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Sets with the Radon-Nikodjm property in. conjugate Banach space
by
Jo BOUTRGAINY (Brussol)

Absteact. Wo prove that if {8 does nof inboed in X, thon every subset ¢ of
X* with fhe Radon-Nikodym proporty is w¥-dentablo. Jrom this we deduee thab
i, moveoyor, X i nopnrable, those sels in X* nre sopavable. Tlowover, if X is soparablo
and X* i not weparablo, then there exists o seb in X* with the Radon-Nikod§m
property and with non-separable w*-closure,

Lot A, || 1| be acreal Banach space. T » e B and ¢ > 0, then B(x, &)
denotes the open hall with midpoint @ and rading . We establish some
notations, referving to [6). Lweb A be a non-empty and hounded subset
of B. If w* e B, we define M (w% A) - supa*(A) and if ¢ >0, we lot
B,y A) = fw e Ay w*(o) = M (0%, A) -a}, which will be called o slice
of A. Tiet B he w wubspace of B separating the points of H. The et 4
is said to Do B-dentable if Tor caeh &> 0 there is o point # € 4 such that
@ does mot belong o the o(H, F-closed convex hall of ANB(2, ). By
the sepapation theorem, this is oquivalent with the existemee of glices
S(w* o, A) with #* e 17, thus FP-glicoy, with arbitrarily small dismeter.
It in particnar B 8% we sy that 4 ix dentable. If I is o conjugate
gpace X and I = X, wo nay that 4 is w*dentable. Obviously w*-den-
tubiliy implies dentability. Thiy paper deals with the other impleation.

A set with the Radon-Nikodgm property is o bounded, cloged and
convex subset of B sach that cach of its non-empty subseds is dentable,
For some remarkable properlios of these sets, T refer the reader to [L].

A diadio tres i ) s a0 bounded secquenco (), in B so that for sowme
&z 0 wo have Wt ench poind w, ds the midpoint of 2 points @, ad @,
with [, ] = o

We lel X beoworoal Banneh spaco and X i dual,

In the fimt four Jonmas, ¢ s o hounded, elosed and convex set in
X and @ iw ilw awr-closmre, ,

Lmmma L Xf there s e O and @ system ((8,4) 500 of X-slicos
of O such that:

"

* Aspivant, NJLW.O,, Bedgionn Veijo Universiteit Brussel.



292 J. Bourgain

1 o1 © S s Sogram © Sk
0 T .
2° dist (S, 41,0019 Spir,2r) = &
27L

1
3° lim diam 257 8, =0,
Je=1

then C contains a diadic iree.
Proof. Since for each infieger N we have thab
N oy Ko
1 1 1 oL
W‘&W»n,k = SN “an PN,k
=1 K=1 Jom (B 1)2R - 1

K
1
it follows that limdiam 2 — Byimi = 0 for cach K =1,...,2%,

n
n k=(K—=12"41 2 .
Therefore, because it is decreasing, the intersection
7
bie) 1
'2“,‘{81\7—[-7»,10
% L= (K —1)27+1
consists of a unique point @}, x which is clearly in Sy x 0 C. It is easily
g el A *

verified that o}z = 3@y 1101 BNsr0m)y WHETC (B4 yom1 — B 41,0
> e Hence ((@yx)icrad)y 18 the required diadie tree.

Lmvma 2. Let (@,),, be a sequence in X and ((Sn,,c)m,ﬂgzn)n a system of
X-slices of O, such that

1° | = 1,

2° Sppsoi-1 < Suges Snprme < Sppy

3° Sn+1,zk—1ms'n+1,zk = @,

4° im sup .0(®,|8, ) =0 for each integer m.
n 1<k<a®

If I does mot inbed in X, then

o

— 01 .
3 00, (S, s0e1) =508 (Sp,20] < 0.

Ly

o .
Proof. Let 4 = () U 8,1, Which is a w*-compact subset of 0, and

% k=l

A, =408, for each neNand & =1,...,2% Wo consider the o-al-
gebra © of subsets of N, generated by {4, ,; L<k<2% neN}). De-
fining A(4,,,) = 1/2", a probability 2 on & is obtained. By (4), each a,
viewed as o function on 4 is S-measurable. Assume the claim untrue.
Then there is ¢ > 0 and an infinite subset N of N with

X
1
2 o [inf®, (Sp1,00-1) —SUDP B, (8 106)]1 > & for cach n e N.
k=1

Badon—~Nikodgm property 203

eyl ) -1 Wl 1 | " 3 shal’s the
If I does 1\.0(,_ rul,}).u} ‘m X,. then by J.mm\al1,.}m}’b theorem [7], (®,),v has
a wr-converging subsequence (@,),.. Applying the Lebesgue theorem,
wo {ind some m e M satislying f [0, —w,| A4 < &/8 whenever n e M and
7 2 m. Take then gome n e M such that # = m and sup o(@, 18, < £/3.

. 1eg o2
Sinee

. ‘ 1o
‘I lmm — | dA = 'Em [mtmn(SMA!AI.ZA'-- 1) —8up Ty, (Sn,lc)]7
A1, 2l L

g o 1 .
j lwm - mn' a2 &= Wf Ll]\'f Dy (Sn,lc) — Kupm, (Sn-l-l,zk)]’

Agop1,80

it follows

27l
& . ¢
3> ( Jiy, — 0] - f 10, — @, | 4
R A1t
z’fb
1 -,
= oAl Z (infa, (S41,20-1) = BUPD By (S 2) — 0 (D | 8 2)]
Joes )
ot
QL ’ €
> % Z o [inLe, (8y1p,00~1) ‘“‘H“I’wn('sn-|-1.zk)]'“‘6"-
Jowm ),
2 1
I:I(anceia\’?ﬁ- [infa, (Spy1,0p-1) — 80D @, (801,001 < & which. i the required
o msa 1
contradiction.

LemMA 3. T will denote the ewireme points of 0. If 8§ = 8(=, a, ()

is an X-slice of 0, we let
§ == 8@, a, 0) = {o* e §; 2*(0) > M(w, 0)—a).

For sach &> 0, there emisls am X-slice T of O, satisfying:

1T e g,

2° ' §(8 BB (0, &),

Proof. Lot d == diam § and take T'== 8(», 8,0), where f = min (e,
ea/2d), Obviowsly T 8 sud wo ghow that alse 2° i veritied. We
tivst remark fhat 0 - ¢ (G(SnB)0(ONS)). Take o* el and consider
oy ed(Snll), of e ONS snd Ae[0,1] with @* w2 (L—21)} iz}, Since
M@, 0)—p < o™ (w) = (L—2)a) (@) -+ Iog (0) < M (@, 0) — Ao, it follows that
A< 82d and therefore Jo*—of|| < & Thus T < §(SnE)-+B(0, s).

Lomma 4. If O 48 not w*deniable, then there ewist & > 0, @ sequence
(@), in X and o system ((S,,1)nareaan)n 0F 8lices of O, such that:

1° “mﬂ.” e 17
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2° Sn+1,2k—1 < Sn,,k! Sn+1,2h < Sn,.’n
3° dist(8,4100—19 Snt,20) = &
4° gup o(w,)8,,) <1/n for each m =0,...,%—1,
1ghk<a™ "
2

iy 1
5° diam Z 2n+1 n+] RS 2-_ [Hlf‘rn(Sn-l-l.&Ic— ) ""qu]”bn(sn 1, Zlu)] +

+1f(n+1)

Proof. By Lemma 3, sinee ¢ is nob w*-dentable,
such that diam (5’ nl) > 8 whenever § is a slice of 0. Take & = 8/2.
Starting from §,, = 0, we will define @, and (8, 41,1)1cpcan1 mducﬂavoly
We use the fact that a w*-neighbourhood of a point in K containg a w*-neigh-
bourhood of that point which isx an X-slice.

Take @,e X with [/ = 1 satisfying

there ig 6 >0

(wol;S’“nD) diam (éo’lnE)——-};.
We consider slices 8, < 8y, 87, = 8,; such that ,
intay(8],) > supae(8y nB) — },  Supay(S),) < infey (8, AT H-
By Lemma 3, there are slices §; < 87,1, 815 = 81, with
8y < 68, nB)+B(0, b, Sy §(85,0E)+B(0, ).
Finally, it is easily seen how to obtain slices 8, < 81:1,_ 8y = 8y 80O
that dist(8y,,, 8y,) > ¢ and o(zy[8,,,) <1, 0(®o8y,) <1 Sinee
diam (38, +38,,.) < diam (387, +481.,)
< diam [$6(8,,08) +38(8,, nB)1+} < dinm (8, ,0B) +}
0 (85| 8010 B) +§ < intay (8,0) — D@ (8,4) +1,
all conditions are satistied. .
Assume now (8, ;) 1rn Obtained. Take @, € X with |w,] = 1 satis-
fying

an an

~ 1 v fe 1
21 =5 0(o, 18,60 ) > diam = (S; ﬂlﬂ“mﬂ)'
k=1 fe=1
Let k =1, ..., 2" be fixed. Wo consider slices ’S’;z,—g-l,ﬂc«l < 8y, Stin,00 S Sup
such that
) , o 1
lllf«’ﬂn(8n+1,m_1) = Sllpwoz(swz,knE) - 6(% +1 5 ?
’ 3 3 1 -
Su].own(’g'n.+1,2k) glnfwn(gn,k OE) -+ ﬁ(% +1)_ ‘
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a1 1 Y1 5, - 2 ) o "
Again by Lemuna 3, theve are slices 8 -1 © Sy, 1,219 Sm e © Spgan

with
1
AP 17 _nﬁ»B(
N1, -1 ( 1,281 ) I (,”/ }_1)
144 -~ O l
Soroe S H8yr,a0 ) B (0; 66——{?1—)')
There ave sHees Sy pu-1 S 8 mn-10 Snarar © Sy 80 that
. N : 1
dl""t(ﬁn»l-‘l.%vd? vav[-l.:a/a) 2e  and  o(z,] Sn-rl,zla-—l) < m:
1
0 (%, ) Sy 3,00) 5 oy for each m = 0, ..., n.
We have that
2n|1 1 gn-l-1
S
diwm > -‘;;;-;,1 Sosr,i S dian > gmﬂn’ﬂ,k
la—-=1
2n+1
, 1L e 1
< dnmn% Ejﬂ'—i‘-‘ic(sﬂ'fd"mp) e 5T
ot 1 270 1
° 1
dinam \ AT+ s == lin 2——— S, 0B 4 ——
/':\1 o ( mn ) IM.' (1) P 2“( i O0) 5 3(n-+1)
2 4
‘L 11|bn,lcn7’) 3( _'__1
- &y L 1
= ZL “_n" IJll‘I‘ %-{-1,27.-«1)"“ﬂup'n (Sn+1 270)] " '_1

This completes the construetion,
Tuwonns Lo Lf O is @ bownded, closed and comvew set in X* whwh 28
nob wh-denitable, thew cither 1 inbeds dn X or O contwins o diadic tree.
Proof. We sonsider e, (w,), and ((8,, 1) czrgan)n &8 in Lemma 4.
TE T does not inbed in X, then
an

o " L
lim A_\_I ey L'l]lfd’ ( e B-VEN1 ) Supmn('gn—kl,zlc)] < 07

[

by Lemma 2. By (5) of Lemma 4, we find that
2‘)L-|-11
T diam \

a o 2n~l-1
Huenl

By = 0.



296 J. Bourgain

Now Lemma 1 applies and hence ¢ contains a dindic tree.

COROLLARY 1. X is an Asplund space if and only if X* has the RNP.

Proof. The “only if” part was obtained in [4]. If conversely x*
has RNP, then by Stegall’s theorem [8], I' does not inbed in X. If I
is a w*-compact convex subset of X*, then K does not contain a diadic
tree. By Theorem 1, X is w*-dentable. Therefore X is an Asplund space
(see [4]).

COROLLARY 2. If I* does mot inbed in the separable Banach space X,
then every subset of X* with the Radon—Nikodgm property is separable.

Proof. Let ¢ be a Radon-Nikodym set in X* and assumo ¢ nob
separable. Then there exist &> 0 and a subset D of ¢ such that if U is
o(X*, X)-open and UnD # @, then diam(UnD) > e Ilence 6(D) iy
not w*-dentable. Thus ¢(D) contains a diadie tree, contradieting the
fact that € is Radon—Nikodym.

Remartk. The last corollary fails if I* inbeds in X. Indeed, if X =
then I*(¢) inbeds in X™* and the closed unit ball of *(¢) is & non-separable
Radon-Nikodym subset of X*.

It is untrue that if ' does not inbed in the separable Banach space
X and € is a Radon—Nikodym set in X*, then the w*-closure € iy separable,
In fact, we will prove the following:

THEOREM 2. If X is separable and X* not separable, then there ewists
o Radon-Nikodym subset of X*, with mon-separable w*-closure.

Lmyma 8. Let (w,), be a bounded sequence in X and (w)), a bounded
sequence in X* with

Limsup @) (@) =0 and lim inf a)(@,) > 0.
m a<<m 'm— N2M
Then C = o(w); n) is a Radon—-Nikodgm convew.
Proof. Let & = liminfaf(s,,) and let d = diam(. Clearly the se-

m n=m
quence (2,), is pointwise converging to 0 on €. Let now 4 bo a non-empty

subset of ¢ and choose & point a* e 4. Let 6> 0 and & == ¢8/16d. Con-
gider m e N such that |a*(s,) < ¢ mp ooy (#8,,)] < ¢ and mf 'r,&( By) > /2.

It €, = 6(2); n < m) and 0, = &(a}; 'n, m), then 0 = c(Oluaa) Cleaxly
M(—w,, A)> —i, intw, (0;)> — and infw,(0,) > /2. We will show
that dist (2", 0;) < 8 it #* € 8(—®,,, ¢, 4). Indeed, thereis ¢* e 0y, 2% e 0,
and A e [0, 1] satisfying |o* — (1 —A)y*— 2| < §/2 and —(L—A)y*(w,,) —
— 2" (@) > M(—w,, A)—2i. Tt follows that —3i< (L—A)—ae/2 and
thus 4 < 8¢/s = §/2d. Therefore dist(z*, C,) < Ally* —2*||+6/2 < 8, proving
the claim. ‘ ’

Hence S(—a,,t, 4) admits a finite 2é-covering. By tho lemma of
Huff and Morris [3], A is dentable. Thus C is a Radon-Nikodym convex.
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From Lemma 5, wo dednee immediately:
Limvva G, Let (#,), be @ bownded sequence in X and (U )ns (&%), bounded
sequences in X*, such thal:
10 Hmsup [yh(@,)| = 0,
m

W

20 IN,L( m)l 1/m if w<m ond &(w,) >1<L/m if n=m.

If aff = b2k, then ety m) is a Radon—Nikodym conven.

Troof of Theovem 2. Let X be separable and X* not geparable,
Then, by Stegailr resall [8], there is o subset & of X* which i8 w*ho-
meomorphic to the Gantor set and a gystem ((mn Wiy, I X guch
that (e, il - 2 and |2 G i) = X ()| < A 0L € I, whoero xn x denotes
the ehapncberistic funelion of the Cantor subset K, . Lot (), bo o w
dense sequence in SC L Tor ench fitieger 7, buko @, - = i, n i et & be
fome poind in A,y perig. Tiet m e Nho fixed. Olearly hll]’) [V (0,)] < 1 /.

In< 'm,, Bhen, K,y gty OV == @ and thus 6} (2 )] < 1/m. If other-
wise w3z M, Jnm Iyt & Km gm and lienco z’,';( @) > 1L —1jm. I we
let ) - v/,b [-&k, then ¢ a(mn,%) has the Radon-Nikedym property
by Immmu 6. Danoto by ¢ s w*-closure. Because the se quence (2)), ]H
w —oonvm‘;.:xn itn w*-clomore 1 i | Il H(*])«b:('«bbl(‘ Since ecach point gk
belongs to G--L, wo have hat I, 11 € 0 =T and therefore § is not -
separable,
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