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A generalization of Khintchine’s inequality
and its application in the theory of operator ideals

by
L. D. GLUSKIN (Leningrad), A. PIETSCH and J. PUHL (Jena)

Abstract. We prove a generalization of Khintchine’s inequality which can be
used o estimate the absolutely r-summing norm and the r-factorable norm of the
identity map from I%into I} for certain exponents # and v. This results fill in the re-
maining gaps in the limit order diagrams of the operator ideals P, and &,.

In the following £(Z, F) denotes the set of all (bounded linear)
operators from F into F, where E and F are arbitrary Banach spaces.

An operator S e R(H, F) is called absolutely r-summing (L<r < oo)
if there exists a comstant ¢ such that

{ h) 8w} < osup |{ > e, a7 < 1]
1 1

for all finite families of elements #,...,®, € B. The class P, of these
operators is an ideal with the norm P,(8): = infe. An operator S e £(E, F)
is called r-factorable (1 <7 << oo) if there exists a commutative diagram

E__..__.___.———)-F”

o

L(Q.m)

with A LB, INQ, u)) and Y eC(L(Q,n), F’). Here (2,u) is a
measure space and K, denotes the evaluation map from F into F".
The class £, of these operators is an ideal with the norm L,(8) : = inf]| Y| |41,
where the infimum is taken over all admissible factorizations.

Let us denote by I the identity map from I, into I, where ; and I7
are the Minkowski spaces with 1 < %, v < oo. It is well known that the
asymptotic properties of A(I: I;—ly) give important information about
the operator ideal 2 with the norm A. In particular, we are interested to
know the so-called limst order A(A, u,v) which i defined to be the infimum
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of all 2> 0 such that
AL s <<ent form=1,2,..

with some constant c¢. )

TFor every normed operator ideal the behaviour of .A(4, u, v) can
be graphically represented by means of diagrams in the unit square.
The coordinates are 1/u and 1/v. In the left-hand diagram we plot the
level curves, while the algebraic expressions of A(4, w,v) are indicated
on the right.

TFor the ideals of abgolutely s-summing and r-factorable operators
with 2 < 7 < oo the following results are known:

g, i
. %-% 0

The purpose of this paper is to fill in the remaining gaps. We shall
prove that

] =‘i 5 (L —Ljw)(Ljo—1[r) and o = (1/2 =1 /uw)(1jv—1L[r)

r 12 —1r 12 —1jr

Therefore it turns out that the corresponding level curves are hyperbolas.
Finally, let us mention that A(P,, u,») with 1 < r < 2 iy completely
known, while the limit order of €, with 1 < » < 2 ig «rlven by the formula
ML, u,0) = AL, v, w). ‘
In the sequel we shall use the notaticn: introduced in [3]. In par-
ticular, +* denotes the conjugate exponent der ned by 1/r 41/ = 1.
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1. Preliminaries. Lot K" denote the n-dimensional real or complex
linear space of all scalar vectors » = (5). We write I if K is equipped
with the norm

el = { 316" i 1<r< oo and  fal, = suplg i 1 — oo,
1

As an easy consequence of ITlder’s inequality we get the
Lemma, If 1<r, <r<r < oo and ¢ =0, then

¢ ol < max [6o o, o1 ), ]
for all » e K".

2. A generalization of Khintchine’s inequality, Let B} denote the
collection of all vectors ¢ = (g;) such that g,e{—1,0, +1} and 5’ le;l = k.
Put N := card (B}) = ( ) We now state a generalization of

KHINTCHINE’S INEQUALITY. If 7 = 2m- with m = 1,2, ..., then there

€xists a constant ¢, not depending on n = 1 12, and k=1,...,n such
that
- 1r M2 LAY
7 3 e, o] < 6 max [(~) el | ~) umn,]
— " \n
iy

for all 2 e K.
Proof. In order to check the desived estimate we nced some pre-
liminary considerations.

Let ( 1y +.+y 41) be & multi- mdct having ditferent coordinates such that
Jeefl, ..., w} Then

\7 ¢ &n —
o _}_, glo. gl =0
if at least one of the exponents tpe{l,2,..} is 0dd. On the other hand,
it follows that

N\ . N e (n—h\ AU
@) Dl g =9 (k_h)-\\,N(_.) ,

1 IL n

where s;e{1,2,...} and h =1,...,k
Let J; denote the set of all multi-indices (j,, ..., 7,) described above.

Furthermore, let S be the set of all (s,, ... ;) with s.e{1,2,...} and
1

Y 85 = m. Pub hy:= min(k, m). Then, for every real vector z e K” we
< °p 0 ’ 7 s

¢ .

4 — Studia Mathematica 61.2
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get
n n
ZKL 8>]2m:2}.. 251 l::hmz 11"‘8i2m
E" i=1 tgm=1 L‘” )
T '
= Z Vo (amt 2 g g N, T
- L (251, (28)! ! 2 o
sy 7 e
il (‘)/y”)l I h
< ’ L ipl261 2 N =) .
< ) Dt ey - el

Now, by the precedinw lemma, it follows that

Z,m, 70 1/2 k 1/2m “12m
. 1 mo~ NN R AR — M3 — ¥ — @ .
N- 5’1<a ol ‘Z AT )!mx[(%) ”v’”z:(n)‘ ol

h= S AN

This yie]ds the desired estimate, since

hg

yZ 291 e 2s,'"

h=1 Sm

< h"l)m "é 4’)’»27”’.

The complex case can be derived from the 1eal one in the usual way.

So, the assertion is proved.

Remark 1. Another proof has been given by the first named author

in [2] @
Remark 2. It seems very likely that the above inequality remaing

true for all exponents » > 2.

Remark 3. The classical estimate which is known as Khintchine’s
inequality appears in the case where & = n.

Remark 4. A famous theorem of . R. Rosenthal [57] yields another
gencralization of Khintchine’s inequality which can also be unsed to prove
the following results, of. [4].

3. An operator in Minkowski spaces. In the sequel 7,(E7}) denotes
the Banach spaces of all sealar families y = (5,) equipped with the norm

Il =13, inal}"".

Then Az = ({x, ¢>) defines an operator 4 from I? into L. (E}).

icm
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LeMMA 1. If 2< u << 7 < oo, then

A .
1A T, (B < o, N (%) macx [ i1 17,

Here the constant ¢, does not depend on m =1,2,... ond % = 1,...,n

Proof. Choose a natural number m with » < 7, = 2m. Then there
are 0 and w, such that
1fr =(1—06)ro+6/2 and 1ju = (1—0)u,--6/2.

The preceding generalization of Khintchine’s inequality yields

/7y

k
M2 B2 T, (B < 6, N0 (;;) maix [BHE gt 17,

In particular, we have

k 1/2
l4: BBl (BN < e, N2 (;) , Where ¢, =1.

Therefore, the assertion follows from )
4 Bt (B < A Ty~ (BRI A BTy (B
2. Ifi1<r<u<?2

LEMMA 2, then

1/ae
4 Tl (BY) < N (ﬁ) .
n

Proof. Choose ¢ and 7, such that
1w =1 —0)/2406/1 and 1fr =
It follows from

(1 —0)fry+0/1,

1/2
s Bl (E;:)n<zv”z(f;)

and
T2 1o (BR) =1, (BRI < Nt
that

T \Y2
4 Bl (B < No (5) .

Sinee we obviously have
k
I < ()
the assertion is implied by

I4: Bt (BRI < A - (Bl B, (B
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4. The limit orders of P, and £,.
ProrosITION 1. If 2 < u,v <7< oo, then

: —1/r)(Lfo—1fr
A(Pr,u',v)ég’:=%+ (A 1//2751//: ")

Proof. If fis defined by 1 /v = (L —0)/r +0/2, then o' = (1 —0)/r +0/u.
Sinee we have

P (It 10y I DB P (T 12-5T)) << e

and
P(I: 110 << e T =THP (T —13) < nH

an interpolation theorem of B. Caxl [1] yields
PI: Iy < PL(I: zzz,->1¢')‘—01>,.(1: =1 < n?.
PROPOSITION 2. If 2 < u,v < ¥ < oo, then

_ (12-1ju)(Lfv—1/r)
h 12 —1jr

ML, u,v)< 0

Proot. We consider 4 e&(}, 1,(B})) and B e (1}, 1. (&})) defined
by @->({%, ¢>). Lemmas 1 and 2 imply

! Jo Y7 . 1
hd: Bl (B0 < e, NV (E) max [EH-HrpHr=ike 5

and
IB: sl (BN < NV (;ﬂ;)l/u .
Using
| S Y
EL‘?: B for ¢ =3,

we get the commutative diagram

2*(E1
—
N\,
A B!
I(ER)

Therefore,

% r—1jv
L(I: ' <e, (;L—) max [ rplir=u 7,
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Ii, in particular, % is the greatest integer not excecding g UniL2=1/)
then it follows thfbﬁ

L (I L~ < dn®

Here ¢) denotes some constant not depending onn =1, 2,

Let P denote the ideal of all operators whose dmls are absolutely
r-summing.

ProrosirioN 8. If 1 u, v, w < o0 and 1 < ¥ < co, {hen
1 AUPEN, w, w) + ALy 1, 0) + AP, 0, ).

Proof. By [8], 19.5.1, we have P,08, 0 P < %, where F denotes
the ideal of integral oper&tmb Now the asseltlon follows from [3], 14.4.6,
and A(I, w, w) = 1.

Tarornm. If 2 < u,» <7 < oo, then
AP, w',0) =0 and AL, w,v) =o0.
Proof. By Propositions 1 and 2 we have
(%) MP,u,0)<e and ML,u,v)<0
From [3], 22. 4. 11, we know that A(P,, v, v') < 1/v". Obviously
AP o ) = AMP,, u', v).
Therefore, :
1< APEN v u) +A(L,, w, ) F AP, v, 0') < g "ol =1,
This proves that identity holds in (x).
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