

Dentability and finite-dimensional decompositions

by

J. BOURGAIN* (Brussel)

Abstract. It is shown that a Banach space possesses the Radon-Nikodým property if and only if every subspace with a finite-dimensional Schauder decomposition has the Radon-Nikodým property.

Introduction. Let X, $\| \ \|$ be a Banach space with dual X^* . If $x \in X$ and $\varepsilon > 0$, then $B(x, \varepsilon)$ denotes the open ball with midpoint x and radius ε . For sets $A \subset X$, let e(A) be the convex hull and $\overline{e}(A)$ the closed convex hull of A. We will say that A is dentable if for all $\varepsilon > 0$ there exists $x \in A$ satisfying $x \notin \overline{e}(A \setminus B(x, \varepsilon))$. The Banach space X is said to be dentable if every nonempty, bounded subset of X is dentable. We say that X has the Radon-Nikodým property (RNP) provided for every measure space (Ω, Σ, μ) with $\mu(\Omega) < \infty$ and every μ -continuous measure $F \colon \Sigma \to X$ of finite variation, there exists a Bochner integrable function $f \colon \Omega \to X$ such that $F(E) = \iint_{\Sigma} f d\mu$ for every $E \in \Sigma$. The RNP of X is equivalent to the fact that any uniformly bounded X-valued

martingale on a finite measure space is convergent a.e. (cf. [5], [21]). It is known that X is a dentable Banach space if and only if X has RNP. For the bistory of the equivalence between those two properties, I refer the reader to the J. Diestel and J. J. Uhl survey paper [6].

Recall that $(P_n, M_n)_n$ is a finite-dimensional Schauder decomposition for the Banach space $\mathscr X$ iff each P_n is a continuous linear projection of $\mathscr X$ onto the finite-dimensional $M_n, P_n P_m = 0$ if $n \neq m$ and $x = \sum\limits_{i=1}^n P_n(x)$ for each $x \in \mathscr X$. The partial sum operators S_n are defined by $S_n = \sum\limits_{i=1}^n P_i$. Since $(S_n)_n$ is pointwise convergent to the identity operator, it is uniformly

bounded. We denote by $G(M_n; n)$ the number $\sup_n \|S_n\|$, which is called the Grynblum constant of the decomposition. Our main result is the following:

THEOREM 1. Assume X without RNP. Then for each $\lambda > 1$ there exist a subspace \mathcal{X} of X, a uniformly bounded \mathcal{X} -valued martingale $(\xi_n)_n$ on [0,1]

^{*} Aspirant, N.F.W.O., Belgium.

^{3 -} Studia Mathematica 67.2

and a sequence $(S_n: \mathcal{X} \rightarrow \mathcal{X})_n$ of finite rank projections, such that:

- (1) $x = \lim S_n(x)$, for each $x \in \mathcal{X}$,
- $(2) ||S_n|| \leqslant \lambda,$
- (3) $S_m S_n = S_n S_m = S_m \text{ if } m \leq n$,
- (4) $S_n \xi_{n+1} = \xi_n$,
- (5) $(\xi_n)_n$ is nowhere convergent.

Theorem 1 if of course a refinement of the existence of non-convergent martingales in Banach spaces without RNP. Various authors pointed out that the RNP is separably determined (cf. [20], [10], [13], [15]). Theorem 1 yields the following improvement.

THEOREM 2. If X fails RNP, then for every $\lambda > 1$ there exists a subspace \mathcal{X}_{λ} of X without RNP and with a finite-dimensional Schauder decomposition with Grynblum constant at most λ .

Indeed, $\mathscr X$ fails RNP. If we take $P_1=S_1, P_{n+1}=S_{n+1}-S_n$, then $(P_n, P_n\mathscr X)_n$ is a finite-dimensional Schauder decomposition of $\mathscr X$ with $G(P_n\mathscr X;n)\leqslant \lambda$.

Theorem 2 is related to the following question:

PROBLEM 1. If every subspace of X possessing a Schauder basis possesses the RNP, then need X also possess it?

To the best of my knowledge, this problem is still open.

Preliminary geometric lemmas. In this section, C will be a fixed nonempty, bounded, closed and convex subset of X.

We first introduce some terminology.

DEFINITION 1. If $x^* \in X^*$, define $M(x^*, C) = \sup x^*(C)$. For each $\alpha > 0$, let $S(x^*, \alpha, C) = \{x \in C; x^*(x) \ge M(x^*, C) - \alpha\}$ and $\mathring{S}(x^*, \alpha, C) = \{x \in C; x^*(x) > M(x^*, C) - \alpha\}$. We will call $S(x^*, \alpha, C)$ a slice and $\mathring{S}(x^*, \alpha, C)$ an open slice. If S is a slice, \mathring{S} will denote the corresponding open slice.

The reader will easily verify the following property.

LEMMA 1. If $S(x^*, \alpha, C)$ is a slice, then there exist $\varepsilon > 0$ and $\beta > 0$ such that $||x^* - y^*|| < \varepsilon$ implies $S(y^*, \beta, C) \subset \mathring{S}(x^*, \alpha, C)$.

DEFINITION 2. Let $S = S(x^*, \alpha, C)$ be a slice. Define

$$V(S) = \{x \in C; \exists y^* \in x^* \text{ with } y^*(x) = M(y^*, C) > M(y^*, C \setminus \mathring{S})\}.$$

If further $n \in \mathbb{N}, x_1^*, \dots, x_n^* \in X^*$ and $\varepsilon > 0$, let

$$\begin{split} V(S,x_1^*,\ldots,x_n^*,\,\varepsilon) &= \big\{x \in C;\, \exists y^* \in x^*,\, \exists \beta > 0 \,|\, \text{with}\,\,\,y^*(x) \,=\, M(y^*,\,C)\,,\\ S(y^*,\,\beta,\,C) &\subseteq \mathring{S}\,\, \text{and}\,\,\,o\big(x_k^*|\,\,S(y^*,\,\beta,\,C)\big) < \varepsilon\,\,(1 \leqslant k \leqslant n)\big\}. \end{split}$$

("o" means oscillation).

Using Lemma 1 and the Bishop-Phelps density result on the supporting functionals [1], we obtain immediately

LEMMA 2. If S is a slice, then $V(S) = \emptyset$.

DEFINITION 3. Suppose $S = S(x^*, \alpha, C)$ a slice. Let \tilde{C} be the w^* -closure of C in X^{**} and $\operatorname{ex}(\tilde{C})$ the extreme points of \tilde{C} . Define

$$E(S) = \{x^{**} \in ex(\tilde{C}); x^{**}(x^*) > M(x, C^*) - a\}.$$

It follows from the Krein-Milman theorem that E(S) is nonempty.

LEMMA 3. If S is a slice, $x_1^*, \ldots, x_n^* \in X^*$ and $\varepsilon > 0$, then there is a slice T such that:

(1) $T \subset \mathring{S}$,

(2) $o(x_k^*|T) < \varepsilon \ (1 \leqslant k \leqslant n)$.

Hence we have

LEMMA 4. If S is a slice, $x_1^*, \ldots, x_n^* \in X^*$ and $\varepsilon > 0$, then $V(S, x_1^*, \ldots, x_n^*, \varepsilon) \neq \emptyset$.

LEMMA 5. If S is a slice, $x \in V(S)$ and D a closed convex subset of C with $x \notin D$, then $x \notin \overline{c}((C \setminus S) \cup D)$.

Proof. Take $y^* \in X^*$ satisfying $y^*(x) = M(y^*, C) > M(y^*, C \setminus \mathring{S})$. Suppose $x \in \overline{c}((C \setminus \mathring{S}) \cup D)$, then $x = \lim_n (\lambda_n y_n + (1 - \lambda_n) z_n)$, where $(y_n)_n$

is a sequence in $C \setminus \mathring{S}$, $(z_n)_n$ a sequence in D and $(\lambda_n)_n$ a sequence in [0, 1]. Hence $M(y^*, C) \leqslant \lim_n (\lambda_n M(y^*, C \setminus \mathring{S}) + (1 - \lambda_n) M(y^*, C))$ showing that $\lim_n \lambda_n = 0$. It follows that $x = \lim_n z_n$ and thus $x \in D$, which is a contradiction.

LEMMA 6. Let S be a slice, $x \in V(S)$, x_1^* , ..., $x_n^* \in X^*$ and $\varepsilon > 0$. Then $x \in \overline{c}(V(S, x_1^*, \ldots, x_n^*, \varepsilon))$.

Proof. If $x \notin \overline{c}(V(S, x_1^*, \dots, x_n^*, \varepsilon))$, we also have that $x \notin \overline{c}((C \setminus \mathring{S}) \cup V(S, x_1^*, \dots, x_n^*, \varepsilon))$, by Lemma 5. By the separation theorem, there exists a slice T satisfying $T = \mathring{S}$ and $T \cap V(S, x_1^*, \dots, x_n^*, \varepsilon) = \emptyset$. But by Lemma 4, $V(T, x_1^*, \dots, x_n^*, \varepsilon)$ is a nonempty subset of $V(S, x_1^*, \dots, x_n^*, \varepsilon)$, a contradiction.

We now pass to the key lemma of this paper.

LEMMA 7. Let S be a slice and U a weak open set such that $U \cap c(V(S)) \neq \emptyset$. Then there exist $n \in N$, slices S_1, \ldots, S_n and positive numbers $\lambda_1, \ldots, \lambda_n$ satisfying

- (1) $S_k \subset S$,
- (2) $\sum_{k} \lambda_{k} = 1$,
- $(3) \sum_{k} \lambda_{k} V(S_{k}) \subset U \cap c(V(S)).$

Proof. If $x \in U \cap c(V(S))$, then there is a w-neighborhood $N(x, x_1^*, \ldots, x_p^*, \delta)$ of x contained in U. Since, by Lemma 6, $V(S) \subset \overline{c}(V(S, x_1^*, \ldots, x_p^*, \delta/2))$, we also have that $x \in \overline{c}(V(S, x_1^*, \ldots, x_p^*, \delta/2))$. Of course we can take $\|x_q^*\| \le 1$ $(1 \le q \le p)$. Let then $n \in N$, $x_1, \ldots, x_n \in V(S, x_1^*, \ldots, x_p^*, \delta/2)$ and $\lambda_1, \ldots, \lambda_n$ positive numbers, with $\sum_k \lambda_k = 1$ and $\|x - \sum_k \lambda_k x_k\| < \delta/2$. For each $k = 1, \ldots, n$ a slice S is obtained so that $x_k \in S_k$, $S_k \subset \mathring{S}$ and $o(x_q^*|S_k) < \delta/2$ $(1 \le q \le p)$. Obviously $\sum_k \lambda_k V(S_k) \subset c(V(S))$. For every $q = 1, \ldots, p$, we find that

$$\begin{split} x_q^* & \left(\sum_k \lambda_k S_k \right) = \sum_k \lambda_k x_q^* (S_k) \subset \sum_k \lambda_k \left(x_q^* (x_k) + \right] - \delta/2 \,, \, \delta/2 \left[\right) \\ & = x_q^* & \left(\sum_k \lambda_k x_k \right) + \right] - \delta/2 \,, \, \delta/2 \left[\subset x_q^* (x) + \right] - \delta \,, \, \delta \left[\right] \end{split}$$

implying

$$\sum_{k} \lambda_{k} S_{k} \subset N(x, x_{1}^{*}, \ldots, x_{p}^{*}, \delta).$$

Hence $\sum_{k} \lambda_{k} V(S_{k}) \subseteq U \cap c(V(S))$.

Lemma 7 has the following immediate corollary, which will be used later.

LEMMA 8. Let S be a slice, $\varepsilon > 0$ and U a w-open set such that $U \cap \cap c(V(S)) \neq \emptyset$ and $\operatorname{diam}(U \cap c(V(S))) \leqslant \varepsilon$. Then there exist $n \in \mathbb{N}$, slices S_1, \ldots, S_n and positive numbers $\lambda_1, \ldots, \lambda_n$ satisfying $S_k \subset S$ $(1 \leqslant k \leqslant n)$, $\sum_k \lambda_k = 1$ and $\operatorname{diam} \sum_k \lambda_k V(S_k) \leqslant \varepsilon$.

Banach spaces with property (*).

Proposition 1. For a Banach space X, the following properties are equivalent.

- (1) For each nonempty, bounded, closed and convex subset A of X, the identity map on A has a $w \| \|$ point of continuity.
- (2) For each nonempty, bounded and convex subset A of X and for each $\varepsilon > 0$, there exists a w-open set U satisfying $U \cap A \neq \emptyset$ and $\dim(U \cap A) \leq \varepsilon$.
- (3) For each nonempty, bounded and convex subset A of X and for each e > 0, there exists a w-open set U such that $U \cap A \neq \emptyset$ and $U \cap A$ has an e-net.

Proof. The implications $(1)\Rightarrow(2)$ and $(2)\Rightarrow(3)$ are clear. Assume (3), let A be nonempty, bounded, convex and $\varepsilon>0$. We obtain a w-open set U and a finite number of balls $(B_i)_{1\leqslant i\leqslant d}$ with radius $\varepsilon/2$ so that $U\cap A\neq\emptyset$ and $U\cap A\subset\bigcup_{i=1}^d B_i$. If $x\in U\cap A$, then by the separation theorem we obtain a w-open set V with $x\in V$, $V\subset U$ and $V\cap B_i=\emptyset$ whenever

 $w \notin \overline{B}_i$ $(1 \leqslant i \leqslant d)$. Therefore $V \cap A \neq \emptyset$ and $\operatorname{diam}(V \cap A) \leqslant \varepsilon$. Hence (2) holds. If we have (2) and A is nonempty, bounded, closed and convex, then by repeating application of (2) a sequence $(U_n)_n$ of convex w-open sets is obtained verifying $\overline{U}_{n+1} \subset U_n$, $U_n \cap A \neq \emptyset$ and $\operatorname{diam}(U_n \cap A) \leqslant 1/n$. It follows that $\bigcap_n (U_n \cap A)$ consists of a unique point of A which is clearly a $w - \|$ $\|$ continuity point.

DEFINITION 4. If X satisfies (1), (2), (3) of Proposition 1, we will say that X has property (*).

Clearly the following implication is true:

PROPOSITION 2. If X has RNP, then X has property (*).

The converse is open. Thus

PROBLEM 2. Does property (*) imply dentability?

Property (*) plays an important role in the proof of Theorem 1. We need the following lemma:

LEMMA 9. If X fails property (*), then there exist a nonempty, bounded subset \mathscr{A} of X and $\varepsilon > 0$ so that for each $x \in \mathscr{A}$ and each subspace E of X with codim $E < \infty$ the condition diam $(\mathscr{A} \cap (x+E)) \geqslant \varepsilon$ is verified.

Proof. Let A be a nonempty, bounded and convex subset of X and $\varepsilon > 0$ failing (2) of Proposition 1. We will show that the open convex set $\mathscr{A} = A + B(0, 1)$ satisfies the conclusion of the lemma.

More precisely, we prove by induction on n that if $x \in \mathscr{A}$, E is a subspace of X with codim $E \leqslant n$ and N a w-neighborhood of x, then diam $(\mathscr{A} \cap (x + E) \cap N) \geqslant \varepsilon$.

In the case n=0, this is almost obvious. Assume now the statement correct for n and let $\operatorname{codim} E=n+1$. Take $x\in\mathscr{A}$ and $N=N(x,x_1^*,\ldots,x_p^*,\delta)$ with $\|x_q^*\|\leq 1$ $(1\leqslant q\leqslant p)$ a w-neighborhood of x. It is clearly enough to obtain that $\operatorname{diam}(\mathscr{A}\cap(x+E)\cap N)\geqslant \varepsilon-\varkappa$, where $0<\varkappa<\delta$ is arbitrarily chosen. Take $\varrho>0$ with $B(x,\varrho)\in\mathscr{A}$. There exists a subspace F of X and $x^*\in X^*$ with $\operatorname{codim} F=n$, $\|x^*\|=1$ and $E=F\cap \operatorname{Ker} x^*$. Obviously x^* is not zero on F and we obtain $\gamma>0$ such that $x^*(F\cap B(0,\varrho))\geqslant [-\gamma,\gamma]$. Take $\iota=\min(\imath x\gamma/2D,\delta/2)$, where $D=\operatorname{diam}\mathscr{A}$ and let $0=N[x,x_1^*,\ldots,x_p^*,x^*,\iota]$. Since by induction hypothesis $\operatorname{diam}(\mathscr{A}\cap(x+F)\cap 0)\geqslant \varepsilon$, we only have to show that if $y\in\mathscr{A}\cap(x+F)\cap 0$, then $\operatorname{dist}(y,\mathscr{A}\cap(x+E)\cap N)\leqslant \varkappa/2$. Take $h\in F\cap B(0,\varrho)$ such that $x^*(h)=\gamma$ or $x^*(h)=-\gamma$ according to whether $x^*(x)\geqslant x^*(y)$ or $x^*(x)< x^*(y)$. Then $\lambda=\frac{x^*(x)-x^*(y)}{x^*(x)-x^*(y)+x^*(h)}$ belongs to $[0,\iota/\gamma]$. If $z=(1-\lambda)y+1$

 $+\lambda(x+h)$, then $z \in \mathscr{A}$ and $z-x=(1-\lambda)(y-x)+\lambda h \in F$. We verify that $x^*(z)=x^*(x)$ and thus $z \in x+E$. Since $||y-z|| \le \iota/\gamma D \le \varkappa/2$, $z \in N(x,x_1^*,\ldots,x_p^*)$, δ) and thus $z \in \mathscr{A} \cap (x+E) \cap N$. Therefore dist $(y,\mathscr{A} \cap (x+E) \cap N) \le \varkappa/2$, which completes the proof.

LEMMA 10. Take \mathscr{A} and ε as in Lemma 9. Then for every $x \in \mathscr{A}$ and every subspace E of X with $\operatorname{codim} E < \infty$ we obtain $x \in \overline{\varepsilon}((\mathscr{A} \setminus B(x, \delta)) \cap (x+E))$, whenever $\delta < \varepsilon/2$.

Proof. If $x \notin \overline{c} \left((\mathscr{A} \setminus B(x, \delta)) \cap (x + E) \right) = D$, there is $x^* \in X^*$ such that $x^*(x) > M(x^*, D)$. Let $F = E \cap \operatorname{Ker} x^*$. Since $\operatorname{diam} (\mathscr{A} \cap (x + F)) \ge \varepsilon$, there is a point $y \in \mathscr{A} \cap (x + F)$ with $||x - y|| > \delta$. Hence $y \in D$, contradicting $D \cap (x + F) = \emptyset$.

Proof of the main theorem. We start with the following lemma. LEMMA 11. Let $\lambda > 1$ and suppose there exist a > 0, an increasing sequence $(\mathscr{X}_p)_p$ of finite-dimensional subspaces of X and for each p a projection $\pi_p \colon \mathscr{X}_{p+1} \rightarrow \mathscr{X}_p$, a finite subset A_p of \mathscr{X}_p and $\beta_p > 0$, satisfying

- $(1) \prod ||\pi_p|| \leqslant \lambda,$
- (2) $\bigcup_{p}^{p} A_{p}$ is bounded in X,
- (3) If $z \in A_p$, then there are vectors $z_1, \ldots, z_r \in A_{p+1}$ so that $||z-z_s|| \ge a$, $\pi_p(z_s) = z$ for each $s = 1, \ldots, r$ and $\operatorname{dist}(z, o(z_1, \ldots, z_r)) < \beta_p$, (4) $\beta = \sum_{z} \beta_p < a/2$.

Then there exist a subspace \mathscr{X} of X, a uniformly bounded \mathscr{X} -valued martingale $(\xi_n)_n$ on [0,1] and a sequence $(S_n\colon \mathscr{X}\to\mathscr{X})_n$ of finite rank projections satisfying (1),(2),(3),(4),(5) of Theorem 1.

Proof. Take $\mathscr{X} = \overline{\bigcup_{p} \mathscr{X}_{p}}$. It is routine to obtain for each p a projection S_{p} from \mathscr{X} onto \mathscr{X}_{p} so that $||S_{p}|| \leq \lambda$ and $S_{p} = \pi_{p} S_{p+1}$. Thus (1), (2), (3) hold.

- (3) allows us to construct for each p a finite field \mathscr{B}_p generated by subintervals of [0,1] and a \mathscr{B}_p -measurable map $\eta_p\colon [0,1]{\to} A_p$, so that
 - (1) $\|\eta_{n}(t) \eta_{n+1}(t)\| \geqslant \alpha$ whenever $t \in [0, 1]$,
 - (2) $\pi_p \eta_{p+1} = \eta_p$,
 - (3) $\|\eta_p E[\eta_{p-1} | \mathcal{B}_p]\|_{\infty} < \beta_p$.

This construction is less or more standard and we omit the details. The reader can find them in [9] or [5].

If we introduce inductively maps ξ_p by taking $\xi_1=\eta_1$ and $\xi_{p+1}=\eta_{p+1}+\xi_p-E[\eta_{p+1}|\mathscr{B}_p]$, then $(\xi_p,\mathscr{B}_p)_p$ is clearly a martingale. By induction, it is easily seen that ξ_p ranges in \mathscr{X}_p and $\|\xi_p-\eta_p\|_\infty<\beta_1+\dots+\beta_{p-1}<\beta$. It follows that $(\xi_p)_p$ is uniformly bounded. Furthermore $S_p\xi_{p+1}=\pi_p\xi_{p+1}=\eta_p+\xi_p-E[\eta_p|\mathscr{B}_p]=\xi_p$ and $\|\xi_p(t)-\xi_{p+1}(t)\|\geqslant \|\eta_p(t)-\eta_{p+1}(t)\|-\|\xi_p-\eta_p\|_\infty-\|\xi_{p+1}-\eta_{p+1}\|_\infty>\alpha-2\beta>0$.

Thus $(\xi_p)_p$ is nowhere convergent, which completes the proof.

In the proof of the main theorem, two cases will be distinguished:

- I. X fails property (*),
- II. X has property (*) and fails RNP.

We start with the first one, which is also the easiest.

LEMMA 12. Let $\mathscr A$ and δ satisfy the condition of Lemma 10. Let $(\varepsilon_p)_p$ be a sequence of positive numbers. Then for each $p \in \mathbb N$, we can define a finite subset A_p of $\mathscr A$ and a subspace E_p of X, satisfying the following properties:

- (1) $\operatorname{codim} E_p < \infty \ (p \in N),$
- (2) If $x \in \text{span}(A_1, \ldots, A_p)$, then there exists $x^* \in X^*$ with

$$||x^*|| = 1, \quad x^* | E_p = 0 \quad and \quad ||x|| \leqslant (1 + \varepsilon_p) x^*(x) \quad (p \in N),$$

(3) $A_{p+1} = \bigcup_{x \in A_p} A_{p+1}^x$, where $A_{p+1}^x \cap B(x, \delta) = \emptyset$, $A_{p+1}^x \subseteq x + E_p$ and $\operatorname{dist}(x, e(A_{p+1}^x)) < \varepsilon_p$ $(p \in N)$.

Proof. We proceed by induction on $p \in N$.

- (a) Let $A_1 = \{x_1\}$, where x_1 is an arbitrary point in \mathscr{A} . Consider a finite subset \mathscr{E}_1 of the unit sphere of X^* such that if $x \in \operatorname{span}(A_1)$, then there is $x^* \in \mathscr{E}_1$ with $||x|| \leq (1 + \varepsilon_1)x^*(x)$. Take $E_1 = \bigcap$ Ker x^* .
- (b) Assume now A_p and E_p obtained. Let $x \in A_p$ be fixed. Since $x \in \overline{c} \left((\mathscr{A} \setminus B(x, \delta)) \cap (x + E_p) \right)$, there is a finite subset A_{p+1}^x of \mathscr{A} so that $A_{p+1}^x \cap B(x, \delta) = \mathscr{O}$, $A_{p+1}^x \subset x + E_p$ and $\operatorname{dist}(x, c(A_{p+1}^x)) < \varepsilon_p$. Define $A_{p+1} \subset A_{p+1}^x$. Again a finite subset \mathscr{E}_{p+1} of the unit sphere of X^* can be obtained such that if $x \in \operatorname{span}(A_1, \dots, A_{p+1})$, then $\|x\| \leq (1 + \varepsilon_{p+1})x^*(x)$ for some $x^* \in \mathscr{E}_{p+1}$. Take $E_{p+1} \subset A_p$. Ker x^* .

Clearly this completes the construction.

Proof of the theorem in case I. Take $\lambda>1$ and let $(\varepsilon_p)_p$ be a sequence of positive numbers satisfying $\sum_p \varepsilon_p \leqslant \min(\ln \lambda, \, \delta/2)$ and hence $\prod_p (1+\varepsilon_p) \leqslant \lambda$. Let A_p and E_p be as in Lemma 12. For each $p \in \mathbb{N}$, take $\mathscr{Z}_p = \operatorname{span}(A_1, \ldots, A_p)$, which is finite-dimensional. Clearly $A_{p+1} \subset A_p + E_p$ and thus $\mathscr{Z}_{p+1} = \mathscr{Z}_p + (E_p \cap \mathscr{Z}_{p+1})$. Using (2), we see that $\|x\| \leqslant (1+\varepsilon_p) \|x+y\|$ whenever $x \in \mathscr{X}_p$ and $y \in E_p \cap \mathscr{X}_{p+1}$. Therefore there exists a projection π_p of \mathscr{Z}_{p+1} onto \mathscr{Z}_p with $\|\pi_p\| \leqslant 1+\varepsilon_p$. If we take $\alpha=\delta$ and $\beta_p=\varepsilon_p$, the conditions of Lemma 11 are satisfied, finishing the proof.

We now pass to the case of a Banach space X with property (*), failing RNP. Let C be a fixed, nonempty, bounded, closed and convex subset of X, which is not dentable.

LIEMMA 13. If S is a slice and $\varepsilon > 0$, then there exists a slice T with $T \subset S$ and $\operatorname{dist}[x, \tilde{c}(E(S))] < \varepsilon$ if $x \in T$.

Proof. Let $S = S(x^*, a, C)$ and take

$$D = \{x^{**} \in \tilde{C}; x^{**}(x^*) \leq M(x^*, C) - a\}.$$

We remark \overline{l} that $C = c(c(E(S)) \cup D)$. Let $d = \operatorname{diam} \tilde{C}$ and take $T = S(x^*, \beta, C)$, where $0 < \beta < \varepsilon \alpha/d$. If $x \in T$, there is $x_1^{**} \in \tilde{c}(E(S)), x_2^{**}$

 $\begin{array}{l} \in D \ \ {\rm and} \ \ \lambda \in [0\,,1] \ \ {\rm with} \ \ x = (1-\lambda)x_1^{**} + \lambda x_2^{**}. \ \ {\rm But} \ \ {\rm then} \ \ M(x^*,\,C) - \beta \\ \leqslant x^*(x) = (1-\lambda)x_1^{**}(x^*) + \lambda x_2^{**}(x^*) \leqslant M(x^*,\,C) - \lambda \alpha, \ \ {\rm implying} \ \ \lambda < \varepsilon/d. \\ {\rm Hence} \ \ \|x - x_1^{**}\| = \lambda \|x_1^{**} - x_2^{**}\| < \varepsilon, \ {\rm proving} \ \ {\rm the \ lemma}. \end{array}$

LEMMA 14. There is $\iota > 0$ such that for every slice S, the set E(S) has no ι -net.

Proof. This follows immediately from the lemma of Huff and Morris [10] and Lemma 13.

LEMMA 15. Let $n \in \mathbb{N}$, S_1, \ldots, S_n slices, $x \in X$, $a_1, \ldots, a_n \in \mathbb{R}$ with $\sum_{k} |a_k| \leq 1$ and $\epsilon > 0$. Then there are slices T_1, \ldots, T_n and $x^* \in X^*$ with $\|x^*\| = 1$, so that

- (1) $T_k \subset S_k \ (1 \leqslant k \leqslant n),$
- (2) If $x_k \in c(V(T_k))$ $(1 \leqslant k \leqslant n)$, then

$$\|x+\sum_k a_k x_k\| \leqslant x^*(x) + \sum_k a_k x^*(x_k) + \varepsilon.$$

Proof. Let $s = \sup \{ \|x + \sum_k a_k x_k\|; x_k \in V(S_k) \ (1 \leqslant k \leqslant n) \}$. Take $x_k \in V(S_k)$ $(1 \leqslant k \leqslant n)$, such that $\|x + \sum_k a_k x_k\| \geqslant s - \varepsilon/2$ and let $x^* \in X^*$ with $\|x^*\| = 1$ and $x^*(x) + \sum_k a_k x^*(x_k) = \|x + \sum_k a_k x_k\|$. For each $k = 1, \ldots, n$ we define D_k by taking

$$D_k = egin{cases} \{x \in C; \, x^*(x) \leqslant x^*(x_k) - arepsilon/2\} & ext{if} & a_k \geqslant 0\,, \ \{x \in C; \, x^*(x) \geqslant x^*(x_k) + arepsilon/2\} & ext{if} & a_k < 0\,. \end{cases}$$

By Lemma 5, we obtain a slice T_k so that $T_k \subset S_k$ and $T_k \cap D_k = \emptyset$. To verify condition (2), we can clearly replace $c(V(T_k))$ by $V(T_k)$. If now $y_k \in V(T_k)$ ($1 \le k \le n$), we get

$$\begin{split} \left\|x + \sum_k a_k y_k\right\| &\leqslant s \leqslant \left\|x + \sum_k a_k x_k\right\| + \varepsilon/2 \ = \ x^*(x) + \sum_{k, a_k \geqslant 0} a_k x^*(x_k) + \\ &+ \sum_{k, a_k < 0} a_k x^*(x_k) + \varepsilon/2 \leqslant x^*(x) + \sum_{k, a_k \geqslant 0} a_k \left[x^*(y_k) + \varepsilon/2\right] \\ &+ \sum_{k, a_k < 0} a_k \left(x^*(y_k) - \varepsilon/2\right) + \varepsilon/2 \leqslant x^*(x) + \sum_k a_k x^*(y_k) + \varepsilon, \end{split}$$

what must be obtained.

LEMMA 16. Let $n \in \mathbb{N}, S_1, \ldots, S_n$ slices and E a finite-dimensional subspace of X. Then there are slices T_1, \ldots, T_n and M > 0 such that

- $(1) T_k \subset S_k \ (1 \leqslant k \leqslant n),$
- (2) If $x \in E$, $x_k \in T_k$ $(1 \le k \le n)$ and $a_k \in \mathbb{R}$ $(1 \le k \le n)$, then

$$||x|| + \sum_{k} |a_k| \leqslant M ||x + \sum_{k} a_k x_k||$$

Proof. Assume C in the unit ball of X. Using Lemma 14, we obtain for each $k=1,\ldots,n$ a point $x_k^{**}\in E(S_k)$ such that E and x_1^{**},\ldots,x_n^{**} are linearly independent. Thus there are elements $(y_k^*)_{1\leqslant k\leqslant n}$ in X^* satisfying $y_k^*|E=0$ $(1\leqslant k\leqslant n)$ and $x_k^{**}(y_l^*)=\delta_{k,l}$ $(1\leqslant k,l\leqslant n)$. Take M>0 such that $||y_k^*||\leqslant (M-1)/4n$ $(1\leqslant k\leqslant n)$. Clearly there are slices T_1,\ldots,T_n so that $T_k\subset S_k$ $(1\leqslant k\leqslant n)$ and $|y_l^*(x)-\delta_{k,l}|<1/2n$ if $x\in T_k(1\leqslant k,l\leqslant n)$.

If now $x \in E$, $x_k \in T_k$ $(1 \le k \le n)$ and $a_k \in \mathbf{R}$ $(1 \le k \le n)$, it follows for each l = 1, ..., n:

$$\left\|\frac{M-1}{4n}\right\|x+\sum_{k}a_{k}x_{k}\right\|\geqslant\left|\sum_{k}a_{k}y_{t}^{*}(x_{k})\right|\geqslant\left(1-\frac{1}{2n}\right)|a_{l}|-\frac{1}{2n}\sum_{k\neq l}|a_{k}|$$

and by addition

$$\left\| \frac{M-1}{4} \, \right\| \, x + \sum_k a_k x_k \, \left\| \geqslant \left(1 - \frac{1}{2n} \right) \sum_k |a_k| - \frac{n-1}{2n} \, \sum_k |a_k| = \frac{1}{2} \, \sum_k |a_k| \, .$$

Thus

$$\sum_{k} |a_{k}| \leqslant \frac{M-1}{2} \left\| x + \sum_{k} a_{k} x_{k} \right\|$$

and therefore

$$\|x\|\leqslant \left\|\,x+\sum_k a_k x_k\,\right\| + \left\|\,\sum_k a_k x_k\,\right\|\leqslant \frac{M+1}{2}\,\left\|\,x+\sum_k a_k x_k\,\right\|,$$

completing the proof.

LEMMA 17. Let $n \in \mathbb{N}$, S_1, \ldots, S_n slices, E a finite-dimensional subspace of X and $\varepsilon > 0$. Then there are slices T_1, \ldots, T_n and a finite subset ε of X^* , satisfying:

- $(1) T_k \subseteq S_k \ (1 \leqslant k \leqslant n),$
- (2) $||x^*|| = 1$ for each $x^* \in \mathcal{E}$,
- (3) If $x \in E$ and $a_1, \ldots, a_n \in \mathbb{R}$, then there is some $x^* \in \mathscr{E}$ such that

$$\left\|x+\sum_{k}a_{k}x_{k}\right\| \leqslant (1+\varepsilon)\left(x^{*}(x)+\sum_{k}a_{k}x^{*}(x_{k})\right)$$

whenever $x_k \in c(V(T_k))$ $(1 \leqslant k \leqslant n)$.

Proof. Assume C in the unit ball of X. Let the slices T_1', \ldots, T_n' and M>0 satisfy the conditions of Lemma 16 applied to S_1, \ldots, S_n and E. Take $\delta>0$ with $(1-5\delta M)^{-1} \leqslant 1+\varepsilon$. Let $(y_i)_{i\in I}$ be a δ -net in the unit ball of E and $((\alpha_k^i)_{1\leqslant k\leqslant n})_{j\in I}$ a δ -net in the unit ball of R^n with the l^1 -norm. By successive applications of Lemma 15, we obtain slices T_1, \ldots, T_n and a finite family $\mathscr{E}=(x_{i,j}^*)_{i\in I,j\in J}$ in the unit sphere of X^* , satisfying $T_k\subset T_k'$ $(1\leqslant k\leqslant n)$ and

$$||y_i + \sum_k a_k^j x_k|| \le x_{i,j}^*(y_i) + \sum_k a_k^j x_{i,j}^*(x_k) + \delta,$$

if $x_k \in c(V(T_k))$ $(1 \leqslant k \leqslant n)$ and $i \in I, j \in J$.

We verify (3). Let thus $x \in E$, $a_1, \ldots, a_n \in R$ and take

$$\varrho = \left(\|x\| + \sum_{k} |a_k| \right)^{-1}.$$

By construction there is $i \in I$ and $j \in J$ so that

$$\|\varrho x - y_i\| < \delta \quad \text{ and } \quad \sum_k |\varrho a_k - a_k^j| < \delta.$$

If $x_k \in c(V(T_k))$ $(1 \le k \le n)$, it follows:

$$\begin{split} \left\| x + \sum_{k} a_k x_k \right\| & \leq \varrho^{-1} \left(\left\| y_i + \sum_{k} a_k^j x_k \right\| + 2 \delta \right) \\ & \leq \varrho^{-1} \left(x_{i,j}^*(y_i) + \sum_{k} a_k^j x_{i,j}^*(x_k) + 3 \delta \right) \leq x_{i,j}^*(x) + \sum_{k} a_k x_{i,j}^*(x_k) + 5 \delta \varrho^{-1}. \end{split}$$

Since
$$\varrho^{-1} = \|x\| + \sum\limits_k |a_k| \leqslant M \|x + \sum\limits_k a_k x_k\|$$
, we obtain
$$\|x + \sum\limits_k a_k x_k\| \leqslant x_{i,j}^*(x) + \sum\limits_k a_k x_{i,j}^*(x_k) + 5\delta M \|x + \sum\limits_k a_k x_k\|.$$

Therefore

$$(1 - 5 \delta M) \left\| x + \sum_{k} a_k x_k \right\| \leqslant x_{i,j}^*(x) + \sum_{k} a_k x_{i,j}^*(x_k)$$

and hence

$$\left\|x+\sum_{k}a_{k}x_{k}\right\|\leqslant\left(1+\varepsilon\right)\left(x_{i,j}^{*}(x)+\sum_{k}a_{k}x_{i,j}^{*}\left(x_{k}\right)\right).$$

This completes the proof.

LEMMA 18. If $\mathscr E$ is a finite subset of X^* and $\varepsilon > 0$, then there exists a finite-dimensional subspace E of X and $\delta > 0$, such that:

If $x \in X$ and $|x^*(x)| < \delta$ for each $x^* \in \mathcal{E}$, then there is some $y \in E$ with $||y|| < \varepsilon$ and $x^*(x) = x^*(y)$ for all $x^* \in \mathcal{E}$.

Proof. Assume $\mathscr{E}=\{x_1^*,\ldots,x_n^*\}$. Obviously $f\colon X\to \mathbb{R}^n, \|\ \|_{\infty}$ given by $f(x)=\left(x_1^*(x),\ldots,x_n^*(x)\right)$ is an operator mapping X on some subspace $\mathscr S$ of \mathbb{R}^n . Let E be a finite-dimensional subspace of X satisfying $f(E)=\mathscr S$. By the open map principle we obtain $\delta>0$ such that $f(E\cap B(0,\varepsilon))$ $\supset \mathscr S\cap B(0,\delta)$.

Let now $x \in X$ with $|x^*(x)| < \delta$ for each $x^* \in \mathcal{E}$. Then $f(x) \in \mathcal{S} \cap B(0, \delta)$ and therefore there is $y \in E$ with $||y|| < \varepsilon$ and f(y) = f(x).

LEMMA 19. Let $n \in N$, S_1, \ldots, S_n slices, E a finite-dimensional subspace of X and $\varepsilon > 0$. Then there are slices T_1, \ldots, T_n and a finite-dimensional subspace F of X, verifying the following properties:

- $(1) \ T_k \subseteq S_k \ (1 \leqslant k \leqslant n),$
- (2) For each k = 1, ..., n, let $x_k \in c(V(T_k))$ and $(x_{k,i})_i$ a finite number

of points in T_k . Then for each k = 1, ..., n, there are points $(y_{k,i})_i$ in X, satisfying:

- (1) $y_{k,i} x_{k,i} \in F \ (1 \leq k \leq n, i),$
- $(2) ||y_{k,i}-x_{k,i}|| < \varepsilon (1 \leqslant k \leqslant n, i),$
- (3) If $x \in E, a_1, ..., a_n \in \mathbb{R}$ and $(b_{1,i})_i, ..., (b_{n,i})_i \in \mathbb{R}$, then

$$\Big\|\,x+\,\sum_k a_k x_k\,\Big\|\leqslant (1+\varepsilon)\,\Big\|\,x+\sum_k a_k x_k+\,\sum_k \,\sum_i b_{k,i}(y_{k,i}-x_k)\,\Big\|\,.$$

Proof. Consider first slices T'_1, \ldots, T'_n and a finite subset $\mathscr E$ of X^* verifying (1), (2), (3) of Lemma 17. Next, take a finite-dimensional subspace F of X and $\delta > 0$ satisfying the condition of Lemma 18. By Lemma 3, there are slices T_1, \ldots, T_n such that $T_k \subset T'_k$ $(1 \le k \le n)$ and $o(x^* | T_k) < \delta$ $(x^* \in \mathscr E, 1 \le k \le n)$. For each $k = 1, \ldots, n$, let $x_k \in o(V(T_k))$ and (x_k, k) a finite number of points in T_k .

For each $k=1,\ldots,n$ and i, we have that $|x^*(x_k-x_{k,i})|<\delta$ whenever $x^*\in\mathscr{E}$.

Hence there is $w_{k,i} \in F$ with $||w_{k,i}|| < \varepsilon$ and $x^*(x_k - x_{k,i}) = x^*(w_{k,i})$ for every $x^* \in \mathscr{E}$. Take $y_{k,i} = x_{k,i} + w_{k,i}$. It remains to verify (3) of (2).

Let thus $x \in E$, $a_1, \ldots, a_n \in R$ and $(b_{1,i})_i, \ldots, (b_{n,i})_i \in R$. Let $x^* \in \mathcal{E}$ be the functional in \mathcal{E} associated to x and a_1, \ldots, a_n by Lemma 16.

We obtain

$$\begin{split} \left\| \left. x + \sum_k a_k x_k \right\| & \leqslant (1+\varepsilon) \left(x^*(x) + \sum_k a_k x^*(x_k) \right) \\ & = (1+\varepsilon) \left(x^*(x) + \sum_k a_k x^*(x_k) + \sum_k \sum_i b_{k,i} x^*(y_{k,i} - x_k) \right) \\ & \leqslant (1+\varepsilon) \left\| \left. x + \sum_k a_k x_k + \sum_k \sum_i b_{k,i} (y_{k,i} - x_k) \right\|. \end{split}$$

This completes the proof.

LEMMA 20. Let $(\varepsilon_p)_p$ be a sequence of positive numbers. Then, for each $p \in N$, we can define a finite subset Ω_p of N^p , a finite subset A_p of X, finite-dimensional subspaces E_p , E_p of E_p and for each E_p a E_p a E_p and a slice E_p of E_p and that the following conditions hold:

- (1) Ω_n is the projection of Ω_{p+1} on the p first coordinates $(p \in N)$,
- (2) $A_p \subset E_p \ (p \in N),$
- (3) $E_n \subset E_{n+1}, F_n \subset E_{n+1} \ (p \in N),$
- $(4) \ S_{\omega,i} \subset S_{\omega} \ (p \in \mathbb{N}, (\omega, i) \in \Omega_{p+1}),$
- (5) $\sum \lambda_{\omega,i} = 1 \ (p \in N, \omega \in \Omega_p),$
- (6) There is $x_{\omega} \in A_{p+1} \cap c(V(S_{\omega}))$ so that

$$\sum_{i}\lambda_{\omega,i}V(S_{\omega,i})\subset B(x_{\omega},\,\varepsilon_{p+1}) \qquad (p\in \mathbb{N},\,\omega\in\Omega_{p}),$$

(7) E_p , the slices $(S_\omega)_{\omega \in \Omega_p}$ and F_p satisfy condition (2) of Lemma 19, with $\varepsilon = \varepsilon_n$ $(p \in N)$,

(8) $S_{\omega} \cap B(A_{n}, \iota) = \emptyset \ (p \in \mathbb{N}, \ \omega \in \Omega_{p}).$

Proof. We proceed inductively on $p \in N$.

(a) Take $\Omega_1 = \{1\}$, $A_1 = \emptyset$, $E_1 = \{0\}$ and $\lambda_1 = 1$. Let S_1 be a slice and F_1 a finite-dimensional subspace of X satisfying Lemma 19 applied to C, $\{0\}$, ε_1 .

(b) Assume now Ω_p , A_p , E_p , F_p and for each $\omega \in \Omega_p$, λ_ω , S_ω obtained. Let $\omega \in \Omega_p$ be fixed. Lemma 8 and the fact that X is (*) yields us some $n_\omega \in N$, slices $(T'_{\omega,i})_{1 \le i \le n_\omega}$ and positive numbers $(\lambda_{\omega,i})_{1 \le i \le n_\omega}$ such that $T'_{\omega,i} \subset S_\omega$ $(1 \le i \le n_\omega)$, $\sum\limits_i \lambda_{\omega,i} = 1$ and diam $\sum\limits_i \lambda_{\omega,i} V(T'_{\omega,i}) < \varepsilon_{p+1}$. Take $\Omega_{p+1} = \{(\omega,i); \ \omega \in \Omega_p, \ 1 \le i \le n_\omega\}$. For each $\omega \in \Omega_p$, choose a point x_ω in $\sum\limits_i \lambda_{\omega,i} V(T'_{\omega,i})$ and define $A_{p+1} = \{x_\omega; \ \omega \in \Omega_p\}$. For each $(\omega,i) \in \Omega_{p+1}$, let $T''_{\omega,i}$ be a slice satisfying $T''_{\omega,i} \subset T'_{\omega,i}$ and $T''_{\omega,i} \cap B(A_{p+1},\iota) = \emptyset$, which can be found by Lemma 14. Let $E_{p+1} = \operatorname{span}(E_p, F_p, A_{p+1})$. Let $(S_{\omega,i})_{(\omega,i)\in\Omega_{p+1}}$ be slices and F_{p+1} a finite-dimensional subspace of X satisfying Lemma 19 applied to $(T''_{\omega,i})_{(\omega,i)\in\Omega_{p+1}}$, E_{p+1} and ε_{p+1} . It is easily seen that all conditions are fulfilled.

Proof of the theorem in case II. Take $\lambda>1$ and let $(\varepsilon_p)_p$ be a sequence of positive numbers such that $\sigma=\sum_p \varepsilon_p<\min(\ln\lambda,\,\iota/6)$. We use the construction of Lemma 20 and consider points x_ω satisfying (6). Let $p\in N$ be fixed. Remark that $x_{\omega,i}\in S_\omega$ for each $(\omega,i)\in\Omega_{p+1}$. It follows from (7) that there are points $(y_{\omega,i})_{(\omega,i)\in\Omega_{p+1}}$ so that $y_{\omega,i}-x_{\omega,i}\in F_p$, $\|y_{\omega,i}-x_{\omega,i}\|<\varepsilon_p$ for each $(\omega,i)\in\Omega_{p+1}$ and such that

$$\|x\| \leqslant (1+\varepsilon_p) \left\| x + \sum_{\omega,i} b_{\omega,i} (y_{\omega,i} - x_\omega) \right\|$$

whenever $x \in \operatorname{span}(E_p, x_\omega \text{ with } \omega \in \Omega_p)$ and $(b_{\omega,i})_{(\omega,i) \in \Omega_{p+1}} \subset \mathbf{R}$.

We introduce inductively finite-dimensional subspaces \mathscr{X}_p of X, by taking $\mathscr{X}_1 = \operatorname{span}(x_\omega; \omega \in \Omega_1)$ and

$$\mathscr{X}_{p+1} = \operatorname{span}(\mathscr{X}_p, y_{\omega,i} - x_{\omega} \text{ with } (\omega, i) \in \Omega_{p+1}).$$

Using induction on p, the reader will verify that $\mathscr{X}_p \subset \operatorname{span}(E_p, x_\omega)$ with $\omega \in \mathcal{Q}_p$. Hence $\|x\| \leqslant (1+\varepsilon_p) \|x+y\|$ if $x \in \mathscr{X}_p$ and $y \in \operatorname{span}(y_{\omega,i}-x_\omega)$ with $(\omega,i) \in \mathcal{Q}_{p+1}$, showing that there exists a projection π_p of \mathscr{X}_{p+1} onto \mathscr{X}_p with $\|\pi_p\| \leqslant 1+\varepsilon_p$.

By induction on $p \in N$, we define vectors $(z_{\omega})_{\omega \in \Omega_p}$ taking $z_{\omega} = x_{\omega}$ if $\omega \in \Omega_1$ and $z_{\omega,i} = z_{\omega} + (y_{\omega,i} - x_{\omega})$ if $(\omega, i) \in \Omega_{p+1}$. Clearly $z_{\omega} \in \mathcal{X}_p$ if $\omega \in \Omega_p$ and $\pi_p(z_{\omega,i}) = z_{\omega}$ if $(\omega, i) \in \Omega_{p+1}$. Moreover $||x_{\omega} - z_{\omega}|| < \varepsilon_1 + \dots$

 $\ldots + \varepsilon_{p-1} < \sigma$ whenever p > 1 and $\omega \in \Omega_p$. Finally

$$\begin{aligned} \left\| z_{\omega} - \sum_{i} \lambda_{\omega,i} z_{\omega,i} \right\| \\ &\leq \left\| x_{\omega} - \sum_{i} \lambda_{\omega,i} x_{\omega,i} \right\| + \left\| \sum_{i} \lambda_{\omega,i} x_{\omega,i} - \sum_{i} \lambda_{\omega,i} y_{\omega,i} \right\| < \varepsilon_{p+1} + \varepsilon_{p} \end{aligned}$$

and

$$||z_{\omega}-z_{\omega,i}||\geqslant ||x_{\omega}-x_{\omega,i}||-||x_{\omega}-z_{\omega}||-||x_{\omega,i}-z_{\omega,i}||>\iota-2\sigma>0\,.$$

We only have to take $\alpha = \iota - 2\sigma$, $A_p = \{\varepsilon_{\omega}; \omega \in \Omega_p\}$ and $\beta_p = \varepsilon_p + \varepsilon_{p+1}$ to fulfil the conditions of Lemma 11.

Added in proof. It follows from recent work of H. Rosenthal and the author [22] that Problem 2 stated above has negative solution.

References

[1] E. Bishop and R.R. Phelps, The support functionals of a convex set, Proc. Symp. Pure math. (convexity) A.M.S. 7 (1963), pp. 27-35.

[2] Bourgain, On dentability and the Bishop-Phelps property, Israel Journ. of Math. 28.4 (1977), pp. 265-271.

[3] — A geometric characterization of the Radon-Nikodým property in Banach spaces, Compositio Math. 36.1 (1978), pp. 3-6.

[4] W. J. Davis and R. R. Phelps, The Radon-Nikodým property and dentable sets in Banach spaces, Proc. Amer. Math. Soc. 45 (1974), pp. 119-122.

[5] J. Diestel, Topics in the geometry of Banach spaces, Springer-Verlag Lecture Notes, 485, 1975.

[6] J. Diostel and J. J. Uhl, The Radon-Nikodým theorem for Banach space valued measures, Rocky Mountain Journ. Math. 6 (1) (1976), pp. 1-46.

[7] - The theory of vector measures, A.M.S. Surveys 15, 1977.

[8] M. E delstein, Lines and hyperplanes associated with families of closed and bounded sets in conjugate Banach spaces, Canad. Journ. Math. 22 (1970), pp. 933-938.

[9] R. E. Huff, Dentability and the Radon-Nikodým property, Duke. Math. J. 41, pp. 111-114.

[10] R. E. Huff and P. D. Morris, Geometric characterizations of the Radon-Nikodým property in Banach spaces, Studia Math. 56 (1976), pp. 157-164.

[11] W. B. Johnson, Finite dimensional Schauder decompositions in π_λ and dual π_λ spaces, Illinois Journ. Math. 14 (1970), pp. 642-647.

[12] W. B. Johnson, H. P. Rosenthal and M. Zippin, On bases, finite-dimensional decompositions, and weaker structures in Banach spaces. Israel Journ. Math. 9 (1971), pp. 488-506.

[13] H. Maynard, A geometric characterization of Banach spaces possessing the Radon-Nikodým property, Trans. Amer. Math. Soc. 185 (1973), pp. 493-500.

[14] A. Petezyński, A note on the paper of I. Singer "Basic sequences and reflexivity of Banach spaces", Studia Math. 21 (1962), pp. 371-374.

[15] R. R. Pholps, Dentability and extreme points in Banach spaces, Journ. Funct. Anal. 16 (1974), pp. 78-79.

[16] — Weak* support points of convex sets in E*, Israel Journ. Math. 2 (1964), pp. 177-182.

[17] M. A. Rieffel, The Radon-Nikodým theorem for the Bochner integral, Trans. Amer. Math. Soc. 131 (1968), pp. 466-487.

J. Bourgain

- icm[©]
- [18] Dentable subsets of Banach spaces with applications to a Radon-Nikodým theorem, Proc. Conf. Functional Analysis, Thompson Book Co., Washington 1967, pp. 71-77.
- [19] I. Singer, Bases and quasi-reflexivity of Banach spaces, Math. Ann. 153 (1964), pp. 199-209.
- [20] J. J. Uhl, A note on the Radon-Nikodým property for Banach spaces, Rev. Roum. Math. 17 (1972), pp. 113-115.
- [21] Applications of Radon-Nikodým theorems to martingale convergence, Trans. Amer. Math. Soc. 145 (1969), pp. 271-285.
- [22] J. Bourgain and H. P. Rosenthal, Geometrical implications of certain finite dimensional decompositions, to appear in Bull. Soc. Math. de Belg.

VRIJE UNIVERSITEIT BRUSSEL

Received May 13, 1977 (1315)

STUDIA MATHEMATICA, T. LXVII. (1980)

A generalization of Khintchine's inequality and its application in the theory of operator ideals

by

E. D. GLUSKIN (Leningrad), A. PIETSCH and J. PUHL (Jena)

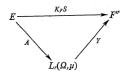
Abstract. We prove a generalization of Khintchine's inequality which can be used to estimate the absolutely r-summing norm and the r-factorable norm of the identity map from l_u^n into l_u^n for certain exponents u and v. This results fill in the remaining gaps in the limit order diagrams of the operator ideals \mathfrak{P}_r and \mathfrak{L}_r .

In the following $\mathfrak{L}(E, F)$ denotes the set of all (bounded linear) operators from E into F, where E and F are arbitrary Banach spaces.

An operator $S \in \mathfrak{L}(E,F)$ is called absolutely r-summing $(1 \leqslant r < \infty)$ if there exists a constant σ such that

$$\Big\{\sum_{i}^{n}\|Sx_{i}\|^{r}\Big\}^{1/r}\leqslant\sigma\sup\Big[\Big\{\sum_{i}^{n}|\langle x_{i},\,a\rangle|^{r}\Big\}^{1/r}\colon\;\|a\|\leqslant\mathbf{1}\Big]$$

for all finite families of elements $x_1, \ldots, x_n \in E$. The class \mathfrak{P}_r of these operators is an ideal with the norm $P_r(S) := \inf \sigma$. An operator $S \in \mathfrak{L}(E, F)$ is called *r-factorable* $(1 \le r \le \infty)$ if there exists a commutative diagram



with $A \in \mathfrak{L}(E, L^p_r(\Omega, \mu))$ and $Y \in \mathfrak{L}(L_r(\Omega, \mu), F'')$. Here (Ω, μ) is a measure space and K_F denotes the evaluation map from F into F''. The class \mathfrak{L}_r of these operators is an ideal with the norm $L_r(S) := \inf \|Y\| \|A\|_r$ where the infimum is taken over all admissible factorizations.

Let us denote by I the identity map from l_v^n into l_v^n , where l_u^n and l_v^n are the Minkowski spaces with $1 \le u, v \le \infty$. It is well known that the asymptotic properties of $A(I: l_u^n \to l_v^n)$ give important information about the operator ideal $\mathfrak A$ with the norm A. In particular, we are interested to know the so-called *limit order* $\lambda(A, u, v)$ which is defined to be the infimum