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Dentability and finite-dimensional decompositions

by
J. BOURGAIN* (Brussel)

Abstract. It is shown that a Bauach space possesses the Radon-Nikodym
property if and only if every subspace with a finite-dimensional Schauder decompo-
sition has the Radon-Nikodym property.

Introduction. Let X, | | be a Banach space with dual X*. It
#eX and >0, then B(z,s) denotes the open ball with midpoint =
and radius e. For sets 4 = X, let ¢(4) be the convex hull and ¢(4) the
closed convex hull of A. We will say that A is dentable if for all € > 0 there
exists x e A satisfying = ¢ E(A\B(m, s)). The Banach space X is said to
be dentable if every nonempty, bounded subset of X is dentable. We say
that X has the Radon-Nikodym property (RNP) provided for cvery
measure space (£2, X, u) with u(R) < co and every y-continuous measure
F: 2+X of finite variation, there exists a Bochner integrable funection
f: QX such that F(E) = [fdu for every B eX. The RNP of X

b

is equivalent to the fact that any uniformly bounded X-valued
martingale on a finite measure space is convergent a.e. (ef. [5], [21]).
It is known that X is a dentable Banach space if and only if X hag
RNP. For the bistory of the equivalence between those two properties,
I refer the reader to the J. Diestel and J. J. Uhl survey paper [6].
Recall that (P,, M,), is a finite-dimensional Schauder decomposition
for the Banach space & iff each P, is a continuous linear projection of &
onto the finite-dimensional M,, P,P,=0 if n = m and x =- > P, (x)

n

n
for cach 2 e%. The partial sum operators 8, are defined by &, = 3 P;.
1

1=

Since (8,,), is pointwise convergent to the identity operator, it is uniformly

bounded. We denote by G(M,;n) the number sup ||S,], which is called
n

the Grynblum constant of the decomposition. Our main result is the fol-
lowing:

THROREM 1. Assume X without RNP. Then for each 1> 1 there exist
a subspace & of X, a uniformly bounded Z-valued martingale (&), on [0, 1]
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and a sequence (8,: ”}f =), of finite rank projections, such that:
(1) = mthn ), for each x eZ,

( “Snll

( ) AS'm n "’SnSm == Sm 7f “l
( ) S Enl—l == Sn»

(5

Y (&), is nowhere convergent.

Theorem 1 if of course a refinement of the existence of non-conver-
gent martingales in Banach spaces without RNT. Various authors pointed
out that the RNDP is separably determined (cf. [20], [10], [18], [15]).
Theorem 1 yields the following improvement.

Turorem 2. If X fails RNP, then for every A > 1 there exists o sub-
space X'y of X without RNP and with a finite-dimensional Schauder decom-
position with Grynblum constant at most A

Indeed, & fails RNP. If we take P, = 8, P
('PnJ P ‘%h)
G(P,Z;n) <

Thoomm 2 is related to the following question :

ProBLEM 1. If every subspace of X possessing o Schauder basis pos-
sesses the RNP, then need X also possess it?

To the best of my knowledge, this problem is still open.

n+l == bn-i 1 Sn; 1/11011
1S a finite-dimensional %chmudm decomposition of Z with

Preliminary geometric lemmas. In this section, ¢ will be a fixed
nonempty, bounded, closed and convex subset of X.

‘We first introduce some terminology.

DerFinimion 1, If 2 e X*, define M (s*, 0) = sups™(0). For each
a>0, let S(*, a,0) = {rel;a*(@> Mz*, 0)~a} and S@",a, 0)
={weC;a" (@) > M*, 0)—a}. We will call S(z*, a,C) a slice and
S’(w* ,a, 0) an open slice. If § is a slice, § will denote the corresponding
open slice.

The reader will easily verify the following property.

Levva 1. If S(#*, a, O) is a slice, then there emist &> 0 and f> 0
such that |o* —y*| < e implies S(y*, 8, 0) < S, a, 0).

DerFiniTioN 2. Let 8 = S(z* «, 0) be a slice. Define

V() = {we0; Iy ea® with o*(@) = M(y", 0) > M(y", ON&)}.
If further ne N, ], .. let
V(8,a%,...,25,8) = {ze 0;Ty* ea*, I > 0 with y*(w) = M(y*, 0),
S(y* B,0) < 8 and O(wk[ 8" 8,0) <e (L<E< )
(“0o” means oscillation).

S #yeX® and £>0,
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Using Lemma 1 and the Bishop-Phelps density result on the sup-
porting functionals [1], we obtain 1mmed1a.tely

LeMMA 2. If 8 is a slice, then V (8) =

DrFINITION 3. Suppose § = S(x*, a, O) a slice, Let 0 be the w*-clos-
ure of € in X* and ex(() the extreme pomts of §. Define

B(8) = @™ e ex(0); o™ (2%) > M (%, O%) —a}.

It follows from the Krein-Milman theorem that E(8) is nonempty.

Leva 3. If 8 ds a slice, o7, ..., 2 € X* and & > 0, then there is a slice
T such that:

1) T <8,

@) 0@ T) <& (L<Ek<n).

Hence we have

Levua 4. If 8 is a slice, o, ...

- wnv g) # 0.

LevmA 5. If S is a slice, z e V(S) and D o closed convex subset of C
with @ ¢ D, then z ¢ c( C’\S yuD).

Proof. Take 'y e X* satisfying o*(@) = M(y*, C) > M(y*, O\S).
Suppose a:eo((G’\S)uD) then z = hﬁn( 2Ynt (L —24)2,), where (y,),

y @y € X and &> 0, then V (8, o7, ...

is & sequence in O\S, (#n), @ sequence in D and (4,), & sequence in [0, 1].
Hence M (y*, 0) < Lim(2, M (3%, ONS)+(1 —2,) M (y*, 0)) showing that

n
li}ln A, = 0. It follows that z= limz, and thus @ e D, which is a contra- -
w

diction, i

LemMa 6. Let 8 be a slice, z € V(8), ot ..
s ed(V(8,al,..., 2}, &)).

Proof. If w ¢o(V(8,a7,...,a}, &), we also have that ¢E(((J\;§')u
UV(8, ), ..., 2, &), by Lemma 5. By the separation theorem, there
exists a slice 7 satisfying T = § and TV (S, o, .o, 2y 8) =@, But by
Lemma 4, V(T a1, ..., @, &) is a nonempty subset of V' (8, #}, ..., o%, &),
a contradiction.

‘We now pass to the key lemma of this paper.

LumumA 7. Let 8 be a slice and U a weak open set such that Uno(V(S))
# . Then there exist n & N, slices 8y, ..., 8, and positive numbers A, ..., A,
satisfying .

(1) 'Slk < Si

(2) Z =1,

Zlk (8y) = Tne(V(8)).

. @ € X* and &> 0. Then
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Proof. If » € UndV(S)), then there is a w-neighborhood N (w, a7, ...

.., @, 8) of & contained in U. Since, by Lemma 6, V(S) < B(V(8, af, ...
., @y, 8/2)), we also have that « eq(V(8,a%, ..., 4y, 6/2)). Of course
we can take Jry| <1 (1< ¢<p). Let thenne N, 001, ey @, € V{8, a7, ...
.y @, 8/2) and Ay, ..., 4, Dositive numbers, with %’ My = 1 and |z —%‘ pn
< 8/2. For each k =1,...,n a slice § is obtained so that @ e 8y, S
<& and o(gl|8) < 8/2 (L<g<p). Obviously Y 4,V (8 < ¢(V(S).
For every ¢ =1,...,p, we find that kb

B3 i) = 30080 © 3 hfol (o) +1-012, 812(]
— a3 3 ium) +1— 812, 8L < (o) +1 =9, oL,

implying
‘ ZZ]\:SI.:CN<W"WT7 7mp7 6)
I

Hence Y 2 V(S,) = Une(V(8)).
i

Lemma 7 has the following immediate corollary, which will be used
later.

LEMMA 8. Let 8 be a slice, ¢ >0 and U a w-open set such that Un
ma(V(S)) + @ and diam(Unc(V(S))) < &. Then there ewist n e N, slices
81y ..., 8, and positive numbers 2y, ..., A, satisfying 8, = 8 (1< k< n),
Zlh —1 and diam Zlk (8, < e

Banach spaces with property ().

ProPOSITION 1. For a Banach space X, the following properties are
equivalent.

(1) For each nonempty, bounded, closed and convex subset A of X,
the identity map on A has a w — | || point of continuity.

(2) For each nonempty, bounded and convex subset A of X and for
each ¢> 0, there ewists o w-open set U satisfying Und +#@ and
diam(UnA) < e

(8) For e¢ach nonempty, bounded and cowvex subset A of X and for
each & > 0, there ewists a w-open set U such that Und + @ and UnA has
an’ e-net.

Proof. The implications (1) =(2) and (2)=(3) are clear. Agsume (3),
let 4 be nonempty, bounded, convex and ¢ > 0. We obtain a w-open set
U and a finite number of balls (B;),<;«; With radius /2 so that Und # @

1

and Und < |J B;. If me UnA, then by the separation theorem we
i=1

" ‘obtain a w-open set V with 2eV, V< U and VB, =@ whenever
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z¢ B; (1<i<d). Therefore Vnd #@ and diam(VnA4)<es Hence
(2) holds. If we have (2) and 4 is nonempty, bounded, closed and convex,
then by repeating application of (2) a sequence (U,), of convex w-open
sets is obtained veritying U,,, < U,, U,n4 #@and diam(U,n4) < 1/n.
It follows that (M) (U, n4) consists of a unique point of A which is cleaxrly

a w—| || continuity point.

DerNITION 4. If X satisfies (1),
say that X has property ().
Clearly the following implication is true:

ProprosITION 2. If X has RNP, then X has property (x).

The converse is open. Thus

ProBLEM 2. Does property (=) imply dentability ?

Property (*) plays an important role in the proof of Theorem 1. We
need the following lemmas:

Lemva 9. If X fails property (), then there exist a nonempty, bounded
subset of of X and e > 0 so that for each z e o/ and each subspace B of X
with codimB < oo the condition diam(sf n(x+E)) > ¢ is verified.

Proof. Let A be a nonempty, bounded and eonvex subset of X
and s > 0 failing (2) of Proposition 1. We will show that the open convex
set o = A +B(0,1) satisfies the conclusion of the lemma.

More precisely, we prove by induction on n thatif ¢ € &, B is a subspace
of X with codimE < » and N a w-neighborhood of #, then diam(.s n(z+
+E)nN) > e

In the cage n = 0, this is almost obvious. Assume now the statement
coneet for » and let codlmE =mn+1. Take v € o and N = N(z, 2}, ...

. p, 6) with ||ac <1 (1< ¢<p)a wneighborhood of x. It is clearly
enourrh to obtain that diﬂ,m(dn(m—i—E)mN) >e—x, where 0 <x<§
is arbitrarily chosen. Take o> 0 with B(z, ¢) = &/. There exists a sub-
space F of X and z* € X* with codimF = n, |jz*| = 1 and # = FnKerz*.
Obviously #* is not zero on F and we obtain y > 0 such that m*(FnB(O y 0))
o[ —y,y]. Take ¢ = min(xy/2D, §/2), where D = diam & and let
0 = N(x, #},..., @5, ¥*, J). Since by induction hypothesis diam(sn (z-+
+I')n0) = ¢, we only have to show that if y e #n(w+TF)n0, then
dist{y, o (e+ ) r\N) < %/2. Take h e FnB(0, p) such that z*(h) =y
or a#*(h) = —y according to whether a*(x)>=a*(y) or a*(x) < a*(y).
: o* (2) —@*(y) )

Then 4 = o) —a* ) Lo () belongs to [0,:¢/y]. If 2 = (1—-Ay+
+A(x4+1n), then ze o and g—z = (1—-A)(y—wx)+ihel. We verily
that z*(z) = m*(m) and thus zexz-+H. Since |y —zl<fyD < %2, z e
N(x,z},...,2;, 0)and thus ze o/ n (z+ B)nN. The1efo1edlst(y,&z‘n(w+E)

) ]17
AN} < %/2, which completes the proof.

(2), (3) of Proposition 1, we will
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LemMA 10. Take sf and ¢ as in Lemma 9. Then for every @ e of and
every subspace B of X with codimB < co we obtain x eE((.sz[\.B(m, 8))n
n(w+E)), whenever 6 < gf2.

Proof. If m¢6((ﬁ\B(m, 5))n(a;+17])) = D, there is #* € X* such
that a*(x) > M(2*, D). Let F = FnKerg*. Since dia,m(&fm(m-{—lf’))
2 ¢, there is a point y € &/ n(2+-I) with |g—y| > . Hence y € D, con-
tradicting Dn(z+F) = @.

Proof of the main theorem. Wo start with the following lemma.

Lmnvma 11, Let A> 1 and suppose there ewist a>> 0, an inereasing
sequence (%), of finite-dimensional subspaces of X and for each p a projection
Tyt Tpp1~>%y, @ finile subset 4, of &, and f, > 0, satisfying

(1) ” “ﬁp” < AJ

»
2) U 4, is bounded in X,

(3) Ij} 2 ed,, then there are vectors 2., ...,2, € A, so that ||z —z,|
> a,m,(2) =2 for each s =1,...,r and dist(z, ¢(2y, ..., 2,)) < B,

(4) ﬂ-—w‘;ﬁp<a/2. .

Then there ewist a subspace Z of X, a wwiformly bounded %-valued
martingale (&), on [0,1] and o sequence (8,: X—X), of finite rank pro-
Jections satisfying (1), (2), (3), (4), (B) of Theorem 1.

Proof. Take 2’ = | J %, Itisroutine to obtain for each p a projection

P
8, from 2 onto %, so that 18,1l < 2 and 8, = 70, 8p 41 Thus (1), (2), (3)
hold.

(3) allows us to construct for each p a finite field %, generated by
subintervals of [0, 1] and a 4%,-measurable map fp: [0,1]>4,,, so that

(1) Hp (1) = 1p1 (D] > @ wWhenever ¢e[0,1],

(2) Ty p+1r = Npy

(3) “171) —E[np—l ] ﬂp]”w < ﬂﬂ'

This construction is less or more standard and we omit the details.
The reader can find them in [9] or [B].

If we introduce inductively maps &, by taking £ = 7y and &,
= M1+ & — B0, %,], then (&,, 8,), is cearly a martingale. By
induction, it is easily seen that £, ranges in Zp and |E, — 1l < Byt
-oot By < . It follows that (£,), is uniformly bounded. Furthermore
Spbpsr = Rpp 1 = Mp+ &y —~ B | #y] = &, and &, (8) —~ & (Ol = iy, (8) —
Ny - pr _'"717”00 - ]|£p+1 _"71a+1Hoc >a—28>0.

Thus (&), is nowhere convergent, which completes the proof.

In the proof of the main theorem, two cases will be distinguished :

I. X fails property (x),

II. X has property (x) and fails RNP.

‘We start with the first one, whieh is also the easiest.
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LuvMA 12. Let sf and § satisfy the condition of Lemma 10. Let (s,),
be a sequence of positive numbers. Then for each p € N, we can define a fi-
nite subset A, of o and & subspace B, of X, satisfying the following proper-
ties:

(1) codim B, < oo (p € N),

(2) If wespan(d,,...,d,), then there exists x* e X* with

el < A+ey)a*@) (peN),

(3) dpy = LﬁAjiJrl, where A5,,nB(@,d) =@,45,, < s+E, and
ZE.

le*| =1, a*|EB,=0 and

dist{z, o{45,,)) <&, (p eN).

Proof. We proceed by induction on p eN.

(a) Let 4, = {x,}, where #, is an arbitrary point in 7. Consider
a finite subset &, of the unit sphere of X* such that if = e span(4,), then
there is @*e &, with || < (1+4¢&)2*(#). Take B, = [ Kers*.

w*eé’l
(b) Assume now A4, and E, obtained. Let z e 4, be fixed. Since
@ eE((&t\B(m, (S))n(m—l-Ep)), there is a finite subset A5,, of o so that
AZ,.nB(z,8) =0, A%, < o+ B, and dist(z, 6(4],,)) < &,. Define 4,,,
= {J 4%, ;. Again a finite subset &, of the unit sphere of X* can Dbe
wed
obtaillglecl such that if » espan(4,, ..., 4,,,), then ||| < (14 ¢, 1)a*(2)

for some @* € &y, Take By = [ Kera™
T efpi1
Clearly this completes the conStruction.
Proof of the theorem in case I Take 2>1 and let (s,), be

a sequence of positive numbers satisfying > &, <min(Ini, 6/2) and hence

ya
[T1+e) <2 Let 4, and B, be as in Lemma 12. For each p e N,

éaa.ke Z, = span(dy, ..., 4,), which is finite-dimensional. Clearly 4,.,
< A,+E, and thus &, =T+ (BynZp.1). Using (2), we see that ||z
< (14 &) v +yl whenever » € £, and y e B,nZ,.,. Therefore there exists
a projeetion m, of &, ., onto &, with |z, < 1+e¢,. If we take a =4 and
Bp = &, the conditions of Lemma 11 ave satisfied, finishing the proof.

We now pass to the case of a Banach space X with property (),
failing RNP. Let ¢ be a fixed, nonempty, bounded, closed and convex
subset of X, which is not dentable.

LEMMA 13. If 8 is a slice and &> 0, then there exists « slice T with
T<& and dist;(m, §B(8))<e if wel.

Proof.Let § = 8(z*, a, 0) and take

D = {w** € C; a** () < M (%, 0)—d}.

We remark] that ¢ = d e(B(S)) Ul)). Let d = diam{ and take T
— 8(x*, B, 0), where 0 < f<safd. If e, there is &1 é(B 8)), 43"
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€D and Ae[0,1] with @ = (1—2)a"+4*. But then M (a*, ¢)—p
L o' (@) = (L =A™ @) + A (") < M (a*, 0) —Aa, implying 1 < L/d

Henee |l —a(|l = Ao —al™| < g, proving the lemma.

Lmywma 1. There is o > 0 such that for ecvery slice 8, the set B(S) has
no -net,

Proof. This follows immediately from the lemma of Hulf and MO]‘J‘l%
[10] and Liemma 13

Lmvwa 15, Let we N, 8y,..., 8, slices, 2 ¢ X, ay,...,0, ¢ R with
Zlak 1 and e 0. Then there are slices Ty, ..., T, end &' ¢ X* with

fle*l == 1, so that
)y T, =8, Ik 7)
D) Af e e(V(T) (s

“ & - 2 Oy, ity,

<y, then

< () + Zakm*(m,‘,%r- z.

i

Proof. Let s = sup {|jo- ZGMJ,H,M eV(8,) A< n)} Take
eV(8,) (L< k<), such tlm,t Hw-]—Z weay)| = s —¢/2 and let o e X*

with o*]| = Landa* (z)+ ¥ a2 (e),) = o+ Z‘ 2,
k

| Poreachk =1,...,n
we define D, by taking .

[ at@) <o(@)—e2} it a0,

{& € O; 2* () = a* (1) +e g2y it a, <0,

By Lemma 5, we obtain a slice 7, so that Ty < 8, and T)nD, = @. To
verify condition (2), we can clearly replace c(V(Tk)) by V(T,). It now
Y V(T (1K k<), we get ‘

”w‘*‘lz' “1:?/7.:” S Hw‘i'zalcmkll

+ ) mar (g2 <o)t Y afar(y,) ef2)

D/c =

tef2 =ar(@)+ D' mt (o) +

X, ap=0

Eay, «.0 Eyapz0

! \! ¥ ) ! <

+ D aferw) —el2) +e2< ar () + Y agonlyy) e,
kyag=<0 13 )

what must be obtained.

LEMma 176 Let weN,S8,,...,8, slices and I a Jindte-dimensional
subspace of X. Then there are slzcos Ty ooy Ty and M >0 such that
Q) T = 8, A< k< 0,
VIf vel,mely (1<k<n) and a,eR LK<k n), thew

I+ 3 ol < Do+ 3 ay |-
k &
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Proof. Assume C in the unit ball of X. Using Lemma 14, we obtain
for each &k =1,...,n a point z}* e B(S,) such that B and =}*,..., 2%
are linearly independent. Thus there are elements (¥i)icre, i X* satis-
fying y5 18 =0 (1< k< n)and 2" (47) = &,; (L <k, 1< n). Take M > 0
such that [kl < (M —1)/dn (1< k< n). Clearly there ave slices T, ..., T,
sothat T, = 8, (1< k<< n)and [y) (@) — 8, < 1l2nifwe T (L <k, 1< n).

If now 2 e I], poeT) I<k<n) and g, e R (1 <k < n), it follows,

for each { ==1,...,n:
|
2| 3wt |5 (1= 5] =5 3

X k#l

and therefore
-
lloll < Hw 0,
2

completing the proof.

LevvA 17, Let meN, Sy, ..., 8, slices, B o finite-dimensional
subspace of X and ¢ > 0. Then there ave slices T, ..., T, and & finite subset
& of X*, satisfying:

1) T = 8 A< k<),

( ) llw*|| =1 for each z*e &,

3) If x € B and ay, ..., a, € R, then there is some x* € & such that

”wJ— Zahmk l (L+¢) (w*(w -+ Z‘o&,‘,aa*(o:,c )

whenever @, € oV (T4,) (, <k << n).

Proof. Assume € in the unit ball of X. Let the slices 17,..., T},
and M > 0 satisfy the conditions of Lemma 16 applied to S,..., S,
and B. Take 6> 0 with (1 —55M)"' << 1+e Let (y;);; be a d-net in the
unit ball of B and ((a))i<pen)ies & 0-net in the unit ball of R™ with the
It-norm. By suceessive applications of Lemma 15, we obtain slices T4y, ..., T,
and a finite family & = (mﬁj)iel,ja, in the unit sphere of X*, satisfying
T.<T, (1<k<n) and :

”’J/H‘ _?7 “;TIH <)+ E af @y 4 () + 8,

%

| 2

. | l .BI—]-].E al
}‘}2%% < ]m—%-%ﬂk“‘k ’
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it myee(V(Ty) 1<k<n) and iel,jed.
We verify (3). Let thus # € B, a,, ..., ¢, € R and take

o =i+ > ol
k
By construction there is 4 € I and j € J so that
loz —y;ll < 6 and Z lo), — al] << &.
I
I ayee(V(T) (L< k< n), it follows:

o+ S sl < [ Jta 429
k k

< o7 (ol g+ ) afatylm) +38) <aly (o) + Y el () +5o0™
I

I

Since o7 = [zll+ Yl < Mz Y ), we obtain
k 13

H z+ Z 0y %y,
k

Therefore

w* g * . \
Sy () + Z o %55 () +50 M “"‘H‘ l, 0|
I I

(=58 ) 2+ 3 | <afy @)+ 3 wyaly(a)
k ke

and hence

o+ S

This completes the proof.

<@+s) (als @+ Y a0, (2).
I

Leyva 18. If & is a finite subset' of X* and &> 0, then there evists

& finite-dimensional subspace B of X and 6 > 0, such that:

If 2 € X and |o*(@)| < & for each a* ¢ &, then there is some y e I with
llyll < & and x*(x) = 2*(y) for all z* € &. .

Proof. *Assume a‘i = {®,..., #}. Obviously f: X—R", | |, given
by flz) = (af (»), ...,Amn(a:)) is an operator mapping X on some subspace
& of R", Let E be a finite-dimensional subspace of X satistying f(H) = 7.
By the open map principle we obtain > 0 such that f (BAB0, &)
> ZnB(0, d).

Let now & € X with |2*(#)] < 6 for each #* € 4. Then f(2) ¢ &' AR (0, §)
and therefore there is y € B with |ly|l < & and f(y) = f(x).

Lemma 19. Let ne N, fs'],; <oy 8, slices, B a finite-dimensional sub-
space of X and &> 0. Then there are slices Ty, ..., T, and a Sfindle-dimen-
sional subspace F of X, verifying the following properiies:

L) Tp = 8 A<k<<n),

(2) For each k =1, ..., n, let w € o(V(T})) and (z,,); @ finite number

Dentabilily and finile-dimensional decompositions 145

of poinds in Ty, Then for each k =1, ..., n, there are points (y;); in X,
satisfying:

A1) Yry—op e F A<k<n,d),

2) Wip—®pill <& (L<k<n,i),

(3) If weB,a,...,0,cR and (b ), ..., by )€ R, then

<+afo+ X am+ 3 3 bvi—a0 |-
k k1

H i+ Z [% |

Proof. Consider first slices T, ..., T, and a finite subset & of X*

_veritying (1), (2), (3) of Lemma 17. Next, take a finite-dimensional subspace

F of X and 6 > 0 satisfying the condition of Lemma 18. By Lemma 3,
there are slices T, ..., T, such that T, T; (L<k<n) and o(a*|Ty)
<8 (@¥ed, 1LKk<n). For each k=1,...,n, let m,eq(V (L) and
{@y,); & finite number of points in T}.

For each & =1, ..., % and 4, we have that (#*(z;—a;,)| < 6 when-
ever o* € 8.

Hence there is w,, € F with [l <& and o*(2, —2,;) = *(wy,;)
for every a* e & Take ¥ ; = @y ;+ Wy 1t remains to verify (3) of (2).

Let thus #eF, ay,...,a, € R and (b1 ;) ..y (by)i € B. Let 2*e &
be the functional in & associated to & and @, ..., @, by Lemma 16.

We obtain

Jo S

<(1+e) (@) + ) o (@)
k .

= @+ @+ Y wor @)+ Y 3 b Wi — )
k& ki

< (3+e) “““1“ Zakm1c+22blp,i(’ylc,i“”k) U ’
I3 k <

“This completes the proof.

LEMMA 20. Let (g,), be o sequence of positive numbers. Then, for each
p € N, we can define a finite subset 2, of N?, a finite subset A, of X, finite-
dimensional subspaces B, F, of X and for each weQ, a A,>0 and
a slice 8, of C, such that the following conditions hold:

(1) @, is the projection of Q2,., on the p first coordinates (p € N),
(2) -A-]J < Ep (p EAT),

(3) B, = By, Fyy < By (p e N),

('1') Sw,i < Sm (p € N’ (0), 7:) € Qp-}-l)7

(5) Z doy =1 (peN,we ),

(6) &’here is @, € Ay ne(V(8,) so that

D20V (80g) © B(Tay epa) (P EN, 0 €9y),
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(7) By, the slices (8y)uen, and Fy, satisfy condition (2) of Lemma 19,
with ¢ = ¢, (p € N),

(8) 8,nB(4,,:) =0 (peN,we Q).

Proof. We proceed inductively on p € N.

(a) Take @, = {1}, 4, =@, B, = {0} and 1, = 1. Let §, be a slice
and F,; a finite-dimensional subspace of X satisfying Lemma 19 applied
to 0, {0}, &.

(b) Assume now 2,, 4, I, I, and for cach w € 2, 1, 8, obtained.
Let o e 2, De fixed. Lemma 8 and the fact that X is (%) yields us some
n, € N, slices (L )1crcn, 80 positive nwmbers (4, ;). tm,, SUch that
To; <8, (L<i<n,), 2 Ao =1 and diam 3‘ Ao V(T 0) < £,4,. Take

Qp+1 = {(w, 1); 0 € 2,, 1 i< ny,}. For ea.(,h w e £, choose a point
2, in )’Z,“V( ,s) and dctme Ay = {n,; we R} I‘or zwh (w,%) € 2yp1s

Iet fl‘,’l,’1 be a slice satisfying T, , = T, ; and T, mB(ApH, ¢) = @, which
can be found by Lemma 14, Let B,,, = span(B,, #,, 4,,,). Let
(80,1 (0,5)c2 21 be slices and F,,; a finite-dimensional subspsuce of X sat-
isfying Lemma 19 applied to (T Noigen ) “,Lj, ;1 and g, ;. It iy easily
seen that all conditions are fulfilled.

Proof of the theorem in case IL Take A> 1 and let (1,)1, be
a sequence of positive numbers such that ¢ = Y &, < min(Ini, ¢/6). W
)

use the construction of Lemma 20 and considerjpoints R sa.tisfying (6).
Let p e N be tixed. Remark that @, ; € 8, for each (v,4) e 2,,,. It fol-
lows from (7) that there are points (¥, ), Dea, ., SO that y,;—a,;el,,
Ww,s —%usll < &, for each (o, i) € 2, and such that

ol < (L +8,) | o+ 2 b (Y0 —0) |

whenever « espan(B,, #, with w & 2,) and (Do,0)(0 ey © < R.
We introduce mauetwely fmxte dlnmnmoml mbspacos &, of X,
by taking #'; = span(z,; o € ;) and

Zpgr = $PAN(L,, Y i — &, With (o, 1) & ) -

Using induction on p, the reader will verify that &, < span (B, , »,, with
o e Q). Hence |z < (1+¢)lle+y| it » eZ, and y espzm(q/,” @, with
(0, 1) € 2,,,), showing tha.t there exists a pr()Jcctlon m, of 4,1 onto 2,
with |z, < 14,

By induction on p e N, we define vectors (zw)wsﬂp taking 2, =,
i we and 2z,; =2,+Wu;—2%,) i (0, i) e R,.,. Clearly z, EVZ
if weR, and 7m,(2,,) =2, if (0,7) e R,,,. Mowover {]:1" ~2, )l < &4 ...
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veo Fepy <o whenever p>1 and o e R,. Finally

— Y n
§ lw,m"‘w,l l
= k

QH{L‘M— m,z‘q’m‘tl’ I‘\.Z/’Lzrma‘mz ' wz‘/wi“< )J‘1+81;
i i

and -
llgw"'zw,z‘” = ”mw ‘,rw z“"”r ”“~u,ﬂ | a.w zw,i“> t—20>0.

We only have to take a = i—20, 4, = {z,; © € 2,} and f, = &,+¢,,,
to fulfil the conditions of Lemma 11

Added in proof. It follows from recent work of H. Rosenthal and the author
£22] that Problem 2 stated above has negative solution.
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A generalization of Khintchine’s inequality
and its application in the theory of operator ideals

by
L. D. GLUSKIN (Leningrad), A. PIETSCH and J. PUHL (Jena)

Abstract. We prove a generalization of Khintchine’s inequality which can be
used o estimate the absolutely r-summing norm and the r-factorable norm of the
identity map from I%into I} for certain exponents # and v. This results fill in the re-
maining gaps in the limit order diagrams of the operator ideals P, and &,.

In the following £(Z, F) denotes the set of all (bounded linear)
operators from F into F, where E and F are arbitrary Banach spaces.

An operator S e R(H, F) is called absolutely r-summing (L<r < oo)
if there exists a comstant ¢ such that

{ h) 8w} < osup |{ > e, a7 < 1]
1 1

for all finite families of elements #,...,®, € B. The class P, of these
operators is an ideal with the norm P,(8): = infe. An operator S e £(E, F)
is called r-factorable (1 <7 << oo) if there exists a commutative diagram

E__..__.___.———)-F”

o

L(Q.m)

with A LB, INQ, u)) and Y eC(L(Q,n), F’). Here (2,u) is a
measure space and K, denotes the evaluation map from F into F".
The class £, of these operators is an ideal with the norm L,(8) : = inf]| Y| |41,
where the infimum is taken over all admissible factorizations.

Let us denote by I the identity map from I, into I, where ; and I7
are the Minkowski spaces with 1 < %, v < oo. It is well known that the
asymptotic properties of A(I: I;—ly) give important information about
the operator ideal 2 with the norm A. In particular, we are interested to
know the so-called limst order A(A, u,v) which i defined to be the infimum
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