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Construction of invariant sets for Anosov diffeomorphisms and hyperbolic
attractors

by

FELIEKS PRZYTYCKI (Warszawa)

Abstract. Tor a class of hyperbolie attractors, in particular for any hyperbolic
toral automorphism, we construct an invariant gubget of an arbitrary (reasonable)
topological dimension.

§ 1. Introduction. Statement of results. Main idea. In the paper we
prove the following '

TaEOREM A. For any Anosov diffeomorphism f of an n-dimensional
torus T and for amy integer k such that 0< k< mandl #n—1 there ewists
& compact f-invariant subset N of topological dimension k.

TEmormM A’. For any Anosov diffeomorphism f of am n-dimenisonal
manifold M™ and for any integer % such that 0 <k < n—2 there exists a
compact f-invariant subset N* such - that &< dim N* < min (k4 s —1,
k+u—1, [(k+n—1) /2]) where s and w denote dimensions of stable and
unstable manifolds, respectively.

Theorem A angwers positively the question of 8. Smale (see [61).
It is known [6] that dimension n—1 is not allowed for any compact in-
variant subget. The subsets N* ghould be quite complicated, because it
is known, for example, that for any hyperbolic toral automorphism bi
without & proper invariant toral subgroup no compact proper invariant
subset (except fixed points) can be a connected O'-submanifold [8], be
connected and locally connected provided s =1 [6], or contain a O*-arc
[2] or even a nonconstant differentiable arc provided there is no proper
toral subgroup invariant under a power of 7 [9}

Tn order to congtruct our invariant subsets we -improve here the
idea of 8. G. Hancock [4], [8]. Hancock has constructed invariant subsets
of dimension between 1 and n —2 but has not computed dimension exactly.

Theorem A and Theorem A’ will be proved by using invariant sets
constructed in the more general situation:
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TreoreM B. Let A = M" be a compact hyperbolic attractor Jor a diffeo-
morphism f such that property (x) (which will be defined below) is satisfied.
Then for every integer T such that 0 < k < u there emists a compact f-~invariant
subset N* of /A of topological dsmension k.

Without assuming property (+), we have

TrmorEM B'. Let A < M" be a compact hyperbolic atiractor Jor a diffeo-
morphism f. Then for every integer k such that 0 < I < w there ewigls @ compact
J-inmvariant subset N* of A such that T < dim N* < & sup (dira (W5, 10,0 4)).

ped

COROLLARY. () If A = M" is a sompact expanding hyperbolic attractor,
then for every integer & such that 0 < & < u there ewisls compact f-invariant
subset N* of A of topological dimension &.

(b) If A<=T" is a stondard attractor for a DA-diffeomorphism f
(see Definition 6 below or [11] for the description), then for every k such
that 0 < k << n —1 there exists o compact f-invariant subset N* of A of topo-
logical dimension F. .

(If s =1, 4 is an expanding hyperbolic attractor, and then' we have
the situation from (a). Observe that if s > 1, then 4 is not hyperbolic.
I owe the last remark to Anthony Manning.)

Remark. (2) In each theorem stated above the sets N*® can be
constructed in such a way that ¥* < N' if Bl o

(b) In each theorem stated above for every reasonable k infinitely
many different N5 can be constructed.

The technique used in this paper allows us to answer the question
of Hancock [4], namely the following theorem holds:

TurorEM O. Let f: T™ —T™ be an Anosov aliffeoinorphism. Then for
k < min(s, u), ’

- o0
{g: D" > 1 dim (a1 {J F™g(D")) = 1)
m=—00
is dense in O(D®, T™),

(Here D* denotes a compact k-dimensional dise, and 0 (D*, T denoties
the space of all contintious functions from D* into % with topology of
uniform convergence.)

In order to define property (%) we introduce
also explain some terms used above.

NOTATION AND DEFINTTIONS (see [7], [11], [12]).

1. A compact set 4 = M™ invariant under a diffeomorphism f defined
on a neighbourhood of A is called a hyperbolic set if there exists a splitting
TM = B°@F" into subbundles of dimensions s and # respectively, in-
variant under Df and such that for some constants oua>0,0<u<l,

gsome notation. We ghall
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for every integer n > 0:

IDf () < ap™vll  for v e B,
IDf ™) < ap™oll  for ©eX™.

2. If A =M" fis called an Anosov diffeomorphism.

3. By W2, W (w e A) we denote global stable and unstable mani-
folds, respoctively. ' .

4. A hyperbolic set 4 is called an attractor if there exists a neigh-

that f(c and A = ™(U). Notice that
bourhood U of A such tha-t flel U) = U and ”Qof (0) | ‘

in this situation, for every z € 4, Wy < 4.

5. A hyperboliec attractor is called an expanding hyperbolic atiractor
it dim W% = dim for every @ ¢ 4. ‘ .

6. Lot f: 1™ — 1™ be a hyperbolie toral (allgebraic) automorphism.
A DA-diffeomorphism f i3 a diffeomorphism obtal?le.d from f by a pe?tu{"—
bation along W?* in a small neighbourhood U of a finite number of periodic
orbits such that these orbits become sources. A standard attractor A from
Corollary (b) is defined as () f™(T™\T).

m=0 . )
7. For any o € A we denote by k,: R* — M an immersion such that

I, (R*) = WY, %,(0) = ». We shall use also the notion k3: R — M for

an embedding such that &(R?) = Wiy k5(0) =@. (Such k,, & exist,

71, [11].
" [8.],A[ Ri]el)nannian metric on M induces Riemannian metrics on we
and WY which induce metrics ¢° and ¢" alqng WE and Wy, respectwe.ly.

9. W — {y e Wi™: ¢*(», y) < a}. Sometimes we use the notion
of local stable (unstable) manifolds W5%,. _ .

10. We shall use the following definition of topological dimension
of a separable metric space (X, ¢) (see [1]):

(i) dimX = —1 if and only if X = @; .

(ii) dimX < n if for overy w e X and every s> 0 ther_e exlljsﬁz su
neighbourhood U < X of @ such that dim¥Fr(U) < n—-1. and diam U < &3

(iii) dimX = ¢ if dimX < n and the inequality dimX < n—1 does
not hold;

(iv) dimX = oo if the inequality dim X < n does not hold for any n.

11. By the oxder of a family & (ord &) of s?lbse’r,s of X‘ ye mean
the largest integer n such that the family &/ contfams n ety with a m;:;x(;
empty intergection, or oo if no such number e_xlsts. ‘We shall use a
the notion of diameter of &, diam &/ = sup {dlameterfi: A e s} Ny

The following fact will be useful, see [1], p. 492 (it is connected with
the so called covering dimension): ‘ S
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dim X < n iff there exists a sequence ¥y, Wy, ... of open covers of the
space X such that ord# ;< n+1, dam#; <1)i and Wy, i8 a refinement
of .

DEFINITION OF PROPERTY (x). We. say that a hyperbolic attractor
A < M satisfies property (=) if for a point p e A the following conditions
are satisfied:

(a) For every o €A, Wy is dense in 4;

(b) There exists a local homeomorphism h: A, XR* - A (we writo
4, = (65)"'(4) = R®) which satisties the following conditions: %(0, 0) = p,
hld, x{0} = kpld,, BI{0} xR* = ky; for every ¢ & 4, h({g} xB") = Wi, 4;
for every qeR"™ h(d,x{g}) = Wi,; for every I, >0 thero exists an
l,> 0 such that if ¢ € B(0,1,) = R¥, then diam ,h(4, x{g}) <1s.

, 7
(c) There are compact sets @i, Qa, ..., @7 = Wi o Such that ) @,
=1

disconnects W3, and, for everyj =1,...,J and ¢ e 4, the intersection
Wgn@; consists of at most one point.

Conditions (b) and (c) are considered only if ¢ > 1 and dimd4 > u.

It would be a good thing to check property () for Anosov diffeo-
morphisms of infranilmanifolds (in this paper we check it only for hyper-
bolic toral automorphisms). This would give the proof that dim N* =%
in this situation. It is also interesting to know whether N* can be locally
maximal (1), whether the equality Q(f|¥") = N* can hold or what periodic
points in N* can occur.

In order to explain the main idea of the proofs in this paper without
getting into technical 'difficulties we give first the proof of Theorem A
assaming f to be a hyperbolic toral automorphism with s = dim W5 = 1.

Proof. Denote by n: R" - R"/Z" the standard covering projection.
We may lift f to f: R® — R", f(0) = 0. Denote by B* the expanding eigen-
space covering Wp. One may assume that the orthogonal projection
P: B* >R"' = {weR": x, = 0}is an isomorphism. Fix & (L < &t < —2).
One may congider R™ ' as a union of (n—1)-dimensional cubes

=@, ..pmm) my<o <m0y < By < My +1; My e}

with edges of length 1. Denote by o the union of (n —k —2)-dimensional
skeletons of our cubes. Let D be @ k-dimensional dise embedded by g
into E". There exists a continuous mapping g,: D —B* such that
Pog, is O-e close to Pog and Pog,(D) iy disjoint with B(, &), where

By e) = {we R : (o, w) < e}

V (*) In the case of a hyperbolic toral automorphism if there is no proper invariant
toral subgroup, the answer is megative. It follows from the paper by R. Mafié [8].
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and ¢ is a constant coefficient. Let 2> 1, a> 0 satisfy the condition
allf* ()| = AMoll, » e I There exists a positive integer ¢ which satisfies
the inequality

I 1= Y- C- 3 (1[27) = 6> 0.

' g=1

Assume that o continuous mapping g;: D - " such that Poftic g,(D)n
AB(A &) =3 iy defined. Wo define g, = f~%*opP-loh, where h
is an- arbitrary continnous mapping h:~ D —+R"! such that A(D)n
AB(A &) =@ and b is O-e close to Pofti+dog,

By (1) there exists a continuous mapping G = limg, and for every
Nored - o o . “w Ty
i =0y 1y o fUGD)APTB(A, 60 8) =@. If e iy sufficiently ' small,
then G(D) (and so el |J =(f**@(D))) is at least k-dimensional. (This
120

>
follows eiwily from the definition of covering dimension.) Denote
L= J [P B(A, & 5). Observe that
P

2) dm (BNL) < k.
Indeed, closed (n—1)-dimensional cubes in R*Y, with cdges of length
2"% of the form

an ({7" (g oy Hper)t DSBS PHL, i=1,..,m '"1} +f’/(pi)¢)

where p, ave integers and yw a1 18 the vector (¥i,...,¥n—1);

21
n-1
Y; =:1%21(1 [2Y%p,, intersected with R*IN\P(L) and slightly thickened

give us an open cover «f of R*I\P(L) of order < k-1 with a nonzero
Lebesgue number. Covers f2%(P~1e7) (for ¢ 2 0) also have orders <k -1
and their diameters converge to zero. Now (2) follows from the faet 11.

Denote

D' =[G (D).
(=1

D' w(B(A, &+ 8) xR) = @3 henco, for sufficiently small &> 0,7 > 0,
Dol (Wi, weaP B, £y =0, This implies D'nlJ{Wi,:
wel ) "Hal ' B(A, §)) =@; dD’ = D'Uw, where
B .

o == (o eT™: there oxists a sequence of points (m,), @, & f*™ (=G (D)),

)

such that m, == co and @, %> o).

By the construetion the set o is disjoint from a neighbourhood of =(0) € I™;
hence o is disjoint from W, Sinee Wi, is dense in- I, wo know that e

7 — Siudia Mathematles LXVIIZ
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is contained locally in the product of 0-dimensional (along W*) and %-
dimensional (along W*) sets. Thus dimw < k. The dimension of a union
of a countable famﬂy of compact sets in R® is equal to the maximum of
their dimensions, and so the dimension of ¢lD’ (and hence the dimension

a-1
of the compact f-invariant set U fUelDYyv U f‘fn(G(D))) iy equal to %.'

© §2. Proofs. If one deals with a mapping of an arbitr ary manifold,
one should replace the skeleton 2" (see Prodf in § 1) connected with Lh(»
global structure of the torns by one constructed in a local manner. The
Topological Lemma which follows will be used in future for the estimation
of the topological dimension of W*\|_J f~¢(#). Bub firgt let us introduco

[>]
some

ADDITIONAL NOTATION.

12. I » € A where 4 is a hypeubohc afrtmc‘ror, then for A < We, . nd,
B = Wy, N4 we denote

A Xy B={yed: Wep.nd #0 & Wy 0eNB @}
and call it a rectangle product.
- For a small number Z > 0 there exists a continuous strictly inereasing
functlon L defined on the interval (0,2%) such that limL(t) == 0 and
10
L(t) > sup {Qu( Wfl,loc mW“lom W:,lcv: nTV:;,loc) :
Y, = E sz: Qu(?/z ) < i; q€e W;ﬂz @,Y,8,qed}.
13. Tt o/ = (), e a cover of a metric space (X, o). Wo denote.
Oy = int{a: o = max o(;, «;),

I<d, i<k
med,fori=1,... k&% %t it i 4}, k>1.
Observe that 07 > 0 implies ord. < k—1.
14. Let Y < X. For > 0we denote B, (Y, e) = {we X: oz, ¥) < &)

H 52
By(¥,—e) = INB,(X\Y¥,¢), it ¥ =0 we assume that B (X, e) =@,
Sometlmes we omlt the index .
15. We' define the property P(k) -(or Pl (d),, (6;)ffw)) for a
metric space X as follows:
There exist a finite cover of X by nonempty sets Uy, 4 =1, ..., I
and & family &, = {K, itie; Of subsets of U, covering U, for 4 == 1, I,

such that ¢; = 0,5 +2 s > O d; > diam #; and the following condwmns
hold:

I
(1) mm(ct, ) > BF 3t
F=i+41
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(i) X = | B{U;, —2(h-1-1)d,).
Gl
16, I f: & - Y is a mapping between metrie spaces X and ¥,
then we denote
M) = sup (A o (f (@), £(y) == da(e, ¥) for every @,y e X}.
TOPOLOGICAT LasMMA, JJ(I,(X,,),I . ba @ sequence of elric spaces

which satisfy the properti
set {(l,l,,;: w0, Lo

I,
(l. (d,, l)z Yy (Cngdit), Tespectively, where  the

Ly s upper bounded by y. Let min (e, ;, d, ;)

= ff tlu Jor every 0 - 28, where =0 48 a constant wumber,

If there ewists « sequonee of continuwous mappings for X, - X, .,
now= 0,1, oosuch that A(f,) 3 A> 1, A is a constant, then dimX,<< k.

Pr 00£ One may asstne that 2 iy arbitrarily large using eompositions
of mappings f;. We proceed inductively. If % == 0, the lemma is trivial.

Agpume that the lemma holds for an arbitravy integer k> 0. Take
spaces (&) which satisfy the assmmptions of the lemma for k-+1. Let o
be an arbitvary point in X,. If we show for any % 0 a neighbourhood
Vo 0f fur0 ..o fy(w) in X, such that dimFr(V,) <k and diameters of

¥, are ‘boumlv(l, then diwm((f,-10...0f) (V) = 0and dimFr {(f,.;0 ...

Lo fo)"N(V,) % &, which implies dim X, =5 k1. But for every m, 0
tho sequence (X)), satisfics the assumptions of the lemma. Thus it
sultices to show only how to find V == 7y with its diameter upper bounded
by a congtant depending only on the y

We define inductively sets 4,, < X, for o =0,1,... and 4 =1,

oy I,. Bvery objeet assumed to exist for X, by the property P (k1)
is additionally indexed by n as a first index. Fix numbers ,; > 0 such
that 7, ;% a-d,, ; for a small congtant a (farther it will be clear how small
the « ghould be)

‘ Agy == U il 6 2000 tCItxl&"f € Iy}
Lot A,y for ¢ I, be alveady defined. Define

U{I‘u 11,0 6 4’",“ 1be -Ian‘\‘-I\n&IllﬂR( ‘111,i7 i 1)7/ f[f}u
UB(AWMH Nt |-1> it A-n,t :./:@,

Ayppr o - . X ;
" W g1 € Ay be Ly &me Kntl 1}
it = () and A,, i J.

Let 4, I + A&, be alveady defined. Detine 4,4, < X, ag follows
"’A;fb;hlg}‘ '1‘=1U {I‘vulu‘“ Ayt [’Glnlll & . PR
& ‘lcn, |~J,1,tn B (fn(Aan) Mg, 1) % (A} UB (fn ml,, "711%41{51} s
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Define ¥, < X, for n =0, 1, ... as follows:

Y, =Fr (fu-10 .00 ) H(Aug,)-
m>n
U f,,n_lb é}fo)“ (4y,,1,,) is our set ¥V and we want to show that dim Y,
mjndimI‘l V <k It is obvious that f,(¥,) = ¥,,,. Thus we have the
sequence ¥, 7% v, | for which wehope to be able to use the indue-

tion hypotheﬂs. Detine
%‘,‘;1,,17 = {Ifn,i,tnyn: "dm,i)}'

Detine U, ; = U #,,,. (We consider further only nonempty sets U, ,,
and so formally we ought to reindex them. However, we will not do it
is order not to complicate our nom’oion)

Now we claim that the numbers ¢ ; = C), "
qualities
(1) Opi > Cail3-

Fix, for the time being, the indexes # and 7. Suppose on the contrary
that there are points z,..., 2., such that z; eKﬂ,mj e ,’, where
| F b, i j, and max g (z s %5,) < Gy,5/3. There (nmts a point w, e 4,,;
such that 120
Q(wiﬂ ﬁl) < min(dn,n Gn,'ﬁ/‘-’) .

This follows from the fact that

i ETn,i & -Kn,z',l < -B(Un,i)

ni Satisfy the ine-

Iy, ) I
2 77n,g+ 2 d11,1+ 2 )n-—m(z‘ m,;}"[— 777»},]'))
J=i41 F=i41 Mm=nt1 =1
Lo
< (e+1) ( Z a5+ Z m—m(Z dmy)) < min(d,,;, ¢,,:/2)-
J=i41 m=n-+1

The last inequality holds provided the appropriate « and 4 have been
set. Thus w; € K, ;, for an index ¢ € T, ;. We know also that this I,
ig disjoint from ¥, (due to our thickening the set 4, ; by 7, ;,., or the set
o) Y 1540, i 4 = L,). So we have the points w;, 2y, ..., #,,., belong-
ing to different sets of the family .7, ; and
max (o (3, 2,), 0(w;, 2,)) <
J1ida
This gives a contradiction with the definition of ¢,

Set dn : =, ;. Now it is clear that the mcquqhty fmm the statement
of the lemma for the numbers d, ; and ¢, ; holds (with, possibly, another
coefficient f£). Also the properties P(F, ;M.), (6n)) are obviously
satisfied (in view of (1) and the definion of f nyi)e 50, by the induction
hypothesis, dim ¥, < k. This ends our proof.

071.{/3 + Gn,i/z <¢

Nyt
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Proof of Theorem B. Recall that sinee 4 is an attractor the
manifolds Wy are contained in A for & € 4. Since there exists an o-limit
point in A, there exists also a periodic point p e 4 (this follows from the
theoremn on e-trajectories [7]). We may assume p to be fixed because

q—1
it suffices to find an f-invariant comnpact set ¥ (dim U FH(Y) = dim X).

Let B > 7 >> 0 be some numbers and B < # (see Notwtlon 12) Assume
additionaly that for every v, e 4 diameter in the metrie o* of every
component of WiA((Wh pnd) oWy is less than %, We can find
a finite cover of A by open. (in A) sets (W, . nd) Koot Wopes © =1, o0y L.
If # is sufficiently small, then there are some standard smooth nmmnn
By W, 1’,‘1 - My, such that the Lipschitz oomt.m ts of by and A7 are less
thmn (Wo ('ommlor hero the metric " on Wy, 4 and a Euchde . metrie
on ) Denote hy == by ]W,}jm

%Jnulmly to the manner in the proof in § 1, we construct the cover
o, of Ty, Ior i =1,..., 1. Bach «7; consists of cubes A4, with edges of
length 241 (’l‘ho nmnbem a; and f;, which will appear in a moment,
will be (101'.me(], later.) The cubes A, ave clusters of u-dimensional cubes
with edges of length a; of the form

1) {o = (v, ..., 0,
where m,’s ave integers,

After removing from By, ﬂumobB(»S’u » B;) whieh. is the (4 —k —1)-dimen-
gional skeleton of the partition into cubes of form (1) thickened by g;,
wo obtain from the ecover «7; the cover o7} (for every z =1, I). We have
diamaozy < Vg <0, 2" and Oy po?; > H-f; for a constant H.

There existy a smooth immersion &,: R* — M and a diffeomorphism
g: B* — R" such that k,(R") = Wy and k,og = (f|Wg)ok, (see Defini-
tion 7). Ommider RY as o mom ie gpace with the metric induced by %, from
the metric ¢ on Wy. Let (K“),,C,,,l be defined ag a family of connected
components of the sets Fy (W5, .04) Xpephs " () for ¢ =1,..., I
Define X < B* as follows:

o~ I
: ﬂ TN U (¢

We ceheek that dim X -

) e By:oapomy < gy < oy(my 1)}

(W,

9

3 (Sn“ ﬂl)))) ’

" sy
) e g T (F

ke W use the Topologieal Lewnma, We set X, == X

and f, = gl X Lor every w0, To cheek property P(k) one can putb
U, mt KpnX, K, =K,nX for teTl,,
oy
e A = L (Ve 2% a)

(seo Notation 12), We have ¢; = Upya (#) 32 L7H(IA,/2). Now onae can see
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that if we have taken the a;, f; such that
(2) I-3L(Vu 2" a) < min(L(Vu-2" o), L7(HB,.[2)

for 1 =2,...,I and 4(k+1)-L l/u -q;) is less than the Lebesgue
number of the cover ((W" Tn/l) X poet W, )jml for ¢ =1,...,I, then
property P (k) is satisfied.

Now we want to define a dise similar to the dise@ (D) in the proof
in § 1. But first we ought to show a set from which the dise .D should be
removed.

For any f > 0 define the set ¥/ < RY, ¢ ==1,..., I, as follows:

T = 15 (Wi oA X 7 (B (S 0B W, 1), B)))-

Omitting the sets Y with images of a disc under forward iterationy of
g will allow us to estimate the dimension of a final N® along W*,
Now we use property (%) (sce the definition of property () in §1).
We want to find a set the omitting of which with a forward f-orbit of
a dise will allow us to estimate the dimension of N* along W¢. Let a point
p’ € A play therole of p from property (*). Fix compact subsets @, j = 1,
-, of Wi and a mapping h: A, xR" - A which satisty the prop-
erties degeribed in property (#). Denote by ¥ the Dbounded (interior)
J

component of W, .\ U Q;. Using () (a) one can check that there
exists I, > 0 such that
B(((B3) (V) A Ay) X B0, 1,/2)) = 4
By (*) (b) there exists a number I, > 0 such that
diam g (A, x{g}) < 1,

for every q € B(0, ;). One can assume that I, is arbitrarily small beeause
one can iterate forward the whole structure by f. Take a number I, such
that

Iy > sup {diam b (B(g, L)): ¥ (q) & (VU U Qi) nd}.
Let exist such numbers s> 0, j =1,...,J that for every ¢eR* the
intersection % (B(g, 97+2.1,)) nB (@, ,) 00118151;& of at most one point
(by (x) (c))-

Define the sets Zf < R¥ j =1,...,J as follows:

Z5 =1 (U Wi ae B9, ))).
Let G_,: D* —R" be a compact k-dimensional dise embedded into RY

Assume that a mapping G,: D* - R for an index m > —1 is defined.
We define @,,,, as follows: G, = g~ o where o# iy a perturbed
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g*to@,,. Now we shall deseribe it more mrofullv We sgtart with the -
mapping ¢"™ "o d,,. For an arbitrary small 7 > 0, by successive perturba-

tions of wizes notbigger than 27 Iy 9, 871, -y, .., 241,49, L(2(’“‘"“)+ s
- o)1
X Ba) gy A (z(""‘ o1 “fr) - we obtain images of the dise digjoint from

', wtd T
the seby /’ by R XYL L YRR vespectively. The above s
possible j_n.ovulml,

8 & (/n"l]bl)'t‘z i
(3) thy 1 2 feooand A - B,
o iy delined ag o mapping atter the last ((J-1 L)th) perturbation. This

requires somo explanation. The removing from every ¥ can be made
guccessively as well, by using the formula

By U {a‘#fﬂi“l"“"‘”’-‘ L g for bl L, Bl & My oAy, Aty )
where
S ) e ) (fee R @, =0 0 me {mg, ... g 0)) F

(1 ga ety Je2it
o gy ey my))

In ovder to remove a E-dimensional dise from ]?(%‘(’”l’ “me1) | B) we smooth it,
reniove from S(”Ll' 2mek)) by Thom’s Lemma and owntually compose with
the orthogonal prmootwu of

BSmrmiid, NSEemn)  ont e B(SEe ), f),

I we assume about g, additionally that for & number 6 > 0

I w ),
(4) ?,(,,»42(1}J)af/mz.l)(z("'”)”-[ii) =6 and

el
(ﬁr/" ~In— V’ L(2(’L1 gy s 12s),

then no step spoils the previouy steps, This meany ot the ond that
JOCDFY iw disjoint Tron the sels
AR LA (L AN (¢ S

The numbers «, f; satisfying the conditions (2), (3), (1), can be Tound
suecessivoly (Lo ap, By oy, Py ole).

Now it A(g), which iy the expanding cocfficient of ¢, is sufticiently
large, the sequence (Gy,) converges to o mapping ¢ and for every m = 0
g"G (D" s disjoint from the sets

rl (. it
B4 T/ T (LI ¢/
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Now our invariant set N* may be defined as follows:

460
Nt=cl |J Ty (DY).

Mys=—00

We prove that dimN* = k. First of all observe that

--c0
Ne= U f™u,6(D%) Vo (k6 DYy, f) v {p}
m==—00
where for any mapping I of a metric & into itself and for any subset
A<= % we denote

(8) (4, F)={re: therc exists a sequence of points
£r00 , 1oro0
7 € If'm‘(A) such that m; —> oo & wy —> 2},

Therefore it suffices to study the dimension of our f-invariant set o
= o(k,G¢(D"),f). By the construction we obtain

(6) w0 WS g1y ¢ € WENT, (X)} =D

Recall that X has been defined on p. 207. Function £ is agsumed to have
similar properties to those of function L but with interchanged roles
of W*® and W*. Disjointness in (6) follows from the fact that

(muo Ly " D) v (U W0 qzemny: 4 € WENE, (X)) =@,
wis also disjoint from j’"( ( M U Q;n4) X B(0,1 ))) for overy inte-

ger m. We are especially interested in large positive integers here hecause
the thicknesses of our pipes f"‘(h ()™ MV ndy x B(0, ?,1))) converge to 0
if m’s converge to co. Recall that the thickness of the 0th pipe, m == 0,
is less than 7,. These pipes, solid in 4, are spread onto the whole A and
their walls are disjoint from o. Thus, locally, w is contained in w rec-
tangie product of 0-dimensional and k-dimensional sebs.

dim N* = max((dimkj,g’“G(D’“))mEZ, dim a)) = .

Proof of Theorem B’ This is a subproot of the proot of Theoren B,

Part (a) of the Corollary follows immediately from Theorem 1,
ag well as from Theorem B'.

Proof of Theorem A, Since f is topologically conjugate with
a hyperbolic toral automorphism, we may assume fto be algebraie (sce
[3], [10]). We ought to check property (+) (e) ((*) (a) and () (b) are obyi-
ously satisfied). As in the proof in §1 deno’re by @ RY — R™[Z" == I
the standard covering projection. Denote by X § and B} = R™, respectively,
the stable, and unstable spaces at 0 e R We Mke 7(0) as p’ in property (k).
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Denote
‘ = {vellj: n(v) en(BY) = Wiy}

The set V' is countable and hence there exist w,, w,, «evy Wy € B such
that no w; is orthogonal to any clement of V, Span(wy, ..., wg) = M.
Denote by Ly, ..., L, the subspaces of B orthogonal to w,, ..., W,, TeSpec-
tively. Now, the hubspm 08 Ly, Ly owyy Lyy Ly 0wy, ..., Ly, Ly+ cw, for
a small number ¢ 2 0 bound a small s-dimensional parallelepiped. The
sotis @y, «. .y Py may be defined ay ity walls projected by o into I,

IE & -2 max(s, w), then the set N* may be obtained direetly from
the proof 01 Theorem B by using a dise ¥ embedded into W* or W,
It 2l kol wo o write koo kb ky where 15y <8 and 1<k, < w.
By the proof of Theorem B there exist sots DF1, Dk < gm wlnuh are
continuous images of &y und ye-dimensional diges, respectively,

Do e Wog ey DB Wi 100,
dime (Do, f~Y) e AimDf == B, and  dimoe (D™, f) < dimD* =k,

(see (B) in the proof of Theorem B for the definition of w), Define

hoo
(1) NI e ol () DR X e D).

Wrs 00

We have dim NEED wo koo = b Decause

o .
Nk U fm(_*nlcl ersb-l)hz) U (])7"'17 f~1) o) (Dkﬁ, f)
P =00
Proof of part (b) of the Corollary. For any hyperbolic toral auto-
morphism fand ity periodic orhits ¢, ..., v,, we can find the sets N* in The-

m

orem A. in such a way that they are disjoint from U ;. The mapping fIN*
J=
does 1101; change after o perturbation of fin & huﬂmlon tly small neighbourhood

of U yy So afbor (hwnmng Jinto a DA-diffeomorphism ¢ the same N®
Jual

are g-dnvariagnt sebs,

Proof of Theorem A’ Procecding as in the proof of Theorem B
(bt not using property (1)), one obtaing o set D* < W, where p e Derf,
which I8 u continuous image of & kdimensional dise, dimDF ==k and
Ama (D, ) b s,

(w) IE Q) D™, then thepe exists o number @ > 0 such that for
every g e M WY “n'b’(m, ?) A @, where B(a, 2¢) is a hall in M" disjoint
from w{D¥, ). o (D f), by ity f-invariance, omits a denso subset of
W2 1 thickened by # in the direction of WY for every g e M™ 8o w(DF, f)
Is contiained locally in w reclangle product of s —1 and k-dimensional sets.



GUEST


212 oo T Proytyeki

(We used here the fact that dim (W5, .\ {a dense subset}) < s ~1. Observe
that for attractors the analogous inequality dim((l’Vj,,]ounA)\{w donge
subset}) < dim (W5 ,,,n4) —1 can be false.) Thus we have the incquality

(1) dime(D*, f) < k+s—~1.

(b) If Q(f) # M™ (it is an open problem whether that is possible),
in order to obtain inequality (1) it is necessary to assume something addi-
tional about the construction of D*. It suffice to know that, for cach basie
seb L2(f); which is a repellor, w(D¥, f) iy digjoint from an. open non-empty
subset of Q(f),. However, the necessity of omitting additionally a finite
number of gmall open sets with forward fimages of a dise in the proof
of Theorem B does not spoil this proof.

Let w2z s. For k< u we have constructed the sets N* such that
E<AmN < k+s—1. If k> wu—s, then one can sob as N® tho sots
Ntk which were constructed in the proof of Theorem A, where

k—(u—s) I-u—s
Iy = ———", y = S

5 it k4w is an even number

or

k—(u—s
= [,

"—l] it E-wods odd.
Then

. k —1.
k< dim V% < max (Toy +Fogy Joy -2 —1, Ty +8 —~1) = [...Gi'_g____],

Proof of statement (a)inthe Remark. In the proof of Theorem
Bone can start with a (4 —1)-dimensional cube as a dise D** and choose a
sequence of its k-dimensional walls (5==1,...,%—1) such that Dt < D¢ ...

. = D"7', Now, each perturbation should be done as a composition of
removing suceessively the dises D, ..., D** from skeletons of dimengions
%—2,...,0, respectively (one must remember to prolong mappings
defined on D to the whole cube D*™* at cach step). In order o construct
N¥ for k2w one can use thé sets NGk

The proof of statement (b) in the Remark iy straightforwand
and will be omitted.

Proof of Theorem O. Assume that fis algebraic. Weo start with
an arbitrary mapping ¢: D* — 7™ and lift it to §: D* > R™. Let P¥, P
denote the projections of R™ onto g, Ey along Y, IS, respectively.
‘We perturb P’o§ and P%§ to such mappings which are embeddings into 3,
By on a smooth subdise of-D* and after that to mappings g,z D¥ -> B and
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oo =00
(i DF o Hy such that dim(el (J fmg, D% = kand dim(el |J g, D)
o - =00 M==0a
= b Now @ composed wii;}} the din‘g()mm product of g, and g, g,4g,:
DE - R" (wheve R™ is considered ag a Cartesian product of Ef and )
gives ug the required perturbation.

Added in proof. Now I am able to prove Theorem B for Anosov diffeomor-
phisms assuming property (%) without the itom (e). This gives Theorem A for
infranilimanifolds.
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