not separable. Then there exist $\varepsilon > 0$ and a subset D of C such that if U is $\sigma(X^*, X)$ -open and $U \cap D \neq \emptyset$, then diam $(U \cap D) > \varepsilon$. Hence $\widetilde{c}(D)$ is not w^* -dentable. Thus $\bar{e}(D)$ contains a diadic tree, contradicting the fact that C is Radon-Nikodým.

Remark. The last corollary fails if l^1 indeed, in X. Indeed, if $X = l^1$. then $l^1(c)$ inbeds in X^* and the closed unit ball of $l^1(c)$ is a non-separable Radon-Nikodým subset of X^* .

It is untrue that if l^1 does not inbed in the separable Banach space X and C is a Radon-Nikodým set in X^* , then the w^* -closure \tilde{C} is separable. In fact, we will prove the following:

THEOREM 2. If X is separable and X^* not separable, then there exists a Radon-Nikodým subset of X*, with non-separable w*-closure.

LEMMA 5. Let $(x_n)_n$ be a bounded sequence in X and $(x_n^*)_n$ a bounded sequence in X* with

$$\limsup_{m \text{ } n < m} |x_n^*(x_m)| = 0 \quad \text{ and } \quad \lim_{m \text{ } n > m} w_n^*(x_m) > 0.$$

Then $C = \overline{c}(x_n^*; n)$ is a Radon-Nikodým convex.

Proof. Let $\varepsilon = \liminf x_n^*(x_m)$ and let $d = \dim C$. Clearly the sequence $(x_n)_n$ is pointwise converging to 0 on C. Let now A be a non-empty subset of C and choose a point $a^* \in A$. Let $\delta > 0$ and $\iota = \varepsilon \delta/16d$. Consider $m \in \mathbb{N}$ such that $|a^*(x_m)| < \iota$, sup $|x_n^*(x_m)| < \iota$ and $\inf x_n^*(x_m) > \varepsilon/2$. If $C_1 = \overline{c}(x_n^*; n < m)$ and $C_2 = \overline{c}(x_n^*; n \ge m)$, then $C = \overline{c}(C_1 \cup C_2)$. Clearly $M(-x_m, A) > -\iota$, inf $x_m(C_1) \geqslant -\iota$ and inf $x_m(C_2) > \varepsilon/2$. We will show that dist $(x^*, C_1) < \delta$ if $x^* \in S(-x_m, \iota, A)$. Indeed, there is $y^* \in C_1$, $z^* \in C_2$ and $\lambda \in [0, 1]$ satisfying $\|x^* - (1 - \lambda)y^* - \lambda z^*\| < \delta/2$ and $-(1 - \lambda)y^*(w_m) - (1 - \lambda)y^*(w_m)$ $-\lambda z^*(x_m) > M(-x_m, A) - 2\iota$. It follows that $-3\iota < (1-\lambda)\iota - \lambda \varepsilon/2$ and thus $\lambda < 8\iota/\varepsilon = \delta/2d$. Therefore dist $(x^*, C_1) < \lambda ||y^* - z^*|| + \delta/2 < \delta$, proving the claim.

Hence $S(-x_m, \iota, A)$ admits a finite 2δ -covering. By the lemma of Huff and Morris [3], A is dentable. Thus C is a Radon-Nikodým convex.

From Lemma 5, we deduce immediately:

LEMMA 6. Let $(x_n)_n$ be a bounded sequence in X and $(y_n^*)_n$, $(z_n^*)_n$ bounded sequences in X*, such that:

Radon -Nikodým property

$$1^{\operatorname{o}} \lim_{m} \sup_{n} |y_{n}^{*}(x_{m})| = 0,$$

$$2^{o} \ |z_{n}^{*}(x_{m})| < 1/m \ if \ n < m \ and \ z_{n}^{*}(x_{m}) > 1 - 1/m \ if \ n \geqslant m.$$

If
$$x_n^* = y_n^* + z_n^*$$
, then $\bar{c}(x_n^*; n)$ is a Radon-Nikodým convex.

Proof of Theorem 2. Let X be separable and X^* not separable. Then, by Stegall's result [8], there is a subset K of X^* which is w^* -homeomorphic to the Cantor set and a system $((x_{n,k})_{1 \le k \le 2^n})_n$ in X such that $||x_{n,k}|| < 2$ and $||x^*(x_{n,k}) - \chi_{n,k}(x^*)| < 1/n$ if $x^* \in K$, where $\chi_{n,k}$ denotes the characteristic function of the Cantor subset $K_{n,k}$. Let $(y_n^*)_n$ be a w^* dense sequence in $K_{1,1}$. For each integer n, take $x_n = x_{n,2}$ and let z_n^* be some point in $K_{n+1,2^{n+1}-1}$. Let $m \in \mathbb{N}$ be fixed. Clearly $\sup |y_n^*(w_m)| \leq 1/m$.

If n < m, then $K_{n+1,2^{n+1}-1} \cap K_{m,2^m} = \emptyset$ and thus $|z_n^*(x_m)| < 1/m$. If otherwise $n \ge m$, then $K_{n+1,2^{n+1}-1} \subset K_{m,2^m}$ and hence $z_n^*(x_m) > 1-1/m$. If we let $x_n^* = y_n^* + z_n^*$, then $U = \overline{e}(x_n^*; n)$ has the Radon-Nikodým property by Lemma 6. Denote by \tilde{C} its w^* -closure. Because the sequence $(z_n^*)_n$ is w^* -converging, its w^* -closure L is $\|\cdot\|$ -separable. Since each point y^* belongs to $\tilde{U}-L$, we have that $K_{1,1}\subset \tilde{U}-L$ and therefore \tilde{U} is not $\|\cdot\|_{L^{2}}$ separable.

References

11 J. Bourgain, On dentability and the Bishop-Phelps property, Israel J. Math. 28, 4 (1977), pp. 265-271.

J. Diestel, Geometry of Banach spaces, Springer, 1975.

[3] R. E. Huff and P. D. Morris, Geometric characterizations of the Radon-Nikodúm property in Banach spaces, to appear.

[4] I. Namioka and R. R. Pholps, Banach spaces which are Asplund spaces, Duko Math. J. 42, 4 (1975).

E. Odell and H. Rosenthal, A double dual characterization of separable Banach spaces containing l1, Israel J. Math. 20 (1975), pp. 375-384.

[6] R. R. Pholps, Dentability and extreme points in Banach spaces, J. Functional Anal. 17 (1974), pp. 78-90.

[7] H. Rosenthal, A characterization of Banach spaces containing 1, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), pp. 2411-2413.

C. Stagull, The Radon Nikodým property in conjugate Banach spaces, Trans. Amer. Math. Soc. 206 (1975), pp. 213-223.