

Construction of invariant sets for Anosov diffeomorphisms and hyperbolic attractors

by

FELIKS PRZYTYCKI (Warszawa)

Abstract. For a class of hyperbolic attractors, in particular for any hyperbolic toral automorphism, we construct an invariant subset of an arbitrary (reasonable) topological dimension.

§ 1. Introduction. Statement of results. Main idea. In the paper we prove the following

THEOREM A. For any Anosov diffeomorphism f of an n-dimensional torus T^n and for any integer k such that $0 \le k \le n$ and $k \ne n-1$ there exists a compact f-invariant subset N^k of topological dimension k.

THEOREM A'. For any Anosov diffeomorphism f of an n-dimenisonal manifold M^n and for any integer k such that $0 \le k \le n-2$ there exists a compact f-invariant subset N^k such that $k \le \dim N^k \le \min \left(k+s-1,k+u-1,\lceil (k+n-1)/2\rceil\right)$ where s and u denote dimensions of stable and unstable manifolds, respectively.

Theorem A answers positively the question of S. Smale (see [6]). It is known [6] that dimension n-1 is not allowed for any compact invariant subset. The subsets N^k should be quite complicated, because it is known, for example, that for any hyperbolic toral automorphism f without a proper invariant toral subgroup no compact proper invariant subset (except fixed points) can be a connected C^1 -submanifold [8], be connected and locally connected provided s=1 [6], or contain a C^2 -are [2] or even a nonconstant differentiable are provided there is no proper toral subgroup invariant under a power of f [9].

In order to construct our invariant subsets we improve here the idea of S. G. Hancock [4], [5]. Hancock has constructed invariant subsets of dimension between 1 and n-2 but has not computed dimension exactly.

Theorem A and Theorem A' will be proved by using invariant sets constructed in the more general situation:

THEOREM B. Let $\Lambda \subset M^n$ be a compact hyperbolic attractor for a diffeomorphism f such that property (*) (which will be defined below) is satisfied. Then for every integer k such that $0 \leq k < u$ there exists a compact f-invariant subset N^k of Λ of topological dimension k.

Without assuming property (*), we have

THEOREM B'. Let $A \subset M^n$ be a compact hyperbolic attractor for a diffeomorphism f. Then for every integer k such that $0 \le k \le u$ there exists a compact f-invariant subset N^k of A such that $k \le \dim N^k \le k + \sup_{x \in A} (\dim (W^x_{p,\log n} \cap A))$.

COROLLARY. (a) If $\Lambda \subset M^n$ is a compact expanding hyperbolic attractor, then for every integer k such that $0 \leq k \leq u$ there exists a compact f-invariant subset N^k of Λ of topological dimension k.

(b) If $\Lambda \subset T^n$ is a standard attractor for a DA-diffeomorphism f (see Definition 6 below or [11] for the description), then for every k such that $0 \leq k \leq n-1$ there exists a compact f-invariant subset N^k of Λ of topological dimension k.

(If s=1, Λ is an expanding hyperbolic attractor, and then we have the situation from (a). Observe that if s>1, then Λ is not hyperbolic. I owe the last remark to Anthony Manning.)

Remark. (a) In each theorem stated above the sets N^k can be constructed in such a way that $N^k \subset N^l$ if $k \leq l$.

(b) In each theorem stated above for every reasonable k infinitely many different N^k 's can be constructed.

The technique used in this paper allows us to answer the question of Hancock [4], namely the following theorem holds:

THEOREM C. Let $f: T^n \to T^n$ be an Anosov diffeomorphism. Then for $k < \min(s, u)$,

$$\{g\colon D^k o T^n\colon \dim\left(\operatorname{cl}\bigcup_{m=-\infty}^{+\infty}f^m(g(D^k))\right)=k\}$$

is dense in $C(D^k, T^n)$.

(Here D^k denotes a compact k-dimensional disc, and $C(D^k, T^n)$ denotes the space of all continuous functions from D^k into T^n with topology of uniform convergence.)

In order to define property (*) we introduce some notation. We shall also explain some terms used above.

NOTATION AND DEFINITIONS (see [7], [11], [12]).

1. A compact set $\Lambda \subset M^n$ invariant under a diffeomorphism f defined on a neighbourhood of Λ is called a *hyperbolic set* if there exists a splitting $TM = E^s \oplus E^u$ into subbundles of dimensions s and u respectively, invariant under Df and such that for some constants $a, \mu, \alpha > 0, 0 < \mu < 1$,

for every integer $n \ge 0$:

$$\|Df^n(v)\| \leqslant \alpha \mu^n \|v\|$$
 for $v \in E^s$,
 $\|Df^{-n}(v)\| \leqslant \alpha \mu^n \|v\|$ for $v \in E^u$.

- 2. If $\Lambda = M^n$, f is called an Anosov diffeomorphism.
- 3. By W_x^s , W_x^u $(x \in A)$ we denote global stable and unstable manifolds, respectively.
- 4. A hyperbolic set Λ is called an attractor if there exists a neighbourhood U of Λ such that $f(\operatorname{cl} U) \subset U$ and $\Lambda = \bigcap_{m \geqslant 0} f^m(U)$. Notice that in this situation, for every $x \in \Lambda$, $W^u_x \subset \Lambda$.
- 5. A hyperbolic attractor is called an expanding hyperbolic attractor if dim $W_{\alpha}^{u} = \dim \Lambda$ for every $x \in \Lambda$.
- 6. Let $f\colon T^n\to T^n$ be a hyperbolic toral (algebraic) automorphism. A DA-diffeomorphism f' is a diffeomorphism obtained from f by a perturbation along W^s in a small neighbourhood U of a finite number of periodic orbits such that these orbits become sources. A standard attractor Λ from Corollary (b) is defined as $\bigcap f'^m(T^n \setminus U)$.
- 7. For any $x \in A$ we denote by k_x : $\mathbb{R}^u \to M$ an immersion such that $k_x(\mathbb{R}^u) = W_x^u$, $k_x(0) = x$. We shall use also the notion k_x^s : $\mathbb{R}^s \to M$ for an embedding such that $k_x^s(\mathbb{R}^s) = W_{x,\text{loc}}^s$, $k_x^s(0) = x$. (Such k_x , k_x^s exist, see [7], [11].)
- 8. A Riemannian metric on M induces Riemannian metrics on W_x^s and W_x^u which induce metrics ϱ^s and ϱ^u along W_x^s and W_x^u , respectively.
- 9. $W_{x,a}^{s(u)} = \{y \in W_x^{s(u)}: e^{s(u)}(x,y) < a\}$. Sometimes we use the notion of local stable (unstable) manifolds $W_{x,loc}^{s(u)}$.
- 10. We shall use the following definition of topological dimension of a separable metric space (X, ϱ) (see [1]):
 - (i) $\dim X = -1$ if and only if $X = \emptyset$;
- (ii) $\dim X \leq n$ if for every $x \in X$ and every s > 0 there exists a neighbourhood $U \subset X$ of x such that $\dim \operatorname{Fr}(U) \leq n-1$ and $\dim U \leq s$;
- (iii) $\dim X = n$ if $\dim X \le n$ and the inequality $\dim X \le n-1$ does not hold;
 - (iv) $\dim X = \infty$ if the inequality $\dim X \leq n$ does not hold for any n.
- 11. By the order of a family \mathscr{A} (ord \mathscr{A}) of subsets of X we mean the largest integer n such that the family \mathscr{A} contains n sets with a non-empty intersection, or ∞ if no such number exists. We shall use also the notion of diameter of \mathscr{A} , diam $\mathscr{A} = \sup \{ \text{diameter } A : A \in \mathscr{A} \}$.

The following fact will be useful, see [1], p. 492 (it is connected with the so called *covering dimension*):

icm[©]

 $\dim X\leqslant n \text{ iff there exists a sequence } \mathscr{W}_1,\,\mathscr{W}_2,\,\dots \text{ of open covers of the space } X \text{ such that } \operatorname{ord}\mathscr{W}_i\leqslant n+1,\,\dim\mathscr{W}_i\leqslant 1/i \text{ and } \mathscr{W}_{i+1} \text{ is a refinement of } \mathscr{W}_i.$

DEFINITION OF PROPERTY (*). We say that a hyperbolic attractor $\Lambda \subset M$ satisfies property (*) if for a point $p \in \Lambda$ the following conditions are satisfied:

- (a) For every $x \in \Lambda$, W_x^u is dense in Λ ;
- (b) There exists a local homeomorphism $h\colon \varLambda_p\times \mathbf{R}^u\to \varLambda$ (we write $\varLambda_p=(k_p^s)^{-1}(\varLambda)\subset \mathbf{R}^s$) which satisfies the following conditions: h(0,0)=p, $h|\varLambda_p\times\{0\}=k_p^s|\varLambda_p,h\{0\}\times \mathbf{R}^u=k_p;$ for every $q\in \varLambda_p$ $h(\{q\}\times \mathbf{R}^u)=W_{h(q,0)}^u;$ for every $q\in \mathbf{R}^u$ $h(\varLambda_p\times\{q\})\subseteq W_{h(0,q)}^s;$ for every $l_1>0$ there exists an $l_2>0$ such that if $q\in B(0,l_1)\subset \mathbf{R}^u,$ then $\dim_{s} h(\varLambda_p\times\{q\})< l_2.$
- (c) There are compact sets $Q_1, Q_2, \ldots, Q_J \subset W^s_{p,\text{loc}}$ such that $\bigcup_{j=1}^s Q_j$ disconnects $W^s_{p,\text{loc}}$ and, for every $j=1,\ldots,J$ and $q\in A$, the intersection $W^u_q\cap Q_j$ consists of at most one point.

Conditions (b) and (c) are considered only if s>1 and $\dim A>u$. It would be a good thing to check property (*) for Anosov diffeomorphisms of infranilmanifolds (in this paper we check it only for hyperbolic toral automorphisms). This would give the proof that $\dim N^k=k$ in this situation. It is also interesting to know whether N^k can be locally maximal (1), whether the equality $\Omega(f|N^k)=N^k$ can hold or what periodic points in N^k can occur.

In order to explain the main idea of the proofs in this paper without getting into technical difficulties we give first the proof of Theorem A assuming f to be a hyperbolic toral automorphism with $s = \dim W_x^s = 1$.

Proof. Denote by $\pi\colon \boldsymbol{R}^n\to\boldsymbol{R}^n/Z^n$ the standard covering projection. We may lift f to $\tilde{f}\colon \boldsymbol{R}^n\to\boldsymbol{R}^n, f(0)=0$. Denote by E^u the expanding eigenspace covering W^u_0 . One may assume that the orthogonal projection $P\colon E^u\to\boldsymbol{R}^{n-1}=\{x\in\boldsymbol{R}^n\colon x_n=0\}$ is an isomorphism. Fix $k\ (1\leqslant k\leqslant n-2)$. One may consider \boldsymbol{R}^{n-1} as a union of (n-1)-dimensional cubes

$$\{x = (x_1, \ldots, x_{n-1}) \colon m_1 \leqslant x_1 \leqslant m_1 + 1, \ldots, m_{n-1} \leqslant x_{n-1} \leqslant m_{n-1} + 1; \ m_i \in Z\}$$

with edges of length 1. Denote by \mathscr{K} the union of (n-k-2)-dimensional skeletons of our cubes. Let D be a k-dimensional disc embedded by g into E^u . There exists a continuous mapping $g_0: D \to E^u$ such that $P \circ g_0$ is $C \cdot \varepsilon$ close to $P \circ g$ and $P \circ g_0(D)$ is disjoint with $B(\mathscr{K}, \varepsilon)$, where

$$B(\mathscr{K}, \varepsilon) = \{x \in \mathbf{R}^{n-1} \colon \varrho(\mathscr{K}, x) < \varepsilon\}$$

and C is a constant coefficient. Let $\lambda > 1$, $\alpha > 0$ satisfy the condition $a\|\tilde{f}^n(v)\| \geqslant \lambda^n\|v\|$, $v \in E^n$. There exists a positive integer q which satisfies the inequality

(1)
$$1 - \|P^{-1}\| \cdot \alpha \cdot C \cdot \sum_{i=1}^{\infty} (1/\lambda^{q})^{i} = \delta > 0.$$

Assume that a continuous mapping $g_i \colon D \to E^u$ such that $P \circ \tilde{f}^{q,i} \circ g_i(D) \cap B(\mathscr{K}, \varepsilon) = \emptyset$ is defined. We define $g_{i+1} = \tilde{f}^{-q(i+1)} \circ P^{-1} \circ h$, where h is an arbitrary continuous mapping $h \colon D \to \mathbb{R}^{n-1}$ such that $h(D) \cap B(\mathscr{K}, \varepsilon) = \emptyset$ and h is $C \circ \varepsilon$ close to $P \circ \tilde{f}^{q(i+1)} \circ g_i$.

By (1) there exists a continuous mapping $G = \lim_{t \to \infty} f$ and for every $i = 0, 1, \ldots, \tilde{f}^{q\cdot t}G(D) \cap P^{-1}B(\mathscr{K}, \varepsilon \cdot \delta) = \emptyset$. If ε is sufficiently small, then G(D) (and so of $\bigcup_{i \geqslant 0} \pi(\tilde{f}^{q\cdot t}G(D))$) is at least k-dimensional. (This follows easily from the definition of covering dimension.) Denote $L = \bigcup_{i \geqslant 0} \tilde{f}^{-q\cdot i}P^{-1}B(\mathscr{K}, \varepsilon \cdot \delta)$. Observe that

(2)
$$\dim (E^u \setminus L) \leqslant k.$$

Indeed, closed (n-1)-dimensional cubes in \mathbb{R}^{n-1} , with edges of length 2^{n-2} , of the form

$$2^{n-2} \cdot (\{x = (x_1, \ldots, x_{n-1}): p_i \leqslant x_i \leqslant p_i + 1, i = 1, \ldots, n-1\} + y_{(n,k)})$$

where p_i are integers and $y_{(p_i p_{i-1}^{n-1})}$ is the vector (y_1, \ldots, y_{n-1}) ,

$$y_i = \sum_{j=i+1}^{n-1} (1/2)^{j-i} p_j$$
, intersected with $\mathbb{R}^{n-1} \setminus P(L)$ and slightly thickened

give us an open cover $\mathscr A$ of $R^{n-1} \setminus P(L)$ of order $\leqslant k+1$ with a nonzero Lebesgue number. Covers $f^{-q,i}(P^{-1}\mathscr A)$ (for $i\geqslant 0$) also have orders $\leqslant k+1$ and their diameters converge to zero. Now (2) follows from the fact 11. Denote

$$D' = \bigcup_{i \geq 0} f^{q \cdot i} \pi G(D).$$

 $\begin{array}{ll} D' \cap \pi \left(B(\mathscr{K}, \varepsilon \cdot \delta) \times \mathbf{R} \right) = \varnothing; \text{ hence, for sufficiently small } \xi > 0, \, \zeta > 0, \\ D' \cap \bigcup_{t > 0} \left\{ W^s_{x,\xi} \colon \quad x \in \pi P^{-1}B(\mathscr{K}, \, \xi) \right\} = \varnothing. \quad \text{This implies} \quad D' \cap \bigcup_{t > 0} \left\{ W^s_{x,\xi} \colon x \in \bigcup_{t > 0} f^{-q,t} \left(\pi P^{-1}B(\mathscr{K}, \, \xi) \right) \right\} = \varnothing; \text{ el} D' = D' \cup \omega, \text{ where} \end{array}$

 $\omega = \{x \in T^n : \text{ there exists a sequence of points } (x_t), \ x_t \in f^{q \cdot m_t}(\pi G(D)),$

such that
$$m_t \xrightarrow{t \to \infty} \infty$$
 and $x_t \xrightarrow{t \to \infty} x$.

By the construction the set ω is disjoint from a neighbourhood of $\pi(0) \in T^n$; hence ω is disjoint from $W^u_{\pi(0)}$. Since $W^u_{\pi(0)}$ is dense in T^n , we know that ω

⁽¹⁾ In the case of a hyperbolic toral automorphism if there is no proper invariant toral subgroup, the answer is negative. It follows from the paper by R. Mañé [8].

is contained locally in the product of 0-dimensional (along W^s) and k-dimensional (along W^u) sets. Thus $\dim \omega \leqslant k$. The dimension of a union of a countable family of compact sets in \mathbf{R}^n is equal to the maximum of their dimensions, and so the dimension of $\operatorname{cl} D'$ (and hence the dimension of the compact f-invariant set $\bigcup_{i=0}^{q-1} f^i(\operatorname{cl} D') \cup \bigcup_{i\geqslant 0} f^{-i}\pi(G(D))$) is equal to k.

§ 2. Proofs. If one deals with a mapping of an arbitrary manifold, one should replace the skeleton \mathscr{K} (see Proof in § 1) connected with the global structure of the torus by one constructed in a local manner. The Topological Lemma which follows will be used in future for the estimation of the topological dimension of $W^u \setminus \bigcup_{i \geq 0} f^{-i}(\mathscr{K})$. But first let us introduce some

ADDITIONAL NOTATION.

12. If $x \in \Lambda$ where Λ is a hyperbolic attractor, then for $\Lambda \subset W^s_{x,\text{loc}} \cap \Lambda$, $B \subset W^u_{x,\text{loc}} \cap \Lambda$ we denote

$$A \times_{\text{rect}} B = \{ y \in A \colon W^u_{y, \text{loc}} \cap A \neq \emptyset \& W^s_{y, \text{loc}} \cap B \neq \emptyset \}$$

and call it a rectangle product.

For a small number $\mathcal{R}>0$ there exists a continuous strictly increasing function L defined on the interval $(0,2\mathcal{R})$ such that $\lim_{t\to 0} L(t)=0$ and

$$L(t) > \sup \{ \varrho^u(W^s_{v,\text{loc}} \cap W^u_{q,\text{loc}}, W^s_{z,\text{loc}} \cap W^u_{q,\text{loc}}) :$$

$$y, z \in W^u_{x,\mathscr{R}}, \ \varrho^u(y, z) \leqslant t, \ q \in W^s_{x,\mathscr{R}}, \ x, y, z, q \in \Lambda \}.$$

13. Let $\mathscr{A} = (A_t)_{t \in T}$ be a cover of a metric space (X, ϱ) . We denote

$$C_k \mathscr{A} = \inf\{a \colon a = \max_{1 \leqslant i,j \leqslant k} \varrho(x_i, x_j),$$

$$x_i \in A_{t_i} \text{ for } i = 1, ..., k \& t_i \neq t_i \text{ if } i \neq j \}, k > 1.$$

Observe that $C_k \mathscr{A} > 0$ implies ord $\mathscr{A} \leqslant k-1$.

14. Let $Y \subset X$. For $\varepsilon > 0$ we denote $B_{\varrho}(Y, \varepsilon) = \{ x \in X \colon \varrho(x, Y) < \varepsilon \}$, $B_{\varrho}(X, -\varepsilon) = X \setminus B_{\varrho}(X \setminus Y, \varepsilon)$, if $Y = \emptyset$ we assume that $B_{\varrho}(Y, \varepsilon) = \emptyset$. Sometimes we omit the index ϱ .

15. We define the property P(k) (or $P(k, (d_i)_{i=1}^I, (c_i)_{i=1}^I)$) for a metric space X as follows:

There exist a finite cover of X by nonempty sets U_i , $i=1,\ldots,I$ and a family $\mathscr{K}_i=\{K_{i,t}\}_{t\in T_i}$ of subsets of U_i covering U_i , for $i=1,\ldots,I$, such that $c_i=C_{k+2}\mathscr{K}_i>0$, $d_i\geqslant \operatorname{diam}\,\mathscr{K}_i$ and the following conditions hold:

(i)
$$\min(c_i, d_i) > 3^k \sum_{j=i+1}^{I} d_j;$$

(ii) $X = \bigcup_{i=1}^{I} B(U_i, -2(k+1)d_i)$.

16. If $f \colon X \to Y$ is a mapping between metric spaces X and Y, then we denote

$$\lambda(f) = \sup \{\lambda \colon \varrho(f(x), f(y)) \geqslant \lambda\varrho(x, y) \text{ for every } x, y \in X\}.$$

TOPOLOGICAL LIBMMA. Let $(X_n)_{n\geq 0}$ be a sequence of metric spaces which satisfy the properties $P\left(k,(d_{n,i})_{i=1}^{I_n},(c_{n,i})_{i=1}^{I_{n}}\right)$, respectively, where the set $\{d_{n,i}\colon n\geqslant 0,\ 1\leqslant i\leqslant I_n\}$ is upper bounded by γ . Let $\min(c_{n,i},d_{n,i})$ $\geqslant \beta\sum_i d_{s,j}$ for every $0\leqslant n < s$, where $\beta>0$ is a constant number.

If there exists a sequence of continuous mappings $f_n \colon X_n \to X_{n+1}$, $n = 0, 1, \ldots$ such that $\lambda(f_n) \geqslant \lambda > 1$, λ is a constant, then $\dim X_0 \leqslant k$.

Proof. One may assume that λ is arbitrarily large using compositions of mappings f_i . We proceed inductively. If k = 0, the lemma is trivial.

Assume that the lemma holds for an arbitrary integer $k \ge 0$. Take spaces (X_n) which satisfy the assumptions of the lemma for k+1. Let x be an arbitrary point in X_0 . If we show for any $n \ge 0$ a neighbourhood V_n of $f_{n-1} \circ \ldots \circ f_0(x)$ in X_n such that $\dim \operatorname{Fr}(V_n) \le k$ and diameters of

 V_n are bounded, then $\operatorname{diam}((f_{n-1}\circ\ldots\circ f_0)^{-1}(V_n))\stackrel{n\to\infty}{\longrightarrow} 0$ and $\operatorname{dim}\operatorname{Fr}((f_{n-1}\circ\ldots\circ f_0)^{-1}(V_n))\leqslant k$, which implies $\operatorname{dim} X_0\leqslant k+1$. But for every $n_0\geqslant 0$ the sequence $(X_n)_{n_i,n_0}$ satisfies the assumptions of the Iemma. Thus it suffices to show only how to find $V=V_0$ with its diameter upper bounded by a constant depending only on the γ .

We define inductively sets $A_{n,i} \subseteq X_n$ for $n=0,1,\ldots$ and $i=1,\ldots,I_n$. Every object assumed to exist for X_n by the property P(k+1) is additionally indexed by n as a first index. Fix numbers $\eta_{n,i} > 0$ such that $\eta_{n,i} \leq \alpha \cdot d_{n,i}$ for a small constant α (further it will be clear how small the α should be)

$$A_{0,1} = \bigcup \{K_{0,1,t} \in \mathscr{K}_{0,1} \colon t \in T_{0,1} \& x \in K_{0,1,t}\}.$$

Let $A_{n,i}$, for $i < I_n$ be already defined. Define

$$A_{n,i+1} = \begin{cases} \bigcup \{K_{n,i+1,t} \in \mathscr{K}_{n,i+1} \colon t \in T_{n,i+1} \& K_{n,i+1,t} \cap B(A_{n,i}, \, \eta_{n,i+1}) \neq \emptyset\} \cup \\ \cup B(A_{n,t}, \, \eta_{n,i+1}) & \text{if} \quad A_{n,i} \neq \emptyset, \\ \bigcup \{K_{n,i+1,t} \in \mathscr{K}_{n,i+1} \colon t \in T_{n,i+1} \& x \in K_{n,i+1,t}\} \\ & \text{if} \quad n = 0 \text{ and } A_{n,t} = \emptyset. \end{cases}$$

Let $A_{n,I_n} \subset X_n$ be already defined. Define $A_{n+1,1} \subset X_{n+1}$ as follows:

$$\begin{array}{ll} A_{n+1,1} = \bigcup \; \{K_{n+1,1,t} \in \mathscr{K}_{n+1,1} \colon \; t \in T_{n+1,1} \; \& \\ & \& \; K_{n+1,1,t} \cap B \left(f_n(A_{n,I_n})_t, \eta_{n+1,1} \right) \; \neq \mathcal{O} \} \cup B \left(f_n(A_{n,I_n}), \; \eta_{n+1,1} \right). \end{array}$$

Define $Y_n \subset X_n$ for n = 0, 1, ... as follows:

$$Y_n = \operatorname{Fr} \bigcup_{m>n} (f_{m-1} \circ \ldots \circ f_n)^{-1} (A_{m,I_m}).$$

 $\bigcup_{m>0} (f_{m-1}\circ\ldots\circ f_0)^{-1}(A_{m,I_m}) \text{ is our set } V \text{ and we want to show that } \dim Y_0\\ = \dim \operatorname{Fr} V \leqslant k. \text{ It is obvious that } f_n(Y_n) \subset Y_{n+1}. \text{ Thus we have the sequence } Y_0 \overset{f_0|Y_0}{\longrightarrow} Y_1 \overset{f_1|Y_1}{\longrightarrow} \ldots, \text{for which we hope to be able to use the induction hypothesis. Define}$

$$\mathscr{K}'_{n,i} = \{K_{n,i,t} \cap Y_n : t \in T_{n,i} \& K_{n,i,t} \subseteq B(U_{n,i}, -d_{m,i})\}.$$

Define $U'_{n,i} = \bigcup \mathscr{K}'_{n,i}$. (We consider further only nonempty sets $U'_{n,i}$, and so formally we ought to reindex them. However, we will not do it is order not to complicate our notation.)

Now we claim that the numbers $c'_{n,i} = C_{k+2} \mathcal{K}'_{n,i}$ satisfy the inequalities

$$(1) c'_{n,i} \geqslant c_{n,i}/3.$$

Fix, for the time being, the indexes n and i. Suppose on the contrary that there are points z_1,\ldots,z_{k+2} such that $z_j\in K'_{n,i,l_j}\in \mathcal{K}'_{n,i}$ where $t_{j_1}\neq t_{j_2}$ if $j_1\neq j_2$ and $\max_{j_1,j_2}\varrho(z_{j_1},z_{j_2})< c_{n,i}/3$. There exists a point $w_i\in A_{n,i}$ such that

$$\varrho(w_i, z_1) < \min(d_{n,i}, c_{n,i}/2).$$

This follows from the fact that

$$\begin{split} \sum_{j=i+1}^{I_n} \eta_{n,j} + \sum_{j=i+1}^{I_n} d_{n,j} + \sum_{m=n+1}^{\infty} \lambda^{n-m} \Big(\sum_{j=1}^{I_m} (d_{m,j} + \eta_{m,j}) \Big) \\ \leqslant (\alpha + 1) \Big(\sum_{j=i+1}^{I_n} d_{n,j} + \sum_{m=n+1}^{\infty} \lambda^{n-m} \Big(\sum_{j=1}^{I_m} d_{m,j} \Big) \Big) < \min(d_{n,i}, c_{n,i}/2). \end{split}$$

The last inequality holds provided the appropriate α and λ have been set. Thus $w_i \in K_{n,i,t}$ for an index $t \in T_{n,i}$. We know also that this $K_{n,i,t}$ is disjoint from Y_n (due to our thickening the set $A_{n,i}$ by $\eta_{n,i+1}$ or the set $f_n(A_{n,i})$ by $\eta_{n+1,1}$ if $i=I_n$). So we have the points $w_i, z_1, \ldots, z_{k+2}$ belonging to different sets of the family $\mathscr{H}_{n,i}$ and

$$\max_{j_1,j_2} \left(\varrho\left(z_{j_1},z_{j_2}\right),\,\varrho\left(w_i,\,z_{j_1}\right)\right) \leqslant c_{n,i}/3 + c_{n,i}/2 < c_{n,i}.$$

This gives a contradiction with the definition of $c_{n,i}$.

Set $d'_{n,i} = d_{n,i}$. Now it is clear that the inequality from the statement of the lemma for the numbers $d'_{n,i}$ and $c'_{n,i}$ holds (with, possibly, another coefficient β). Also the properties $P(k, (d'_{n,i}), (c'_{n,i}))$ are obviously satisfied (in view of (1) and the definion of $\mathcal{K}'_{n,i}$). So, by the induction hypothesis, dim $Y_0 \leq k$. This ends our proof.

Proof of Theorem B. Recall that since Λ is an attractor the manifolds W_x^u are contained in Λ for $x \in \Lambda$. Since there exists an ω -limit point in Λ , there exists also a periodic point $p \in \Lambda$ (this follows from the theorem on ε -trajectories [7]). We may assume p to be fixed because it suffices to find an f^q -invariant compact set Y (dim $\bigcup_{i=1}^{q-1} f^i(Y) = \dim Y$).

Let R > r > 0 be some numbers and $R < \mathscr{R}$ (see Notation 12). Assume additionally that for every $y, z \in A$ diameter in the metric ϱ^u of every component of $W_z^u \cap ((W_{y,R}^s \cap A) \times_{\text{rect}} W_{y,R}^u)$ is less than \mathscr{R} . We can find a finite cover of A by open (in A) sets $(W_{y_i,r}^s \cap A) \times_{\text{rect}} W_{y_i,r}^u$, $i = 1, \ldots, I$. If \mathscr{R} is sufficiently small, then there are some standard smooth mappings $h_i \colon W_{y_i,\mathscr{R}}^u \to B_{y_i}^u$ such that the Lipschitz constants of h_i and h_i^{-1} are less than 2. (We consider here the metric ϱ^u on $W_{y_i,\mathscr{R}}^u$ and a Euclidean metric on $E_{y_i}^u$.) Denote $h_i^* = h_i |W_{y_i,r}^u$.

Similarly to the manner in the proof in § 1, we construct the cover \mathscr{A}_i of E^u_{ii} for $i=1,\ldots,I$. Each \mathscr{A}_i consists of cubes $A_{i,\tau}$ with edges of length $2^{u-1} \cdot \alpha_i$. (The numbers α_i and β_i , which will appear in a moment, will be defined later.) The cubes $A_{i,\tau}$ are clusters of u-dimensional cubes with edges of length α_i of the form

(1)
$$\{x = (x_1, \ldots, x_u) \in E_{y_i}^u : \alpha_i \cdot m_j \leqslant x_j \leqslant \alpha_i (m_j + 1)\},$$

where m_i 's are integers.

After removing from $E^u_{y_i}$ the set $B(S_{a_i}, \beta_i)$ which is the (u-k-1)-dimensional skeleton of the partition into cubes of form (1) thickened by β_i , we obtain from the cover \mathscr{A}_i the cover \mathscr{A}'_i (for every $i=1,\ldots,I$). We have $\dim \mathscr{A}'_i < \sqrt{u} \cdot a_i \cdot 2^{u-1}$ and $C_{k+2} \cdot \mathscr{A}'_i > H \cdot \beta_i$ for a constant H.

There exists a smooth immersion $k_p \colon \mathbf{R}^u \to M$ and a diffeomorphism $g \colon \mathbf{R}^u \to \mathbf{R}^u$ such that $k_p(\mathbf{R}^u) = W_p^u$ and $k_p \circ g = (f|W_p^u) \circ k_p$ (see Definition 7). Consider \mathbf{R}^u as a metric space with the metric induced by k_p from the metric ϱ^u on W_p^u . Let $(K_{i,i})_{i \in Y_i}$ be defined as a family of connected components of the sets $k_p^{-1}\left((W_{y_i,r}^u \cap \Lambda) \times_{\text{rect}} h_i^{-1}(\Lambda_{i,r})\right)$ for $i=1,\ldots,I$. Define $X \subset \mathbf{R}^u$ as follows:

$$X = \int_{1-0}^{\infty} g^{-j} \Big(\mathbf{R}^u \setminus \bigcup_{i=1}^{I} k_p^{-1} \Big((W_{y_i,r}^s \cap A) \times_{\text{rect}} h_i^{\wedge -1} \big(B(S_{a_i}, \beta_i) \big) \Big) \Big).$$

We check that dim $X \leq k$. We use the Topological Lemma. We set $X_n = X$ and $f_n = g|X$ for every $n \geq 0$. To check property P(k) one can put

$$egin{aligned} U_i &= igcup_{t \in T_i} K_{i,t} \cap X, & K_{i,t} &= K_{i,t} \cap X & ext{for} & t \in T_i, \ & \mathscr{K}_i &= \{K_{i,t}\}_{t \in T_i}, & ext{and} & d_i &= L\left(\sqrt{\imath_i} \cdot 2^u \cdot lpha_i
ight) \end{aligned}$$

(see Notation 12). We have $e_i = C_{k+2}(\mathscr{X}_i) \geqslant L^{-1}(H\beta_i/2)$. Now one can see

that if we have taken the α_i , β_i such that

$$(2) I \cdot 3^k \cdot L(\sqrt{u} \cdot 2^u \cdot a_i) \leqslant \min \left(L(\sqrt{u} \cdot 2^u \cdot a_{i-1}), L^{-1}(H\beta_{i-1}/2) \right)$$

for $i=2,\ldots,I$ and $4(k+1)\cdot L(\sqrt{u}\cdot 2^u\cdot a_i)$ is less than the Lebesgue number of the cover $((W^s_{\nu_j,r}\cap A)\times_{\mathrm{rect}}W^u_{\nu_j,r})^I_{j=1}$ for $i=1,\ldots,I$, then property P(k) is satisfied.

F. Przytycki

Now we want to define a disc similar to the $\operatorname{disc} G(D)$ in the proof in § 1. But first we ought to show a set from which the disc D should be removed.

For any $\beta > 0$ define the set $Y_i^{\beta} \subset \mathbb{R}^u$, i = 1, ..., I, as follows:

$$Y_i^{\beta} = k_p^{-1} \big(W_{y_i,R}^s \cap A \times_{\text{reet}} h_i^{-1} \big(B(S_{\alpha_i} \cap h_i W_{y_i,r}^u), \beta) \big) \big).$$

Omitting the sets $Y_i^{\theta_i}$ with images of a disc under forward iterations of g will allow us to estimate the dimension of a final N^k along W^u .

Now we use property (*) (see the definition of property (*) in § 1). We want to find a set the omitting of which with a forward f-orbit of a disc will allow us to estimate the dimension of N^k along W^s . Let a point $p' \in A$ play the role of p from property (*). Fix compact subsets Q_j , $j = 1, \ldots, J$, of $W^s_{p', \log}$ and a mapping $h \colon A_{p'} \times \mathbf{R}^u \to A$ which satisfy the properties described in property (*). Denote by V the bounded (interior) component of $W^s_{p', \log} \setminus \bigcup_{j=1}^J Q_j$. Using (*) (a) one can check that there exists $l_1 > 0$ such that

$$h(((k_{p'}^s)^{-1}(V) \cap A_{p'}) \times B(0, l_1/2)) = A.$$

By (*) (b) there exists a number $l_2 > 0$ such that

$$\operatorname{diam}_{os} h(\Lambda_{p}, \times \{q\}) < l_2$$

for every $q \in B(0, l_1)$. One can assume that l_2 is arbitrarily small because one can iterate forward the whole structure by f. Take a number l_3 such that

$$l_3>\sup\left\{\operatorname{diam}_{q^{\mathcal{U}}}h\left(B(q,\,l_1)\right)\colon\; k_{p'}^s(q)\in\left(V\cup\bigcup_{j=1}^JQ_j\right)\cap A\right\}.$$

Let exist such numbers $\varepsilon_j > 0$, j = 1, ..., J that for every $q \in \mathbf{R}^u$ the intersection $k_p(B(q, 2^{J+2} \cdot l_3)) \cap B_{\varrho^g}(Q_j, \varepsilon_j)$ consists of at most one point (by (*) (c)).

Define the sets $Z_i^{\beta} \subset \mathbf{R}^u$, j = 1, ..., J as follows:

$$Z_j^{eta} = k_p^{-1} ig(igcup \{ W_{q,eta}^u \colon \ q \in B_{eta^g}(Q_j, \, arepsilon_j) ig\} ig).$$

Let $G_{-1}\colon D^k \to \mathbf{R}^n$ be a compact k-dimensional disc embedded into \mathbf{R}^n . Assume that a mapping $G_m\colon D^k \to \mathbf{R}^n$ for an index $m\geqslant -1$ is defined. We define G_{m+1} as follows: $G_{m+1}=g^{-(m+1)}\circ \mathscr{H}$ where \mathscr{H} is a perturbed $g^{m+1} \circ G_m$. Now we shall describe it more carefully. We start with the mapping $g^{m+1} \circ G_m$. For an arbitrary small $\eta > 0$, by successive perturbations of sizes not bigger than $2^J \cdot l_3 + \eta, 2^{J-1} \cdot l_3 + \eta, \ldots, 2 \cdot l_3 + \eta, L(2^{\binom{n}{k+1}+1} \times \beta_1) + \eta, \ldots, L(2^{\binom{n}{k+1}+1} \cdot \beta_I) + \eta$ we obtain images of the disc disjoint from the sets $Z_1^{2^{J}l_3}, \ldots, Z_J^{2^{J}l_3}, X_1^{2^{J}l_1}, \ldots, X_J^{2^{J}l_3}, respectively. The above is possible provided$

(3)
$$a_i > 2^{\binom{n}{k+1}+2} \cdot \beta_i$$
 and $\mathscr{R} - r > 3 \cdot a_i$

 \mathscr{H} is defined as a mapping after the last ((J+I)th) perturbation. This requires some explanation. The removing from every Y_i^{θ} can be made successively as well, by using the formula

 $S_{u_t} = \bigcup \left\{ S_{u_t^{i_1} \cdots i_{k+1}}^{(m_1, \dots, m_{k+1})} \colon 1 \leqslant m_t \leqslant u \text{ for } t = 1, \dots, k+1 \ \& \ m_{t_1} \neq m_{t_2} \text{ if } t_1 \neq t_2 \right\}$ where

$$S_{a_{t}}^{(m_{1},\ldots,m_{k+1})} = \bigcup_{(n_{1},\ldots,n_{n})\in\mathbb{Z}^{n}} (\{x\in\mathbf{R}^{n}: x_{m}=0 \text{ if } m\in\{m_{1},\ldots,m_{k+1}\}\} + a_{t}\cdot(n_{1},\ldots,n_{n})).$$

In order to remove a k-dimensional dise from $B(S_{a_i}^{(m_1,\dots,m_{k+1})},\beta)$ we smooth it, remove from $S_{a_i}^{(m_1,\dots,m_{k+1})}$ by Thom's Lemma and eventually compose with the orthogonal projection of

$$B(S_{a_i}^{(m_1,\ldots,m_{k+1})},\beta) \setminus S_{a_i}^{(m_1,\ldots,m_{k+1})}$$
 onto $FrB(S_{a_i}^{(m_1,\ldots,m_{k+1})},\beta)$.

If we assume about β_i additionally that for a number $\delta > 0$

$$(4) \quad l_3 - 2(I+J)\eta - \sum_{i=1}^{I} L(2^{\binom{u}{k+1}+1} \cdot \beta_i) > \delta \quad \text{ and }$$

$$L^{-1}(\beta_i/2) - I\eta - \sum_{s=i+1}^{I} L(2^{\binom{u}{k+1}+1} \cdot \beta_s) > L(2\delta),$$

then no step spoils the previous steps. This means at the end that $\mathscr{H}(D^k)$ is disjoint from the sets

$$Z_1^{l_3+\delta}, \ldots, Z_J^{l_3+\delta}, Y_1^{\mu_1+\delta}, \ldots, Y_I^{\mu_I+\delta}.$$

The numbers a_l , β_l satisfying the conditions (2), (3), (4), can be found successively (i.e. a_1 , β_1 , a_2 , β_2 , etc.).

Now if $\lambda(g)$, which is the expanding coefficient of g, is sufficiently large, the sequence (G_m) converges to a mapping G and for every $m \ge 0$ $g^m G(D^k)$ is disjoint from the sets

$$Z_1^{l_3},\,\ldots,\,Z_J^{l_3},\,Y_1^{eta_1},\,\ldots,\,Y_I^{eta_I}.$$

Now our invariant set N^k may be defined as follows:

$$N^k = \operatorname{cl} \left(\bigcup_{m=-\infty}^{+\infty} k_p g^m G(D^k) \right).$$

We prove that $\dim N^k = k$. First of all observe that

$$N^k = \bigcup_{m=-\infty}^{+\infty} f^m(k_p G(D^k)) \cup \omega(k_p G(D^k), f) \cup \{p\}$$

where for any mapping F of a metric $\mathscr X$ into itself and for any subset $A \subset \mathscr X$ we denote

(5) $\omega(A, F) = \{x \in \mathcal{X}: \text{ there exists a sequence of points}\}$

$$x_t \in F^{m_t}(A)$$
 such that $m_t \xrightarrow{t \to \infty} \infty \& x_t \xrightarrow{t \to \infty} x$.

Therefore it suffices to study the dimension of our f-invariant set $\omega = \omega(k_p G(D^k), f)$. By the construction we obtain

(6)
$$\omega \cap \bigcup \{W^s_{q,\mathscr{L}^{-1}(\mathbb{R}-r)} \colon \ q \in W^u_p \setminus k_p(X)\} = \emptyset.$$

Recall that X has been defined on p. 207. Function \mathcal{L} is assumed to have similar properties to those of function L but with interchanged roles of W^s and W^u . Disjointness in (6) follows from the fact that

$$\big(\bigcup_{m\geqslant 0} k_p g^m G(D^k)\big) \cap \big(\bigcup \left\{W_{q,\mathscr{L}^{-1}(R-r)}^s\colon q\in W_p^u \setminus k_p(X)\right\}\big) := \emptyset.$$

 ω is also disjoint from $f^m\Big(h\Big((k_{p'}^s)^{-1}\big(\bigcup_{i=1}^JQ_i\cap A\big)\times B(0\,,\,l_1)\Big)\Big)$ for every inte-

ger m. We are especially interested in large positive integers here because the thicknesses of our pipes $f^m(h\left((k_p^s)^{-1}(V\cap A)\times B(0,\,l_1)\right))$ converge to 0 if m's converge to ∞ . Recall that the thickness of the 0th pipe, m=0, is less than l_2 . These pipes, solid in A, are spread onto the whole A and their walls are disjoint from ω . Thus, locally, ω is contained in a rectangle product of 0-dimensional and k-dimensional sets.

$$\dim N^k = \max((\dim k_p g^m G(D^k))_{m \in \mathbb{Z}}, \dim \omega) = k.$$

Proof of Theorem B'. This is a subproof of the proof of Theorem B. Part (a) of the Corollary follows immediately from Theorem B, as well as from Theorem B'.

Proof of Theorem A. Since f is topologically conjugate with a hyperbolic toral automorphism, we may assume f to be algebraic (see [3], [10]). We ought to check property (*) (c) ((*) (a) and (*) (b) are obviously satisfied). As in the proof in § 1 denote by $\pi \colon \mathbb{R}^n \to \mathbb{R}^n / \mathbb{Z}^n = \mathbb{T}^n$ the standard covering projection. Denote by \mathbb{E}_0^s and $\mathbb{E}_0^u = \mathbb{R}^n$, respectively, the stable, and unstable spaces at $0 \in \mathbb{R}^n$. We take $\pi(0)$ as p' in property (*).

Denote

$$V = \{ v \in E_0^s \colon \pi(v) \in \pi(E_0^u) = W_{\pi(0)}^u \}.$$

The set V is countable and hence there exist $w_1, w_2, \ldots, w_s \in E_0^s$ such that no w_i is orthogonal to any element of V, $\operatorname{span}(w_1, \ldots, w_s) = E_0^s$. Denote by L_1, \ldots, L_s the subspaces of E_0^s orthogonal to w_1, \ldots, w_s , respectively. Now, the subspaces $L_1, L_1 + cw_1, L_2, L_2 + cw_2, \ldots, L_s, L_s + cw_s$ for a small number c > 0 bound a small s-dimensional parallelepiped. The sets Q_1, \ldots, Q_{2s} may be defined as its walls projected by π into T^n .

If $k < \max(s, u)$, then the set N^k may be obtained directly from the proof of Theorem B by using a disc D^k embedded into W^s or W^u . If $2 \le k \le n-2$ we write $k = k_1 + k_2$ where $1 \le k_1 < s$ and $1 \le k_2 < u$. By the proof of Theorem B there exist sets D^{k_1} , $D^{k_2} \subset T^n$ which are continuous images of k_1 and k_2 -dimensional discs, respectively,

$$D^{k_1} \subset W^s_{\pi(0), \text{loc}}, \quad D^{k_2} \subset W^u_{\pi(0), \text{loc}},$$

 $\dim \omega(D^{k_1},f^{-1})\leqslant \dim D^{k_1}=k_1\quad \text{ and }\quad \dim \omega(D^{k_2},f)\leqslant \dim D^{k_2}=k_2$

(see (5) in the proof of Theorem B for the definition of ω). Define

$$N^{(k_1,k_2)} := \operatorname{cl} \bigcup_{m=1}^{+\infty} f^m(D^{k_1} \times_{\operatorname{rect}} D^{k_2}).$$

We have dim $N^{(k_1,k_2)} = k_1 - k_2 = k$ because

$$N^{(k_1,k_2)} = \bigcup_{m=-\infty}^{+\infty} f^m(D^{k_1} \times_{\operatorname{rect}} D^{k_2}) \cup \omega(D^{k_1},f^{-1}) \cup \omega(D^{k_2},f).$$

Proof of part (b) of the Corollary. For any hyperbolic toral automorphism f and its periodic orbits $\gamma_1, \ldots, \gamma_m$ we can find the sets N^k in Theorem A in such a way that they are disjoint from $\bigcup_{j=1}^m \gamma_j$. The mapping $f|N^k$ does not change after a perturbation of f in a sufficiently small neighbourhood of $\bigcup_{j=1}^m \gamma_j$. So after changing f into a DA-diffeomorphism g the same N^k are g-invariant sets.

Proof of Theorem A'. Proceeding as in the proof of Theorem B (but not using property (*)), one obtains a set $D^k \subseteq W_n^u$, where $p \in \operatorname{Per} f$, which is a continuous image of a k-dimensional disc, $\dim D^k = k$ and $\dim \omega(D^k, f) \leq k + s$.

(a) If $\Omega(f) = M^n$, then there exists a number a > 0 such that for every $q \in M^n$ $W^s_{q,a} \cap B(x,r) \neq \emptyset$, where B(x,2r) is a ball in M^n disjoint from $\omega(D^k,f)$. So $\omega(D^k,f)$, by its f-invariance, omits a dense subset of $W^s_{q,\text{loc}}$ thickened by r in the direction of W^n , for every $q \in M^n$. So $\omega(D^k,f)$ is contained locally in a rectangle product of s-1 and k-dimensional sets.

(We used here the fact that $\dim(W^s_{n,\text{loc}}\setminus\{\text{a dense subset}\})\leqslant s-1$. Observe that for attractors the analogous inequality $\dim((W^s_{n,\text{loc}}\cap A)\setminus\{\text{a dense subset}\})\leqslant \dim(W^s_{n,\text{loc}}\cap A)-1$ can be false.) Thus we have the inequality

(1)
$$\dim \omega(D^k, f) \leqslant k + s - 1.$$

(b) If $\Omega(f) \neq M^n$ (it is an open problem whether that is possible), in order to obtain inequality (1) it is necessary to assume something additional about the construction of D^k . It suffice to know that, for each basic set $\Omega(f)_i$ which is a repellor, $\omega(D^k, f)$ is disjoint from an open non-empty subset of $\Omega(f)_i$. However, the necessity of omitting additionally a finite number of small open sets with forward f-images of a disc in the proof of Theorem B does not spoil this proof.

Let $u \geqslant s$. For k < u we have constructed the sets N^k such that $k \leqslant \dim N^k \leqslant k+s-1$. If k > u-s, then one can set as N^k the sets $N^{(k_1,k_2)}$ which were constructed in the proof of Theorem A, where

$$k_1=rac{k-(u-s)}{2}, \quad k_2=rac{k+u-s}{2} \quad ext{if} \quad k+n ext{ is an even number}$$

or

$$k_1 = \left\lceil \frac{k - (u - s)}{2} \right\rceil + 1, \quad k_2 = \left\lceil \frac{k + u - s}{2} \right\rceil \quad \text{if} \quad k + n \text{ is odd.}$$

Then

$$k\leqslant \dim N^k\leqslant \max(k_1+k_2,\,k_1+u-1,\,k_2+s-1)\,=\left\lceil\frac{k+n-1}{2}\right\rceil.$$

Proof of statement (a) in the Remark. In the proof of Theorem B one can start with a (u-1)-dimensional cube as a disc D^{u-1} and choose a sequence of its k-dimensional walls $(k=1,\ldots,u-1)$ such that $D^1 \subset D^2 \subset \ldots \subset D^{n-1}$. Now, each perturbation should be done as a composition of removing successively the discs D^1,\ldots,D^{u-1} from skeletons of dimensions $u-2,\ldots,0$, respectively (one must remember to prolong mappings defined on D^k to the whole cube D^{u-1} at each step). In order to construct N^k for $k \ge u$ one can use the sets $N^{(k_1,k_2)}$.

The proof of statement (b) in the Remark is straightforward and will be omitted.

Proof of Theorem C. Assume that f is algebraic. We start with an arbitrary mapping $g\colon D^k\to T^n$ and lift it to $\tilde g\colon D^k\to R^n$. Let $L^s,\,P^u$ denote the projections of R^n onto $E^s_0,\,E^u_0$ along $E^u_0,\,E^s_0$, respectively. We perturb $P^s\circ \tilde g$ and $P^u\circ \tilde g$ to such mappings which are embeddings into $E^s_0,\,E^u_0$ on a smooth subdisc of D^k and after that to mappings $g_s\colon D^k\to E^s_0$ and

 $g_u \colon D^k \to E_0^u$ such that $\dim(\operatorname{cl} \bigcup_{m=-\infty}^{+\infty} f^m \pi g_s D^k) = k$ and $\dim(\operatorname{cl} \bigcup_{m=-\infty}^{+\infty} f^m \pi g_u D^k)$ = k. Now π composed with the diagonal product of g_s and g_u , $g_s \Delta g_u$: $D^k \to \mathbb{R}^n$ (where \mathbb{R}^n is considered as a Cartesian product of E_0^s and E_0^u) gives us the required perturbation.

Added in proof. Now I am able to prove Theorem B for Anosov diffeomorphisms assuming property (*) without the item (c). This gives Theorem A for infranilmanifolds.

References

- [1] R. Engelking, General topology, PWN, 1977.
- [2] J. Franks, Invariant sets of hyperbolic toral automorphisms, Amer. J. Math. 99 (1977), pp. 1089-1095.
- [3] Anosov diffeomorphisms on tori, Trans. Amer. Math. Soc. 145 (1969), pp, 117– 124.
- [4] S. G. Hancock, Construction of invariant sets for Anosov diffeomorphisms, J. London Math. Soc. (2), 18 (1978), pp. 339-348.
- [5] Orbits of paths under hyperbolic toral automorphisms, Asterisque 49 (1977), pp. 93-96.
- [6] M. W. Hirsch, On invariant subsets of hyperbolic sets, in: Essays on topology and related topics. Springer-Verlag, 1970.
- [7] A. B. Katok, Dynamical systems with a hyperbolic structure, IX Mathematical Summer School, Kiev 1972 (in Russian).
- [8] R. Mañé, Invariant sets of Anosov diffeomorphisms, to appear.
- [9] Orbits of rectifiable paths under hyperbolic toral automorphisms, to appear.
- [10] A. Manning, There are no new Anosov diffeomorphisms on tori, Amer. J. Math. 96 (1974), pp. 422-429.
- [11] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), pp. 747-817.
- [12] R. F. Williams, Expanding attractors, Publications Mathematiques 43, IHES, 1973.

INSTYTUT MATEMATYCZNY POLSKA AKADEMIA NAUK INSTTTUTE OF MATHEMATICS POLISII ACADEMY OF SCHENCES

Received March 16, 1978

(1377)