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A characterization of multiplicative linear functionals
in Banach algebras

by
8. KOWALSKI (Olsztyn) and Z. SLODKOWSKI (Warszawa)

Abstract. A characterization is given of multiplicative linear funectionals in
complex Banach algebras without the linearity assumption. .

1. Introduction. The following echaracterization of multiplicative
linear funetionals in complex Banach algebras, given independently by
Gleason and Kahane—Zelazko, is well known (cf. [1], [3], [B]):

1.1. TarorEM. Leét A be a complex Banach algebrs (not necessarily
unital and commutative). Let f: A — C be a linear selection from the spec-
trum, i.e. )

f(@)eo(x) for every z e A.

Then f is multiplicative.

In this note we weaken the assumptions of this theorem in the follow-
ing way:

1.2, TusorEM. Let A be a compler Banach algebra (not necessarily
commutative and unital). Let f: A — C satisfy

(1.1) 7(0) =0, |
(1.2) f@)~f(y) e c(w—y) for every m,yed.

Then f is multiplicative and linear.

‘We have found this theorem trying to weaken an assumption of the
spectral mapping theorem of {6]. This application is contained in Section 4
of the present paper. Theorem 1.2 is proved in Section 2 ; Section 3 contains
a proof of an auxiliary lemma.

2. Proof of the main theorem.

DrrIiNITION. Let X be a complex linear space. We say that a map
@: X — C is complex (real) linear (shortly C-linear or R-linear) if it is
additive and homogeneous with respect to complex (real) scalars.

2.1. LeMMA. Let A be a complex Banach algebra and let ¢ be an R-linear
selection from the spectrum. Then @ is C-linear.
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Proof. We have
(6" w) € ¢ o (6" 0) = o(w)
for every r € R, x € A. Since ¢ i3 B-linear,

2@ —ipli) | e @) +iplin)

2 2 !

ir

dpo"a) =

go for a fixed 2 € 4 the set

Iy, = {"p(e™"2): r e k)
is a circle contained in o(») with centre %(q)(m) ——@'(p(fim)). It is eagy to
verify that the numbers Reg(s)-iIm(—ip(iz)) and Re (—ip(im)) +
+iIme(x) are in I', and 80 in ¢(»). Thus the functionals
@1(#) = Reg(w)+iIm (—ip(iz)) = Rep(v) —iRep (i),
@2(%) = Re{ —ip(in)) +iIme (@) = Ime(iz) +iIoe()

are gelections from the spectrum. Moreover, from

(2.1)

'Plc(iw) = 1:‘plc(m)! k= 17 2!

they are C-linear. By the Gleason—Kahane-Zelazko theorem they are
multiplicative on 4. We ghall show that ¢, = @;. Otherwise we would
have, for a certain a € 4,

(2.2) pi(a) =1, @y(a) = 0.

Denote h{z) = ei™* —1. The function % operates in every Banach algebra,
(not necessarily unital). By formulag (2.1) it follows that

9 (h(a)) = Rog(h(a))+iTmp(h(a)) = Reg, ((a)) +iTmp, (h(a))
E = Rel (py(a) -+ iTnvh (py(a)) = Reh(1)+iImh(0) -
= —leo(h(a) = h{o(a)) = HO) = ON{~1},
which is impossible. Ha.viné @1 = @y, We geo by formulas (2.1) that
Reg(s) = Re(—ip(in)) Ime(®) = Im(—ip (i),

‘which implies @(2) = —ip(ix) and ¢ is C-linear. m

In the proof of the theorem we uge an extension of Rademacher’s
theorem on differentiation of Lipschitz functions; Definition 2.2 and
Theorem 2.3 were given by P. Mankiewicz [4].

Let @ be the Hilbert cube, i.e.

@ =[]r-2%2

and let u denote the natural product measure on Q.

and
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2.2. DEFINITION. A subset Z of a separable Fréchet space X is a zero
set if for every affine continuous mapping j: @ — X with linearly dense
image we have

pli™(2) =o.

We say that a mapping in a Fréchet space has a real differential at a point
if it has a Gateaux differential with respect to real sealars which, in
addition, is continuous.

2.3. TusoreM. If f: X — C is o Lipschitz mapping defined in a separ-
able Fréchet space, then it has real differentials ewcept for some wzero sei.

In the proof of Theorem 1.2 we also meed the following criterion
for a Lipschitz function to be holomorphic:

2.4. LevmA. Let X be a separable, complex Fréchet space, and let
f: U~ C be a locally Lipschitz mapping defined in its open subset. Assume
that it ‘has a C-linear differential at every point except for some zero set.
Then f is holomorphic on U.

The proof of this lemma is postponed till Section 3.

Proof of Theorem 1.2. (i) First we assume that A4 is separable.
Suppose that f has a real differential at a point & € A. Then

fla+ra)—f(a) _ ola+ro—a) _
r ¥

ow)y reR,r#0,wecd
and

(Di)g(2) =

GRS (U

Thus the differential is an R-linear selection from the spectrum and by
Lemma 2.1 it is C-linear. On the other hand,

If (@) —fW)l € lo(@—y)| < e —yl,

i.e. f iy Lipschitz. By Theorem 2.3, f has real differentials except some

zero set (here we use the separability assumption) and we have just proved

that all these differentialy are C-linear. Thus f fulfils the conditions of

Lemma 2.4, which in turn implies that f is holomorphic in 4, i.e. entire.
For a, b e A the function f, , : € — C defined by the formula

fap(2) = flaz+b)
i Lipschitz and entire, hence it is affine, i.e.
Fap(®) = 2lfop (1) —Fap(0)]+fop(0),
flaz=+b) = e[f(a+b) —f(b)]+F(b).

ze0,
(2.3)
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. Putting b = 0 in (2.3), we obtain
(2.4) flag) = 2f (a),

because f(0) = 0 by assumption (1.1). :
Now put in (2.3) @ = }(¢c—d), b = d and z = 2. Then we havo

F(0) = f(2a+b) = 2[f(a+b)—f(B)]+f(b) = 2[f(k(c+a) —f(@)] +f(d)

and
(2.5) f(¥(o+a) = 1f(0)+£/(d).

Relations (2.4) and (2.5) mean. that f is a C-linear selection from the spec-
trum; henee, by the Gleason-Kahane-Zelazko theorem, f is multiplicative
and linear. .

(ii) Now we consider the general case. Let ay, a, € 4. The function f
of Theorem 1.2 restricted to subalgebra [a,, a,] of A generated by a,
and g, satisfies conditions (1.1), (1.2). As the subalgebra [a,, a,] is sep-
arable and f llag,ag) 18 multiplicative and linear by step (i), f is multi-
plicative linear in the whole of 4, because a,, a, were chogen arbitrarily. =m

3. Proof of Lemma 2.4. We begin this section with the lemma
relating a partial derivative of a Lipschitz function in the sense of distri-
bution theory to the limit of the difference quotient. The lemma seems to
belong to the so called mathematical folklore, but as we cannot point to
reference, we shall prove it for completeness.

3.1, LEMMA. Let F: U—~R be a locally Lipschitz function defined
in an open subset of C. Let .

(@, 1): =lim L@ T Y =@, 9)
’ ’ h—0 h

(this limit exists a.e. by Rademacher’s theorem). Then the partial derivative 8|0z
of the disiribution represented by f is the distribution represented by the func-
tion g.

Proof. If p e L}, (U, dudy), we denote by [p] the distribution rep-
0
resented by p. In order to prove that —8}_[ f1=1[g] it suffices to show that

for every smooth function ¢ with compact Support contained in U (i.e.
¢ € C02(U)) we have

[[ s vo@ vavay = - [ [ f0,0) - o, pyasay.

For the proof of this equality put

p@+h,y)—p@=,y)
h H

(4pp) (2, y) = B #0,
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for any function p on U. 4,p is well defined on some subdomain of U
depending on k. For a given ¢ € 02 (U) and sufficiently small ¢ > 0 all
functions 4,f, 4,9; |h| < & are defined on some compact set K satistying
in addition

IntK o suppdye, |k < e.
RacU

(We omit the proof of the existence of K.) We have
[ () @, v)p(@, y)dedy = — [ [f@, y)(4_.9)(=,y)dody.

The functions f and ¢ are locally Lipschitz; hence the families

(4 S) (2, Yo (=, y),

are uniformly bounded on the compact K for sufficiently small s (we
omit the details of the proof). By the Liebesgue theorem we may pass
to the limit (A — 0) in integrals (3.1) thus obtaining .

(3.1)

(dore) (@, 9)f(@,9), |hl<e

[[ @ no@vway = — [ [ 1o, 5) oo 9)

(because A,f—+ g pointwise a.e. by the Rademacher theorem). m

Using this lemma, we are now able to prove Lemma 2.4 in the special
case of X = C.

3.2. LeMMA. If f: U— C 4s a locally Lipschitz function defined on
an open subset of C and it has a C-linear differential a.e. with respect to the
Lebesgue measure, then it is homolorphic in U.

Proof. It is easy to see that any function f: U - C has a C-linear
differential at a point if and only if it has an R-linear differential at that
point and partial derivatives fulfil the Cauchy-Riemann equations.
Denote % : = Ref, v:= Imf, 4, v: U— R. By the assumptions

I u o

5_7/ == ——% a.e.

& oy’
The functions » and v are locally Lipschitz; hence it follows from the
preceding lemma that

o)) - 2] -5
ow \ o y\oy - ) ow\| 0w oy \L oy
o J v 17 o o @ o 0
= | —— —_—] - =— = — = 0.
8x[6y]+ 8y[ 850] 5 By 1T oy o
The function » fulfils the conditions of Weyl’s lemma (Herve [2], Corollary
p. 3), i.e. it is locally L* and its distributional Laplacian vanishes; hence

(3.2)

Alu] =
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by this lemma % is equal a.e. to a smooth harmonie function. As w is con-
tinuous, it is smooth and harmonie itself. In a similar way o has these
properties, and go, by the Cauchy-Riemann equations (3.2), f = u-iv is
holomorphic.

For the proof of Lemma 2.4 we also need a property of zero sety
formulated in the following lemma (for convenience we write these zero
sets as a difference UNW):

3.3. LeMMA. Let W < U < X where X is a complew, separable Fréchet
space and let UNW be o zero set.

Then for every b in X there is a dense subset of U such that for its every
element a the set

(3.3) {#el: a+2bec UNW}
has plane Lebesgue measure zero.

Proof. Let b be an arbitrary point of X and « an arbitrary point
of U. It is sufficient to show that u lies in the closure of the set of those a’s
which fulfil condition (3.3).

Let (¢;)2, be a bounded sequence which is linearly independent
and linearly dense in X with respect to real scalars and satisfies

6y =b, ¢ =1b.

Put

.7'11((5'?{)?11) = U+ K26, + K@y 05+ 2 ;64
=3
for every ()i, €@ and K > 0.
The mapping jz is well defined on the Hilbert cube @, affine and
continuous, and its image is linearly dense in X (with respect to real scalars).
Hence u(jz'(TU\W)) = 0 (where u is the natural product measure
on @) because UN\W is a zero set (cf. Def. 2.2).

Let g = (@;);Z, € Q. Denote ¢’ = (s, @, ...) and write ¢ = (2, #,, ')

Similarly, we write @ = [—3%,31x [ —%, 1% @ and we denote by u' the
natural produet measure on Q’.

Notice that, for ¢’ €@, Jz((0, 0, ¢')) does not depend on K, and so
we write j(q') instead of jx(0, 0, ¢'). By the Fubini theorem

0 = u(jZ(UNW)) =‘2[(dq’)l{(w1,wz)6[—%:%]><[—£-.,£l:

-+ Ew b+ Euyib+§(q') € UNWY.
Hence the set
Ag = {¢'s H@i, 2) e[—3, 3% [}, 41:

w+Ew b+ Koyib+§(g') e UNW}H = 0}
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has measure 1 in @'. Put A = (| Ax. Observe that for every ¢’ in A
E=1

(3.4) {¢eC: u+2b+j(g) e UNW} hag plane Lebesgue measure zero.

On the other hand, the set 4 is of full measure in @'; hence there is a se-
quence g, — 0, and the sequence @, := w+j (gn) converges to u. It follows
from (3.4) that a,’s have property (3.3). m

Proof of Lemma 2.4. Let W denote the set of those we U for
which (Df), exists and is C-linear. We apply Lemma 3.3 to the set W
and. the set U (by the assumption of Lemma 2.4 UN\W is a zero set).
Let a, b satisfy condition (3.3). It means that the function f, 5: {z: a-+bz
e U}—C, where f,,(2) := f(a-+eb), hag a C-linear differential a.e. In
addition, f,; is locally Lipschitz (because f is such); hence by Lemma 3.2
it is holomorphic. In order to complete the proof it is sufficient to show
that for every a € U, b € X, there exists an ¢ > 0 such that f, ; is holomor-
phie on {¢: 2| < &}. By the preceding lemma there exigts a sequence
a, — a such that a,, b satisfy condition (3.3) and, by the above congide-
ration, fq . is homolorphic on {e: a,+2be U}

Since f i locally Lipschitz, it is bounded on a neighbourhood of a;
hence there exist an ¢ > 0 and an integer N such that

a,+2beU for l|eg|<e, n>N

and f,, » are uniformly bounded on [2| < e.
As f, » converges pointwise to f,,, the latter is holomorphic. m

4. An application. As we have mentioned in the introduction, the main
result of the paper may be applied to the strengthening of the spectral
mapping theorem of [6] (Thm 3.3). For the convenience of the reader
we recall this theorem here, but we formulate it in the newer terms of [8].
Tirst we recall some necessary definitions. They are all taken from [8].

Let A be & complex unital Banach algebra. The family of all non-void
subsets of A consisting of pairwise commuting elements will be designated
by ¢(4). The elements of ¢(4) will be denoted by zy, 2y etc. (g = {Bo}aen)-

Suppose that to each family #yeo(4) there corresponds a non-void
compact subget of C¥ (C* = ”[ C,, where C, = C)

ag
g —> & (zg) = C¥.
We recall some axioms of [8] for the map &,

0 tlay) = [ ] olwa)

as

where sy = {#,}ueq € ¢(4), and o(z,) is the usual spectrum of an element
2,6 A.
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(ITT) The spectral mapping property of 6:

3‘(2’%(%[)) = Py & (®y),
here 2y € 0(4) and py is a system of complex polynomials in indetermi-
nate t,, or a polynomial map. :

DrriNITION. A map & i3 called a subspectrum on A if axioms (I) and
(ITI) are satisfied. ¢

The following two axioms are consequences of (IIT).

Suppose first that B < A and pub py(t,) = tg for all fe®B. Axiom
(ITI) then implies

(IV) 0 (2g) = nd (wy),
where @y € ¢(4), B is a non-void subget of U, and = is the projection of
O onto C* given by m(zy) = 2y (fy = (2u)uetc € c*).
Put B := U and p,(t,) = t,+ A, Where 4, € C. Then
(V) G (Dot Aoc) = G (wg) -+ Ay,
where oy €0(d), dy = (A,)uen € CY,

P+ Aye = {B,+ 2,6} oeqr,
¢ denotes the unit of A.

DEFINITION. A speciroid on A is a map & satisfying axioms (I), (IV)
and (V).

4.1. TerOREM. Let A be d complex Banach algebra with wunit element e.

Suppose that & is-a spectroid on A. Then the following conditions are equiv-
alent

(if) For any three mutually commuting elements o, ,, @, € A,
G (@1 @3y @) < wal,mz,msl(“nwzy %)

where (@, ®,, 2] is the smallest unital Banach subalgebra of A containing

the elements w,, vy, ©, and Olay,znmq) (D) donoles the wusuwal joint spee-
trum of wy eo([w,, @y, 23]). '

(iv) & 4s a subspectrum on A.

It is natural (though not very important) to ask whether condition
(ii) might be replaced by the following weaker one:

(i)’ For any two commuting elements Y1, Yz €4,

F(Y1y Yo) < Opyu (Ws U2).

The answer to this question is “yes”. We will show it by using the
main theorem.

Remark. From the proof of Theorem 4.1 (cf. [6], § 3) it easily follows
that each of the conditions (ii) and (iv) ig equivalent to the following one:
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(¥*) TFor each family »eo(4),
G{wy) < gy (Par) -

Proof. Only the implication (ii)’" = (ii) needs proof. Let & satisfy (ii)"
and let (¢, ¢y, 3) €5 (@4, @5, ;). Since & has the projection property (IV)

3 r
there -exists a map

0: 4y~ C, where Ay = [, @,, 2,]
such. that

ced(d) (4yec(d))

e(@) =0, ¢=1,2,3.
Let 44,95 € Ay. Then

(¢(¥a)s ¢(2)) €5 (Was ¥a) = Oy (U1, Y1)
From this it follows that there exists a multiplicative linear functional [
in [y;,y,] such that
o) =ely), i=1,2.
Thus

(4.1) 0(y:) —c(¥s) = (Y1—ys) €0(y2—y,) for any g, y, € 4,.
In addition
(¢(0), ¢(0)) € 05,y(0, 0) = 06, (0, 0) = (0, 0),
which means that
(4.2) ¢(0) = 0.

Conditions (4.1) and (4.2) imply, by Theorem 1.2, that ¢ is a multiph-
cative linear functional in 4, and thus (¢, ¢,, ¢;) € 04, (B1 Tgy @) W
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