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Lévy-Khinchine representation and Banach spaces of type and cotype

by
G G WAMEDANT (Leheran) and V. MANDREEKAR (Michigan)

Abstract. In this puper wo prove the following two results: (1) For 1< P2
the Lévy-Khineline rvoprosentation, with Lévy measure having p-th moment finite
in thoe neighbourhood of zeve, gives an i.d. law on a roal separable Banach space I
if 7 is of type p. (2) Lot 1.d. law u bo a woalk liunit of shifs of “exponentials” of non-
decroasing sequence of finite moasures F,, on £ and F = HmF,. Then [ |x|?F (de)

b

n
is finife (p > 2) ift H iv of cotype p. For p = 2, those give some recent results of
Mandrekar and de Acosta and Samur.

0. Introduction. This work extends some recent works of Mandrekar
[14] and de Acosta and Samur [2]. More §pecifically, we characterize
the Banach spaces for which the following probtems have solutions.
Here 7 s @ real separable Banach space.

L Hvery non-Gaussion infinitely divisible (i.d., for short) law on
L ix w0 lmit of & sequence of probability measures of the type e(F,) #0,
for {#,} non-decreasing sequence of finite measures with [ wlPF (dw)

zll<)
< oo (p = 2), where ¥ = lim%¥, and F finite outside the nl(]eighbourhood
of zero and; "

IL Every function ¥ on B’ (topological dual of &) of the form

(0.1) oxp [ E(y, 2)F(dw),
where
W Ky, o) = oxplicy, o) ("‘ P u.»u”)’

0.2) () I i odinilo on B, F{0)} = 0 and P i finite oubside the
neighhourhood of zevo,
(¢) S llwli® s finite (1< p << 2)
Jiells 1
is the characteristic functional (c.f., for short) of a measure (necessarily,
i.d.)) on Z.
For p =2, it was shown [14] that Problem II has solution iff B
i of typo 2. For p == 2, following arguments of [167] (Theorem 4.7, p. 178)
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we can show that Problem I has solution iff every i.d. law has ef. of
the form (0.1). Thus our result for p =2 ([16], Theorem 7.1, p. 103)
give the result of ([2], Theorem 5.2). In general, however, for p > 2,
the exact analogue of the result of [2] is not valid. This is shown by means
of an example in Section 3.

1. Preliminaries and notation. Let B Dbe & real separable Banach

space and % (B), the o-ficld generated by all open subsels of H. A prob-

ability measure x on F(F) is said to be i.d. if for each integer n there
exists a probability measure g, such that- g = gy I is well known. ([18],
[16]) that each i.d. probability measure x on I can be decomposed ag
p o=y, where y is Guussian in the sense that every continuous
linear funetional on B has Gaussian distribution under y, » is non-Gaussian
i.d. and §, is point mass at . Also, every non-Gaussion Ld. law iy a weak
limit of shifts of measures of type ¢(%,) with {I,} non-decreasing sequence
of finite meagures ([16], p. 103—104).

A sequence of finite measures {u,} on (¥, #(H)) is said 1o converge
weakly to a finite measure u if [gdu,— [gdu for every bounded continuons
function ¢ on B. We say that sequence {u,} of probability measures is
shifi-compact if there exists a scquence {#,} = B such that {u,*d, } is
weakly compact. We note that {u,} is shift-compact if and only if {,un* o}
ig weakly compact ([16], p. 58-59), where Z,(4) = u,(—4). Given o finite
measure ¢ on (¥, #(B)), wo denote by ¢(@) the exponential of G defined by

0(6) = exp(~6(B) {80+ S G*"}

7L=1
We denote by ( ) the duality function on 7’ x.H. The c¢.f. of a prob-
ability measure u is defined to be @,(y) = [exp(i<y, @))u(dw) for y e B,
It is known thal @, determines u uniguely.

Let {¢: jeN} be a sequence of ii.d. Bernoulli random variabloes
(P(gy = —1) = P(g = 1) = 1/2). A Banach space # is of (Rademacher)
type p if there cxists a constant > 0 such that {for every finite set
{©y, 334 ..., 0,} = B,

EH> ey OZ Il

It is known that H is of type p if and only if 3 ja,|? <oco implioy quj

converges almost surely (a.8.); and B of type p implies 1< 2 [7}.
A Banach space B is of (Rademacher) cotype p if there oxw(,s a4 con-
stant 0> O such that, for every finite set {@,, ®,, ..., s,} = B,

,231 Il < 0E||%‘ 5"
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It is known that 7 is of cotype p if and only it \"a,m‘ converges a.8. implieg

znfr " << oo; and B of cotype p implics p > 2 [7L.

2. Lévy-Khinchine representation and spaces of iype p. We first
prove the following theorem.

2.1. Tunonem. Problem IL has solution in o Bunach space B if and
only o B i of type p.

We mote that, [6], # is of fype p if and only it for any independent

J=yalued, wymmetrie random variables X, X, X,

ki3 (3
(2.2) B3 x| <o N BIX, P
ot #1

for & universal constant «. In view of (2.2), we get the following lemma
with arguments exactly as in ([14], Lemma 1.3).

2.3, Limmma. Let G be o fzmw symanetric measure on (E, B(H)) and
L of type p. Then [l e (@) (dn) < of |0l G (dm).

Also ay in ([14], ’l‘lumom 2 B) wo geb:

2.4, Lismwma. Prodblem IL has solution implies B is of type p.

Il?roof. Lot {m} bo a sequence in B satistying lemjll” < co. Write

I s Tim 2% 2y 6,,1) Then I patistios (0.2) (b), (c) Hence

N el

is & characteristic funetional of a measure » on F.
n
pi () =0 exp 12 [ (0D 1) B(dw)) = lim [ ] @, (1
Puily) = exp {2 [ (@)} = lix JIJ%,(J),

where oy is the law of 2y, {m} independont, symmetrie Poisson with
parameter Lo By ([8), p. 40) Zznjmj converges ak. giving by ([10], The~

orent 8.1) duye; converges ,u.H, iy B s of type p.
7

To prove the sufficiency part of Theorem 2.1, we note that in view
of (167, p. B8) we can (and will) asgurae without loss of generality that
I, watistying (0.2) (b) and (e) is zoro outside of unit ball of 7. Also as
in [14] wo need the following two lemmas. The proofs being similar to
the ones in. [16], Theorem 4.7, p. 176, and Theorem 4.5, p. 171, are omifted.
But we note that [ julPP(de) < oo implies [ |w]*F(da) < co, since
P < 9, flll=g1 el 1
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2.5. Lmvma. Let I be as in (0.2) (b), (¢) and let I, be the restriction
of I to {w)ljw] = 1/n}. Then
B 6D [, (9) —exp { [ K (y, 2) B (dm)] =0,

yeS n

K

& . - .
where 8 is bounded ball in B’ and 2, = f TP B, (dw), integral being

in the sense of Bochner.

2.6. LeMuMA. Let {u,} be o shift-compact sequence of probability measures
on B and suppose ¢, (y)—¥(y) uniformly over bounded balls; then ¥ (y)
= @, (y) for some probability measure p ond u, converges wealkly to u.

Proof of Theorem 2.1. In view of Lemma 2.4, it remaing to prove
the sufficiency. In view of Lemmas 2.5 and 2.6 it suffices to prove that
e(F,+F,) is weakly relatively compact. We do this by using Theorem 2.3
of [1]. Let 4, = e(Il’n)*éL,n. We notie that ([16], p. 59) by Lenuna 2.5,
{2.097% n =1,2,...} is weakly relatively compact on R given by ([16],
p. 76), {e(F +P,L)oy‘1, n=1,2,...} weakly relatively compact. It
thuefme remains to prove that e(F,+F,) is flatly concentrated. Let
&> 0, choose a simple map v quch that flle— (@) P F (do) < 1 2a
with a a8 in (2.2). This is possible by (0.2) (¢) and ([4], p. 226). Then by
Chebychev Inequality and Lemma 2.3 we get

(2.7)  supe(F,+F,Mz|lo—p(@)] = ¢

1 '
< 5 sup 2a [ lo—p(@)iPT, (o) < o.

Let M be the linear subspaee generated by the range of y. Then {w]
lo—M| > &} = {#]|lz —yp(w)| = ¢}. Henece (2.7) implies ,supe(f +I‘n {z|
o — M| > e} < e giving the result.

Remark. The above proof is similar to the one in [14].

3. Tofinitely divisible laws om spaces of cotype p. In thiy section wo
prove the following theorem.

3.1. TrworEM. Problem I has solution in a Banach space T if and
only if B is of cotype p.

To prove Theorem 3.1 we follow the method given in [16] duo fo
8. R.8. Varadhan [19].

3.2. DEFINITION. For a probability measure p on M, concentration
function @,(f) is defined for 0 <t < oo, a8
Q.(t) = sup w(8;+w),

where 8, is the ball of radius ¢ and 8, -+ is the translate by an elemeut 2.

The proof of the following lemma, is exactly as in [16], p. 166, and
hence omitted.
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3.3, LmmwmA (Lévy inequality). Let X, X,, ..., X, be vjndepmdmt
symmetric  Ji-valved  random  variables and  8; = X4+ X, +X; (5
==1,8,...,n). Then for all t> 0

P{ w]» ]|Sj1] > 4} L 2[1 =09, (1],

where w iy the distribution of 8,. (Note that in [16], for 8,-+w < 8, for
lwll =5 ¢, paraliclogram low is used, however, the inclusion is valid in genoral.

The following analogue of Theorem 3.3 ([L6], p. 168) iz immediatoe
trom the Kolimogorov inequality proved by de Acosta and Samur ([2],
Theorom 4.0).

B.de LimMmA, Lot Xy, Xy, ..., X, bo n independent symmetric B-valued
random variables wniformly bounded in norm by ¢, Let 8; = X, +Xp+ ... +Xy;
then

BIS. P < L2 ey
nil” s 1. —22=1pT up 18411 > @1 "
l<f<n

From Lemmag 3.3 and 3.4 we get:

3.5, Trrorum. Let X,, X,, ..., X, be H-valued independent symmetric
random variables wniformly bounded in norm by ¢, and lot @,(t) be the con-
contration funclion as above. Then
4242 o (¢ - 4)P 2P

270, (1) — (2 —1)

B8, <

Jor 1 satisfying @,(¢) > 1 ~1/2?
3.6. Trmorum. Let B be of cotype p and T, a sequence of finite mea-
sures such that ¢(F,) is shifi-compact. Then

sap f @|PF, (do) < oo.
"

Proof, In view ol Theorem 4.3 ([16], p. 80) wo can (and will) assume
without loss of generality that 2, iy zevo outwide the unit ball. Let M,
LR F, Then e M,) i woeakly compact, Turther we can assune thatb

M, (1) in am, indoger for each n. A otherwise, wo can weibe M, = MO - 1@
with MO with fota) mass an integer and MW <L, consequently
" J oM@ (dw) <5 L. Xt therofore  suffices to prove the theovem for
][ 1

Ml O, Lot M, k@, where w, i o symmctric probability measure. -
Lot w, == e, Sineo B s of colype p, wo gob that there exists & universal
constant £ such that

IZ" BIZP < ﬂl«)“jﬁ;z,
Je1 Fra

(8.7)
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where Z; ave i.i.d. with distribution u,. Henee it suffices to show that
wp f ”me dw, < co. If @,(t) denotes the concentr afiion function of v, we

h:We from Theorem 3.5

- v g > 4.27t27 _I_ (G +4t)'l)2:p—1
j lal[” dw,, < 70, (=@ 1)

—1/2%, Therefore, it is enough to prove tho existence

whenever @, (1) > 1

of a t, wuch that inf@, (%) =1— By ([16], Theorem 3.1), the above
n

21711
inequality will follow if we show that », i conditionally. compact. But
this follows by LeCam ([12], see [11], p. 143).

Proof of Theorem 3.1. It is known ([16], p. 103-104) that on
any complete separable metric group & non-Gaussian L.d. law w ig @ limib
of ¢(F,)* d, with 7,4 to a o-finite measure F. By ([16], Theorem 4.3,
p. 80) we gei, that F is finite outside the neighbourhood of zcero. From
Theorem 3.6 we get the necessity. To prove sufficiency assume that

N
for {m}< B, 3 mm; converges a.s. Then » = ]im ]] o(% 0, +30_g)
~hme(2 {30y +10_}) I id. Smw Problem I hd:S holutmn, wo get
f ||m||”1’(d'1;) is finite with I = 2 30+ 0_g) Le. Z oI < co.- Hence

el
by closed graph theorem I a const(mt ¢ so that Lor all n,

n n
(3.8) Slle < 08| 3 ma|” (2=2).
C j=1 j=1
Since (3.8) is a super-property if we show
(3.9) e, does not satisfy (3.8),

then we get that ¢, is not finitely representable in B and hence by Corol-
lary 1.3 ([18], p. 28) we get (3.8) is equivalent to B being of cotype p.
Tt thus remains to prove (3.9). Let {¢;} be the usual basis in ¢); then for
{o}= B

n
H nae” = fup |mal.
‘,}',; 379% ey mesi<n 7

Now, with # Poisson with paraneter 2

(3.10)  P( Jup o5 > &) < N D Pl > ) = ZP w > elay).

m

But P(w > &/o;) < exp(—s/a;) Bexp (). Henee from (3.10) we get, with

p— s

vk

P
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a; = M et N mage converges aws. in e, Bub )‘ oy 6;lh == 3 L[
. T . . . . =1
diverges. This implies (3.9) completing the proof.
Final remark, We unw dwoll on wn example umm.luned in the in-

trodnetion. Let 1, 5\ Oyt Oy)y and =11ml1 . Suppose ¢, (y)

s oxp [ fTeos (g, o) =12 (m,] iw ef. of » on I ’l‘hw will imply that
[ (y, w)*(dw) -2 oo for cach y. Choose wy el, (p > 2) (cotype p) given
fafi 1
by .nj 1/¢%%, then mlo uly J kel (dw) < oo if ap > L. Further if we
choose u, ko that 20 <1, then 5‘ f (@f?)2F (dm) =~ oo. Hemeo for a 50
llar[l
that Q< L << pe we get [ |jr||”!ﬂ(d'v)< oo but cxp| [ (eos(y, z)—
e <t
1)1 (dm)] I8 not a e.f. T otiher words, to obtain Lévy—Khinehine type
repregentation one has fo assnme ot leagh I[ (y, )20 (dw) < oo for y e B'.
fl

This explaing the conditions pub in [5], [12] for 1, or L, (p > 2).

Acknowledgement., We thank the referce of the paper for pointing
out an crror in the proof of Theoremn 3.1. We also thank Professor Joel
Zinn for discussions on the correction.

Note adiled in proof. The results of Soction 2 wero obtained by E. Dottweiler
aud by K. Giné independontly and by difforent methods.
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The stability radius of a bundle of closed linear operators

by
1L BART* (Ainsbordwn) and D, G0 LAY (Colloge Park, Md.)

Absiract. Given & bundlo of linoar oporators T— A48, whoro 7 is cloged and §

is hounded, a soguoneo {py (T 8} of exbonded real numbors ¢ defined. When T

in tha idoentity oporator, p, (1 8) is equad to |§7~1=1; when § is the identity operator,

i (2's 8) i the voduced minimum modulus ¢ (2™) of "™, It is shown that in several

imporbant coses (ineluding the enso when 7' i a Iredlolm operator and § is arbitrary)
iy (T §)Um

M-+o0

oxists and {8 ogqual to the supromun of all pogitive r sueh that the ranges R (T — A8)
e ologed and dim N (T'— A8) and codim B(7—A8) are constant on 0 < (4] < 7.
This worle genoralizen the wsual spectral radius formula, a recent theorem of K.-H.
Forsior and M, A, Banasbook, and an owrlion rosuli of H. A, Gindlor and A. E. Taylor.

0. Introductiom. If § iv & hounded linear operator on a Banach
gpace, the usual spectral rading formula implics that
(0.1) Tin || gm)j=3m
Mr 0O
existy and is oqual to tho supremum. of all # > 0 such that I — 18 is a bijec-
tive operator on |A| < r. Recently, K.-H. Forster and M.A. Kaashoek [6]
studiod & similar Hmit, namely
(0.2) Tinwy (2™,
N0
where I'ix o (possibly unbounded) Wreedholm operator and y(I™) is the
reduced mininum modalug of 2™, Borster and Kaashoek showed that
the Timdt i (0.2) oxisty and oquoads the suprewum of all » > 0 such that
the dimensions of e null wpaees N (I'—AI) and tho codimensions of
the rnges B(T—AT) ave conslant on 0 < jA] <
In the present paper wo doseribe o general setting which includes
the results involving (0.1) and (0.2) as speelal cascs. We consider an
operatior bundle I'— 28, where § is a bounded linear operator between two

* The researeh for this papor was done while the fivst author was supported
by the Nelhorlands Organization for the Advancement of Pure Rososreh (Z.W.0.).





