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Uniformly convex norms on Banach lattices

by
T. PIGIEL (Gdadsk)

Abstract. Let X be a superreflexive Banach space of cotype f. We prove that
if X has local unconditional structure, then X admits an equivalent norm with mo-
dulus of convexity > of. Moreover, if f is, up to a constant, the best modulus of con-
vexity for X, then there is ¢ > 0 such that f(is) > of (£)f(s) for ,s &[0, 1].

If X is only a complemented subspace of a Banach lattice and &> 0, then
X is complemented in a Banach lattice of cotype f and also in a superreflexive lattice
of cotype f(t)t°.

0. Introduction. In the present paper we extend the results of [7].
‘We mostly work in the context of Banach lattices. We discuss some
procedures to define a new norm that satisfies certain inequalities related
to uniform convexity which are meaningful also in the case where there
is no equivalent uniformly convex norm (cf. Theorems 4.2, 5.1 and coroll-
arieg). Our general reference is [21]. .

A Banach space (X, [[-])) is said to be of cotype f, where f is a non-
negative function on [0, @) provided that there exist b e(0,a], 0 < oo
such that if @, ..., s, is a finite sequence of elements of X and

where r; denotes the ith‘RaJdemacher function, then
n“‘l
D fllal) < €.
{=1

This property is independent of the choice of an equivalent norm
on X. It wag observed in [11] that X is of cotype & where & = dx ¢
[0,2]-R, is the modulus of convexity of (X, [|-[l). (This is a generaliz-
ation of Kadec’s theorem on unconditionally convergent series [17], which
can be deduced from the latter theorem and known results.)

In [7] we proved a partial converse to that result. Namely, the
Banach space X can be given an equivalent norm, [|-|{l, such that

) Sz (e) = o (e),


GUEST


216 T. Figiel

for some ¢ > 0 and sufficiently small &> 0, provided that X is of cotype
f, admits an equivalent uniformly convex norm and has an unconditional
bagis. The latter condition can be replaced by “X has lu.st., i.e. local
unconditional structure in the sense of [3]". This we do in Corollary 5.2
below. This condition cannot just be dropped; the corresponding example
has been constructed in [30]. In fact we prove more than in [7], viz.

euf(8) < g(6) < 62 8(s),

for small ¢ > 0, where ¢;, ¢, >0 and g is supermultiplicative, i.e. g(ts)
> gltyg(s) for 0 <4, s <1 (Corollary 5.3). This answers a question asked
in [B].

Let us remark that there exist uniformly convex Banach spaces

with unconditional basis which do not admit best modulus of convexity
in the sense defined in [5] (the construction given in [8] is motivated
by the notion of cotype defined in Section 2).

We do not know whether it would suffice to assume only that X is
a complemented subspace of a Banach lattice (this was asserted in [7],
Remark 1). We can only prove a slightly weaker result (Proposition 5.4).
TFor this we need, however, a stronger version of Proposition 2.6 (ii) from
[10], which we prove in Section 4 using the Lions—Peetre interpolation
technique. We obtain that an operator I: X—Y, where the Banach
gpaces ¥ and X* do not contain I%’s uniformly (cf. [107]) factors through
a superreflexive Banach lattice provided that it factors, through a lattice
(Theorem 4..6).

.In Section 1 we prove that a Banach space of cotype f is also of
cotype F, where the function F satisfies F(¢) > f(¢) for small £ > 0 and
has some additional properties that are repeatedly used in the sequel
(Theorem 1.8). ’

Sections 2, 3, 4 contain auxiliary results which can be applied also
in other situations. For instance, we obtain a simple direct proof of

B. Maurey’s theorem [24] about (p, ¢)-absolutely summing operators

defined on C(K) spaces (cf. Corollary 4.3).

‘We also give a proof that a Banach space X with unconditional
basis is complemented in a Banach space ¥ with symmetric basis, which
admits moduli of convexity not worse than those of X. Namely, the
space Y constructed in [2] has this property (ef. Remark 3 in [7]).

Let us mention that necessary and sufficient conditions for X to
admit a norm satisfying («) can be found in [29] and [12]. The general
case requires martingale inequalities rather than cotype properties.

Our notation is standard except perhaps that occasionally 47 stands
for the set of all funetions f: J—>4 and AY) denotes the set of those
f e A7 that are 0 off a finite subset of J (here J can be an arbitrary seb
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and 4 is either a linear space or 4 = R ). N denotes the set of positive
integers.

1. Lower estimates for Rademacher averages. In this section (X, II-1b
is a fixed Bamnach space with dim X > 1. Let B(X) be the set of those
t e R™ for which there exists # € X™ such that |[#(s)] = [£(s)| for each
4 and

oflllzw(i)h(s) [ as<1.

It follows from the contraction principle (cf. [25]) that B(X) is solid,
Le. if ¢, s e B™), |s(¢)| < [¢()| for each i and teB(X), then s eB(X).

Let go: B™—>R, be the gauge of the set B(X) and let g, 1 < p< oo,
denote the gauge of B (L,(X)). One can show (cf. [6], Lemma 13) that,
for 1< p < oo, the set B(L,(X)) coincides with the p-convex hull of
B(X). Bquivalently, the gauge g, of B(L,(X)) is the greatest p-convex
norm on R™ majorized by q,. We shall be using only the norm g, and
we shall write ¢ instead of ¢,.

For teR™ and B < N let Bt e R™ be defined by (Bt)(i) = ¢(d)
for ¢ e B and (Bt)(4) = 0 otherwise.

ProposrrioN 1.1. Let A, 4;, ... be a sequence of mutually disjoint
finite non-empty subsets of N. Let t € B™ and set t; = A;t. Then

W g(la@®)) < a0,
(i) go(f) < Qo((”tj”ll)):
(iil) q(£) < ba((I4lh,))
where b < oo is a constant depending only on X.

Proof. (i) Given > 1, pick # € X™ g0 that |[w(i)] = |t(s)] for
each i and

f&lgwum(s) [] ds < 7, (%)

Using the convexity of g, we get

ol (] Sewral)a)<fof(] Zecrio)] o

<J
<folsfl”27~j(u) gm('z)ﬂ(s) H du
0 % f
!

/] 3 X atm o) | awds
0 'iEAj

'

1

0 J=1
1
1

= ”29&(13)7,-('0) “ av.

i
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The lagt equality follows from the fact that the two vector random
variables have identical distribution. Since

a(t) < aolty) < f !|‘§m<im(s) | s,
0 .

we obtain q((q(t,)))< 7g,(t) and, letting » approach 1, we get
a((g) < go(t)- {

Since the left-hand side defines a seminorm on R®™ that is dominated
by go, it must also be dominated by g. This proves (i).

(ii) It is enough to prove that if » e B®™ and # is obtained from
% by changing just two coordinates, say u(j) and (%), so that %(j) =0
and %(k) = |w(f)|+ lu(k)|, then g,(#) > go(w).

To prove this fix 7> 1 and let # e X™ satisty [lo(4)] = |%(s)| and

fIHZw(i)ﬁ(t) || @ < nao().
0 3

We may assume that #(k) 0. Let o = [u(j)|/@(k), B = |u(k)| /&)
Put y(j) =2(k), y(k) =0, y(@@) =«(3) for ie N\{j, k). Then |u(s)|
= |[(az + By) (7)|| for each i and hence

B < f | X e+ gy yra(o) |
0 i

< “nfl | S atntn| a+a f| D ur] at < ngo(a).

Since 7 > 1 was arbitrary, this proves (ii).

(iii) If X contains %’s uniformly, then it follows from the contraction
principle that g,(f) = max[i(é)| for t e R™ and hence g = g, and the
estimate (iii) holds with b = 1.

Assume therefore that X does not contain I%’s uniformly. Let y,, y,, ...

be a sequence of independent normalized Gaussian random variables on
the probability space ([0, 1], dt) and let 2 e X™. Then

%-V?leZz(im(t) | dt<f1”22(i)y,-(t)” dt<Bf1H2z(i)n(t) | a,
0 1 1] % 0 i

‘where B e [1, o) depends only on X. The first of these estimates is due
to G. Pisier [28], while the second appears in [26]. We shall prove that

(iif) holds with b = 2 B/Vx.
-~ Let g be a real function on N such that > 9(@)2 =1 for each j.
isd; .

e ©
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Put for uw e R™
q(u) = b7'q(@),

where u € R™, (i) = g(¢)w(j) if i € 4;, and %(2) = 0 otherwise.

Tt is clear that § is a norm on R™. Hence, if we prove that §(u) < go(u)
for u e R™, then it will follow that §<Cg,. The estimate (iii) is then
obtained by setting g(s) = ¢(3)/ltyll, i deAy, i(i) #£0 and g(i) =0
otherwise.

Fix e R™ and let 5>1. Pick 2 e X™ go that lw(@)| = [u(3)]
for each i and

[ 1.3 a0 at < ngotw.
0 i

Put 5(i) = g(é)@(j) for i e.4;, #(i) =0 otherwise. Then [B(¢)| = |@(s)]
and, by the properties of Gaussian random variables,

fIHZé(i)mt) [at = fl]Zwum(t) | a. g
[1] 1 ] I

Using the estimates of Maurey and Pisier we getb

(V=/2B) fl | X @@ro || at < ngo()

and hence b g, (#) < 7g,(w). Letting 5 tend to 1 we obtain the estimate
4 (%) < go(w), which completes the proof.
Let f be a non-negative function on [0, ) and let 0 < d < a. We put

wg(f) = sup {Zf(t(i)): teRY, @) <d}.

Clearly, if wg(f) < oo for some d > 0, then X is of cotype f in the sense
defined in the introduction. The converse is also true (cf. Remark 1.4).

Levma 1.2. Let fy be defined for 0 <t << d by the formula

F1(8) = sup {f(u): 0 < u<t}.

Then q(fr) = 4(f). |

Proof. Clearly, f, = f and hence wy(f) = wz(f). On the other hand,
it 5,6 R™ and 0< s(4) <t(9) for each 4, then g(s)<g() and hence,
if g(?) < d, then we have

D fls@) < wa(f)-

1
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Taking the supremum of the left-land side over all the choices of s, we
obtain

Zfl(t(qf)) < w4(f),

‘which proves that wy(f;) < wg(f).

Lemva 1.3, Let f,(t) —511pnf1(t/l/n) and fy(t) -—supufl(t/l/u) Sor
0<e<d. Then f3(1) < 2f,(t) tmd g (fa) < wg(f), b bemg that of Prop-
osition 1.1 (iii).

Proof. Given 0<
7<% <2n. Then

<it<d and w1, let # be an integer such that

uf(tVu) < 2nf, (81Vn) < 2,(8).

The first assertion follows from this estimate.

Now let te R satisty q(t) < d/b. Given any sequence (n(j) ) of

positive integers, pmk d1s30111t subsets A; of N such that 4; has exactly
n(j) elements and put (i) = n(§)"2¢(4) 1f i e4; and ¥(4) = 0 otherwise.
By Proposition 1.1 (iil) we have ¢(f) < bq(t) < d and hence

2 ORI = = 2 A fi) < walf).

Again by taking the supremum of the left-hand side over all the choices
of the n(j)’s we get the desired estimate

Zfz(tm) < wy(f)

Remark 1.4. Let o;(f) denote the number obtained when ¢ is

replaeed by g, in the definition of wd( f)- We shall prove that g2 (f)
<2z (f)

Indeed, the proof of Lemma 1.2 shows also that g (fi) = g (f).
Let f, (¢) = supnfl(t/w) and f; (f) = supuf1 (tju) for 0<t<d. Using

Proposition 1 1 (11) ingtead of 1.1 (iii) in the proof of Lemma 1.3, one gets
o3 (f5) = w0z (f7), f5 () <25 (1),
<t<d. Observe that, if =
and Zt =1, then
j=1

for 0 0, 0<s;<df2 for j=1,2,...,n

s (jj i,-s].) <§:%—f; (25;).
< <

(This estimate follows e.g. from Lemma 2 in [61.)

icm°®
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Now let s e R satisfy g(s) < @/2. There exist 1, , §, € RY) with

qu(s) < &/2andty, ..., t, € R, such that )J =1 andz t;8; = s. Therefore

SUls) = 305 (3 ts0)< 3 3 s 28,0) < 3t () < 2o (-

Since f< fs, this proves our claim that
wgn(f) < 205 (£)-
In the sequel we shall write o(f) instead of w,(f).
LevuMA 1.5. Assume that o(F), o(G) < oo and let
ne) = sup {F(2~H@&2): 1< 27 <1},
‘ sup F(t).‘Then

oi<l
o (b)) < 4o (F)o(d).
Proof. Fix t e R® such that ¢(t) < 1. Define the sets K(j),j=090,1,
., 80 that 4 e K (j) J;f j is the least index for which h(t) = F(27° Y& (27%).
Obwously, for 1 e K (j) we have t(¢) < 277,
For each j we fix a partition .

for 0t <1, where F(1) =

K; = B;UB; U...UB; 14
of K; into disjoint sets such that
]:st) 2_j,
for 1< s< m(j), but ¢(B?) <2‘”, if either B = B;,.or B i3 a proper
subset of a B;,. Clearly, we have ‘
D 6(27(0) < 0(@)
eBj,9

and, splitting B, , into two proper subsets, we get

D G{2Y0) < 20(6)
i€Bj 5
for 1< s << m(j). These estimates yield
DInfa) =) D Fee @i <Z (@~9)(2m(j) +1) o (@)
3 J deK(j)
<[P+ Zr 27 +22mu )F(27)) (@)

Clearly, F(1) < w(F). Also _ZF(Z < o(F) because, if s(j) =277 for

1<j<m and s8(j) =0 othermse, then s e B(X) and hence g(s) < 1.
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Thus it remains to prove that
o
Dm()F(27) < o(F).
i=0 ‘

This, however, follows from Proposition 1.1 (i) and Lemma 1.2. Indeed,
arrange the vectors B; f, where j> 0 and 1<<s<m(f), into a single
sequence (2;) and note that

allat) < a( > =) < gty <1.

k
Since

2 FET)< Y Fila(s) < o(Fy) = o(F),
7 k
the proof is complete.

Let us recall an operation considered in [6]. If f, ¢ are non-negative
functions on [0, 1), we put for 0 <<t < 1 : .

(F9)(t) = sup{fu)g(v): 0O<u, o<1, up =1,

LevwmA 1.6. Let F, @ be as in Lemme 1.5 and let H = FxQ. Assume
that F(2) < BF(32) for 0 < o< 1. Then

o(H) < 4o () o (@),

Proof. Observe that the function 7, defined by the formula of Lemma
1.2 also satisfies the assumptions of our lemma. Since F#*G < Fx@, it
suffices to prove that

o (Fx@) < 4o (F) o(@).
Put for 0t <1 )
h(t) = sup {F,(27)@(271): 1< 277 < 1},
hy (8) = sup{h(z@: o<<u<t}.
It follows from Lemmas 1.2 and 1.5 that
o(h) = o(h) < 4o(F) (@) = do(F) (@),
hence it suffices to prove that F,%@ < fh,.
To this end let 0 <t<<u<1 and let % be the integer such that
2% L tju < 2%, We.have
Iy (t/u)6 (w) < BF1(2%) G (u) < BR(25w) < fhy (3).
Sinee u € (, 1) was arbitrary, this completes the proof.

Lmvwa 1.7. Let F be a function on [0, 1) such that 0 < o(F) =A< oo
and F(z) < F(3x) for 0< o<1, Put F, = T and let B =T*F, for

icm
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n>=1. Let G be defined for 0 <<t <1 by the formula

G = 5] n" O, (8),

n=1
where O = 4Ap. Then, for t,s [0, 1),
G =T, o@<ito(), GE)6(s)<in*06(is).
Proof. The inequality G ()= F () is obvious. It follows from the
previous lemma that o(F,) < w(F)0"Y for » = 1,2, ..., which yields

o(@) <;To(F).
Now observe that, if %, j are positive integers and j < 4%, then

J )
2%“2(79 —n)7r 470‘224772 <3iIRET?,

n=1 n=1

and therefore, if 0 <<, s <1,

GG (s) < (G%E) (ts) < (020" F,)% (m~2 ¢ F,,)) (ts)

1

HE

n,

(nm) 2 P E, o (BS)

H\al

-

7,

8

I

03 3 (um)rOEF(ts) < i 06 (3s).
k=2 ntm=k
This completes the proof.
Theorem 1.8. Let X be a Bamach space and let f: [0, a)—~R, . Assume
that, whenever oy, ..., x, € X satisfy

[I S ar<e,

n
one has 3 f(le) < A.
Theaftlhere exist r, 0 < oo and a function F: R —R, such that
(i) T(5) > (@), for 0<t<a;
(i) The function tr>F(*?) is convex;
(ili) The function t—sF (1)t™" i8 non—increasing;
(iv) F()F(s) < CF(is), for 0 < t, 8 <15
v) If 24,...,2, € X and

fluimﬂi(z)‘[ it =8,

then 3 T (la;l) < O(8* + 8.
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Moreover, r can be any nuwmber such that X is of cotype t" and C depends
on X, a, A, v but not on f.

Proof. Fix r e [2, co) such that X is of cotype g, where g(t) = ¢".
It was proved by B, Maurey and G. Pisier [25] that if there is mo such
an r, then X contains I’s uniformly and hence our assumption on f yields
f#) =0 for 0<?< a, which makes the theorem trivial.

We may, replacing perhaps f by f-+g, assume that f(#) >0 for
0 < i< a By Remark 1.4, we have w,,(f) < 24. Hence, if fi, f», fs are
the functions defined in Lemmas 1.2 and 1.3, then

Wapn(fa) < 2004 (f) < 44.

It is clear that f, satisfies (i). Observe that f; satisfies the following
condition )

(ii") the function f—sf,()t~* is non-decreasing.
Let & = a/2b, and let

sup{faG/u)u: tjd<u<<1}, i 0<
~ iy 1im £y6s), i 1>
Ssd_

£t t< d,
4 (%) i

Using Lemma 1.6, with ¥ (¥) = " and G (t) = f,(t/d), we get

wy(f) <427 04(f) o(g).

Observe that f,(t) > fa(?) for 0 <t < d and f, satisfies (ii’) and (iv). It is
eagy to check that for ¢ > d .
wo(fu) < (0]@) wy(f).

Letting F = f, in Lemma 1.7, we get the function & = f;, which
satisfies (iv). It also satisfies (ii") and (iii) on [0,1), (V) for 6 <1 and
(i) on [0, d;) where d;, = min(d, 1). The latter properties will be fulfilled
on [0, co) if we put for ¢t > 1

S5ty =1 1ifnfs(8)-
8—>1_.

Let fg be the supremum of all functions ¢ that satisfy (i) and ave
majorized by f;. Since f; satisfies (ii’) and (iii), Lemma 2 from [6] yields

27 fs (1) < fo(H) < S5 (0),
for t > 0. Therefore the function f; defined by the formula
Falt) = 2" sup {(t/u) fy(w): u > 1}
satisfies (i), (iii), (iv), (v) and also (i) for te[0, d,).

To make sure that (i) holds for all ¢ < 'd it suffices to multiply f, by
a suitable constant.

The verification of the last statement of the theorem may be omitted.

e ©
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2. Auxiliary facts about lattices. Let L be a vector lattice. A norm
» on L i said to be a lattice norm if |z] < |y| implies p(2) < p(y). Lattice
seminorms on L are defined analogously. A Banach lattice is a Banach
space (L, || [) with a fixed vector lattice structure such that |[-|[ is a lattice
norm on L. A linear subspace I of L is said to be an ideal (or lattice ideal)
of Litzel,yel, |y < || implies ¥ e I. An ideal is called a band if A < I,
supA =z e L implies 2 e 1.

A Banach lattice L is said to be complete (resp. o-complete) if every
non-empty (resp. every countably infinite) subset of L which is bounded
from above has the least upper bound.

By a homomorphism we shall always mean a vector lattice homo-
morphism, i.e. a linear map T: L—>M between vector lattices such that
T(wAy) =TerTy for #,y L.

" Elements #,y € L are said to be disjoint if |z]A |y| = 0.

Let L be .a o-complete Banach lattice and let #, 2 € I be non-negative.
Then there exists P,z = sup(nzAz). We put

n=l

Py = Plr|y+ —Py”

if #,y eL are arbitrary. The operator P,: L—I which we shall call
the projection onto the support of @, is & homomorphism such that P,y = 0
if @, y are disjoint and P,z = # if # is disjoint with each y that is disjoint
with # (cf. [31], Proposition II.2.11).

Let us describe a general scheme for congtructing functions of ele-
ments of a Banach latice (¢f. [18], [19]). (In this scheme the operator
P, can be defined by the formula P,y = g(x, y), where g € %%, g(¢,s) = 0
if ¢t =0 and g(f, s) = s otherwise.) We shall consider only the case of
continuous functions.

Let A™ denote the vector lattice of all functions f: R"— R such that
fltz) =tf(x) for ze R t>0, with the operations defined pointwise.
Let A% denote the vector sublattice of A" generated by the elements
g1 ++-5 §n Where g,(v) = x; for » = (@, ..., @,) € R™.

It was proved by A. I. Yudin [35] (cf. [34], Theorem V.7.2) that
if L is a normed lattice then, given any I, ..., I, € L, there is a (unique)
homomorphism @: Aj—L such that @(g;) =1; for L <i<n.

‘We shall usnally write f(l, ..., 1,) instead of @(f), also when O is
extended to other sublattices of A" For instance, if f = max |g,] = |-l

o
1< o

then

B(f) = max |g;(Lyy orey L)l = Tl V oo V [Tl = W(las e ees W)l e
I<issn ]

Put for fe A
Ifl = sup {|f(=)|: » R, Ilwlllgoé 1}.
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‘Cleaxly, [-[[ is a lattice norm on the sublattice A} of those fe A" that
are continuous at the origin, which makes A7 a Banach lattice. Since
@: A% L preserves the order, it is easy to see that |O] = N(Tyy o+ ens Zn)lll,b

< co. Consequently, if I is a Banach lattice, then @ extends to the closure
@ of A? in A? which, by Stone’s theorem, consists of those f e A" that
are continuous. This extension will still be denoted by &.

Tt is easy to check that if M is another Banach lattice and y: L—2f
is a lattice homomorphism, then

W(fyoes b)) = F o)y ey w (L)

for fe®" 1,...,l, €L In particular, if L is represented as a vector
lattice of real functions with the operations defined pointwise and
w: L—R is the evaluation at a point s, then

Fllyyeeey 1,) (s) ==f(l1(8), B3 ) ln(s))

All properties of the maps ¢ we need are made intuitive by this siraple
observation and representation theorems for lattices (cf. [31], [34]).

To illustrate this procedure let us discuss an example which is
a variation of the above scheme: since the functions f are defined only
on a- subset of R™ and may not be restrictions of elements of ¢”. (One
may note that if I is o-complete then, by extending @ to the sublattice
" of those f e A? that are Baire functions, that example can be reduced
to the general scheme. We prefer, however, not to introduce the assumption
.of g-completeness where it is not necessary.) The specific computations
we make below are to be used in the proof of Proposition 3.2.

Let (L, [|I-) be a Banach lattice and let » e L, # > 0. Put

I ={z€lL: |2|< aw for some a € R}.

By Theorem II.7.4 of [31] there exists a compact space K and
a lattice isomorphism ¥ of C(K) onto I such that ¥(1) = x, where
1eCO(K) is the constant one function. Fix y e L with 0 <y <o and let
7 =¥"y). B pe0([0,1]), define M,: I->I by

Moz =¥ ((pon) ¥ (z)).

Fix ¢> 1 and let y(f) = (1 —19)" for 0 <t << 1. In U(K) there is a unique
&> 0 such that (y7--£9)Ye =1, viz. & = yon. Hence there is a unique
nonnegative zel such that (jy|%+ 129" = o, viz. 2 = P(&) = M,o.
Now, if ¢ e ([0, 1]) is nonnegative and ¢(f) = 0 for ¢ < 4, then

P(0)p () < (v(a)/a) @)ty
for 0<t< 1, and thus

Moz =P ((pon)(yon) < (v(a)/a) ¥ ((pon)-n) = (p(a)/a) Myy.
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Timvva 2.1. Let s be a positive integer and let a; = 1 —e T for0g<j<s+
+1, a5y, = 1. Put @ = M, where @g, @1, -, P s the partition of unity
on [0, 1] which consists of continuous piecewise linear functions with nodes
at the a’s and such that suppe; = [4;, @io] for 0<<j<s. Then

! 1
(i) X Qw =w, Q| A |Qw| =0, for wel, k>j+1
=0

(i) @z —y) = e Qu, for 0<j<s—1,
(i) 0 < Qe < C1e7Qyy, for 1< <s,

where 0y = (e(L—e™)"2—1)"%. One has 1 < C; < e*/(¢—1).
Proof. (i) is obvious. (i) follows from

@z —y) = ¥((pom)(1—n) > ¥ gon) = e Q.
To obtain (iii) observe that if a; < a <1, then
(w(@)/a)? = (1 —a)[(a™*—1)/1—a)]< (L —a) (a7 —1)/(1 — a)l;
hence, letting @ = a; = 1—e¢™/, we get
p(ay)ja; < 670,

which yields (iii), because @;2< (w(a;) /a;)Q;y. The estimates of O, are
left to the reader (in fact C; < 2.03).

Tn Section 3 we shall need the following generalization of the decom-
position lemma for lattices.

TEMMA 2.2. Assume that L is o Banach laitice and p, q= 1. If @y, ...
ey By Yay ovey Yy € L Satisfy

(S =o = (e
je=l

i=1 J

then there exist #;;€ L such that

m n
;] = (2 lzi,j\q)llq; 1y = (2 ]Zi,jlﬂ)”p;
j=1 =1
for Lgigm, 1Kj<<m.

Proof. The lemma is obvious if L is a C(XK) space and x(w) =1
for w ¢ K. (One can take z;;(w) = w;(w)y; (w).) The general case reduces
o this one immediately by considering the isomorphism Y. O(K)—>I we
have digseussed above.

There is a natural generalization of the notion of (g, p)-summing
operators to the case of Banach lattices. We recall some definitions and
results from [19] and [24].

Tet 1< p<g< oo. A linear operator « mapping a Banach lattice
T into & Banach space X is said to be of fype < (p, q) provided there is
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a constant ¢ > 0 such that

(St < 0 1],

for every finite sequence @, ..., %, € L. The smallest ¢ with this property
is denoted by K, ,(u). Obviously, if L = O(K), then u: L—X is of type
< (p, g) if and only if it is (¢, p)-absolutely summing and K, (w) = m,, ().

It I: L->L is the identity operator and K,,(I)< oo, then I is
said to be of type < ¢ (cf. [19]); we say that L has g-concave norm (cf. [97)
if K,,(I)<1. Finally, L is said to be g-Besselian (with constant ()

provided that
(S < 0] 3
t=1 i=1

for every disjoint finite sequence @, ..., #, € L. (This means that every
sequence of disjoint non-zero vectors in L is a g-Besselian basic sequence
with. congtant C.)

An operator » mapping a Banach space X into a Banach lattice
L is said to be of type = (q, p) provided that for some C> 0

)

n

.n
1/ A
(3 st} < 0 [ F )™,
) i=1 i=1
fo;* every finite sequence @, ..., s, € X. K®?(v) iy the least ¢ with this
property. The lattice I is of type > p, if E»?(I) < oo, I being the identity
on L. We say that L has p-convex norm it K¥?(I) <1 and L is p-Hilbertian
(with constant. C) if :
n
| e
i=1

for disjoint sequences @, ..., @, € L.

One can prove that K%(v) = K, (v*), where p’ =

) A : P’ =pllp—1)

¢ = gl(g—1) and o*: LI*~X* is the adjoint of v, and similarly f01i
w: I->X one has K, ,(u) = E*7(u*) (cf. [19], [24]).

The following two lemmas will be used in Section 4.

Levva 2.3. Let L be a g-Besselian Banach lattice, 1 < ¢ < oo. Then
L is a complete lattice and the comonical image (L) of L in L** is com-
plemented.

Proof. Clearly, no Banach sublattice of L can be isomorphic (as
a vector. lattife) to ¢,. Therefore, by Proposition IT.5.15 of [31], »(L) is
a pz}nd in L**. Since L™ is complete, so is %(L) and hence L. By Prop-
osition IL.5.2 of [31], the band projection of I** onto »(L) is continuous.
This completes the proof of the lemma.

n

|< 0> i)

=1
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LuvmmA 2.4. Let T: LA be o homomorphism of Banach lattices.
If T(L) is (norm) dense in A and order intervals in L are weakly compact,
then T(L) is a lattice ideal in A, and henoe T*: A*—L* is a lattioe homo-
morphism.

Proof. Let yed, vel, || < Tw. We ave to prove that y = Tz
for some z & L. There exists a sequence (z,) in L such that [T, —yl—-0.
Let 2, = (x,Az)v(—a). Clearly, Tz, = (Tw,ATx)v T(—x) also con-
verges to y. The order interval [ —a, 4] being weakly compact, there is.
a subsequence (z,,) weakly convergent to a z & [ —x, x]. Since T is weakly
continuous, T = limT%,, = y. This proves that T(L) is a lattice ideal
in A. The remaining assertion follows from this fact (cf. Exercise I111.24
() in [31]).

Tet us niow introduce a more general notion of type and cotype of
a Banach space X. If R™ c B < BY and (B, ||-|g) is 2 Banach lattice,
then X is said to be of cotype E (with constant 0) provided that

1
I z<0 [ || X ot @] a,
3 0 i
for @ e X™. Analogously, X is said to be of type B if

Of | S ety | a < 0l (i @) -

Observe that, if X iz of cotype f in the sense defined in the intro-
duction, then it is of cotype F, F' being the Orlicz function constructed
in Theorem 1.8, and hence it is of cotype B, where F is the Orlicz sequence
space Iy. The converse implication is obvious.

This definition can be given another useful form if ¥ = Lis a Banach
lattice (cf. [24]). It was observed by Maurey that, it @3y ..., @, €L, then

()< | Syeenco] ]
< [ e ae< B (5 )|

The first estimate is a consequence of Khintchine’s inequality (cf. [33],
[13]) and the second follows from the convexity of the lattice norm [[-{-
The constant B in the third inequality can be chosen independently of
the ;s it and only if the lattice L does not contain I%’s uniformly. The
latter condition is equivalent to L being of type< ¢ for gome g << co.

Tiet us recall a construction of Banach lattices. If (L, [} is & Banach
lattice, J is a set and |[-||g is & lattice norm on RV, we put for » e LV

el = H llz () HEHLy
“-’?,”E(L) = n ”m(j)”LHE'
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Clearly, [z and [[-|lgz are lattice norms on L), which are p-convex
if so are [[-{z and |- |[,. We let L(E) (resp. B(L)) denote the completion
of I with respect to [|-llzm (resp. |- luzz). The spaces L(B) and H(L)
can be naturally regarded as lattice ideals of the vector lattice L7,

This construction can be iterated. Obviously, it is associative, i.e.

B(F(@) = (B(E)&

whenever H, ¥, G are Banach lattices and two of them are atomiec.

In Section 5 we shall need the following simple fact.

LevwmA 2.5. Let X, G be Banach lattices and let H be a sequence lattice.
If Q) = 1,(G), X (L) = B(X) and either X or G is an atomic lattice, then

(X)) = B(X().
Proof. Using the associafivity one obtains easily
(X (@) () = X(G() € X(1.(@) < B(X(6)).

The next lemma contains B. Maurey’s characterization of cotype
of Barach lattices.

Levwa 2.6. A Banach lattice L is of cotype B, where E s a sequence
lattice, if and only if

L(l) < B(L).

Proof. Assume first that L(l,) < B(L). By the closed graph theorem,

there is K << oo such that

gy < K llellqy)

for 4 € L(l,). Using the estimate
. 1
lalzay = || ( 2ot <2 ] ij(J‘)n-(t) | a
0

we get that L is of cotype F with constant V2 K.
Now assume that L is of cotype B with constant (. If I does not

contain I’s uniformly, then the other estimate of Maurey yields for
oz e I

@llzmy < O f | 12 a(9)ry0) | @< BO| (Yo ()™" || = BO lolizgy,
7

and therefore L(ly) < B(L).
The case where L does contain I2’s uniformly is trivial, because then

one easily obtains that ||t]; << € for each sequence t e R™ whose terms
are either 0 or 1, and hence

lllzy < Oma,x le (i <O (1], 5

for » € L(l,). This completes the proof.
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Remark. If the lattice L iy of type E, then E(L) < L(l,). The
converse implication holds provided that L does not contain I%’s uniformly.

3. Estimates of lattice morms. Our estimates of the moduli of
convexity will be based on the following simple proposition.

PrOPOSITION 3.1. Let (L, 1) e a p-convexr Banach lattice, 1 < p <

and let h: [0, 11=R. Assume that, if u,veL satisfy [(u*+o" )1’2|[<1
then
— llull.

h(lol) < 1

Then the modulus of convemity of (L, |-|) satisfies the estimate

S(e)>h(3Vp—1e) for O0<s<2.
Proof. Let @,y e L, [z, |lyl <1. Consider functions @, H: R*—>R
given by
Gty 5) = (B + s — 3 (p —1) (t —s) )7,
Htys) = [$(t+3)].

Olearly, G, H e%? (cf. Section 2). Since H < @ (cf. [6] Lemma 25), it
follows that : -

0< (@ +y) = H(w, y)
Put % =G, y), v = %]/p —1|»—4|. Then -
(w02 = (3(] m!”+]yl’”))1“’

<6(e,9).

and hence
(w® + 2" 21 < (B ([lP + lyiP) 2 < 1.

Therefore our assumption on % gives

B+l < ul <1—h(lpl) =1—h(3p —1lz—yl),
which completes the proof.

Remark. In [7] we use a slightly dlffewnt argument which ylelds
the estimate d;(e) > L (p —1)h(%e).

The next proposition is a partial generalization of Proposition 27
in [6] (the variant with a general function M is not needed in the present
context).

PRrOPOSITION 3.2. Let (L, |||*||]) be a Banach lattice and let p,q=1.
Let |[-|| be a lattice seminorm on L such that

w117 > Jul?+ ||1o)]12,

whenever u, v € L are disjoint.
Then there exists a constant O = C(p, q) such that if 4,2 e L satisfy

2 — Studia Mathematica LXVIIL3
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(g 12+ 1219)Y9]] < 1, then
llell < O (L 1119111}

where
R e i ¢<p,
p(t) =t (log(e/n))' ™ if ¢ =0,
i i 9>p.

Proof. Write # = (ly|9+[¢[9)%, ¢ =1—|||y||| and assume, without
loss of generality, that ||jo]|] =1, 0 < [|lyl]l <1, y> 0, 2> 0. Let s be
the positive integer such that e™* < i< ¢° and let ¢, ..., ¢, be the
homomorphisms constructed in Lemma 2.1. Pubt

no = [Qoall, n; = @yl for 1<j<s,
and observe that, by Lemma 2.1 (iii),
IQs2ll < Cre¥%y;  for 0<j<s.

Hence, using Lemma 2.1 (i) and the triangle inequality for ||-{l, we obtain
) 8 8—1
i< 1052l < Oy (74 3 6790n,).
i=0 i=o
Olearly, ¢~ %< t/7< p(f). Suppose we know that
(%) 26_111}’<p02t,

j<s

where O, is an absolute constant. Then the estimate of |2|| can be completed
as follows. Assume first that p > 1 and let » satisfy p™* +2(1 —p™%) =¢7%
Using the Holder inequality we get

8—

sj‘l ey, <( d o ,7:1,57)1/1” (E e_j,.)l—l/p < plle QP gl (2 (r, s))l"l/p’
i=0 = =0

where ) (r,s). denotes the sum of the geometric progression, which is

SA—e Tt <14r = (pg—2¢+p)(p—¢q) i g<p,
<

s < log(e/t) teg=p
< g"'(s'l)/(l __e—r) < tr/(l —GT) < (1 -1 /7‘)#‘
= Up(g—1)(g—p) Hg>p.

In each case we get the right estimate for |[2[. The case p = 1 follows now
easily by continuity (a direct argument is also available), hence it remains
to prove (x). _

To this end pick a positive functional o* e L* so that [{|a*|}] =1,
2*(y) = llylll =1—1. Write a; = 2™ (@) for 0<j<s. Using Lemma

©
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2.1 (i) and (ii), we get
Ltz @) —o(y) =a*(@—y) = D)o (Q(z—y)

i<s

> 2 eI Qi) = 672 Z e a;.

i<s j<s
Now, since @, and @« are disjoint if %k > j41,

78 = IQoal” < llal|P — Hlf Q"
k=2

<P~z —Qu2~0:17||l) <P —lly —Qoy —Q:¥!|1)
<P —2"y —Quy —91y) < p(t+ao+ay),
and similarly, for 1<j<<s—1,

77 = 1QI° < llylPP — 11y — Q519 — @1y — Qs 9Il1P
< pUIYIT =11y —@j—1y — @5y —Qsa9111)
<P " (Y) 2"y —Qr19 — Q9 —Q1.19))
=P (a'j—l + &+ aj+1) .
These estimates yield
Ze"n}’ <pt+ple+l4eh) 2 ela; << pt(l4e+e2+ed),
i<s ! i<s
which completes the proof.

In the next three lemmas let (I, |[-) be a Banach lattice and let
¢ be a continuous seminorm on L. Let F be a function on [0, co) such
that F(1) > 0, the function ¢+ F(?) is convex for some p>1 and
for some 7 << co one has F(is) > t"F(s), if s> 0,0<t<1. We assume
that there is 0, F(1) < 0 < oo, such that

n

D'F(g) < 0,

=1
n

for all finite sequences i, ..., %, e L with [ (Y «)"*|| <1, and set for
i=1

wel

ljlel|| = inf {t > O;Zn:‘ F(q(;) /1) < F(1) whenever |z| = (5;' jwda)m}.

T=1. 4=
LemMA 3.3. |||-]| 48 @ lattice seminorm on L such that

(@) < [llo|l] < (C/F Q)P o] for weL.
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n

Proof. Suppose @ e LN{0}, |o| = (), |»;f)*". Since C; = (0B @)

- oi=1

> 1, we have

' (gl (O ) < 05 2T latao ied) < 0770, = F(1).

i=1
This proves that [||z]|| < C,ll| for » e L. It is clear that || -1|| is homo-
geneous and that ||lz|l] = g(z) and |||]]] = ||||=||]| for x e.L. To prove
that |||-]|| satisties the triangle inequality one may apply Lemma 3.5

below with p = 1 and ¢ replaced by the functional ¢’ defined for z e L
by ¢'(#) = sup{g(y): ly| < |2[}, which obviously is 1-convex. Indeed, the
seminorm [}|-|]|’ defined by the formula, analogous to that for [{|-]ll,
in which ¢ is replaced by ¢’ is identical with [[{-]l].

Levwa 8.4, If @, 9 € L satisfy ||| 9P| <1, then

Flg) <rF@®)E—{Hl2ll).
Furthermore, if for 1,5 €[0,1)
P F(s) < G (1),
then F(||lyl1]) < G5 (1 —|lI@l]]) and also one has

&
2Pl 1) < 0
=1 .

I
whenever 2y, ...,z €L and ||| (3 £ < 1.
!

Proof. Fix elements z, y ¢ L such that |||(=*+4*)"*(|| < 1. Consider
a pair of decompositions :

ol = (S ), i = (f el
k=1

J=1

m 7
Write A = 3 Flq(x,)), B = Y, F(q(yy). Clearly, A+B<F(L). Now, if
J=1 Je=1
(1—B/F(1))" < a<1, then
m n '
M F(g(m))o) < a7 3 Fglay) < P(1),
J=1 J=1
gince obviously 7 > p > 1. It follows that
‘ lllelll < (L —B/F (L) <1-B/rF(1),

or B < rF(1){1—|||z||), which in the special case n =1, y, = y implies
the first assertion of the lemma. '
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I F is supermultiplicative and |||y||| # 0, then

P (g M) F I < 0 X Fla) < GrF 1) —ll1)-

Taking the supremum over all the decompositions of ¥ and then dividing
by F(1) we get

F(llyhh < Car(@—Iil2l1}-

This inequality is obvious, if {||y|{| = 0.
Finally, similar estimates give

n

D'F (gl sl E (el + > F (gt M) F (gl
j=1 k=1 :

n

<0, 3 P (a(6) + 0, X F(aws)) — Ol A +B) < GF(L),

= =1
which yields again
F ([} +F Uil < Cs-

The case where the pair «, y is replaced. by an. arbitrary finite sequence
() with ||(3 #)**| <1 can be handled in a similar manner. This com-
pletes the proof of the lemma. :

LeMMmA 3.5. If q is p-convex lattice morm, them so is |||-1|l. If ¢ ds
p-Hilbertian with constani 1, then so s |[{-[]|.

Proof. We shall consider both cases simultaneously. Let @, y,z < L,
le| = (jo? + |y|*)"?. We are to prove that |llzlll < (I[lo]l[P+I[lyll[)""
Assume, without loss of generality, that |||»|||®+|||y|||" = 1. Consider

n
a decomposition Jo| = ( 3 l;%)%. By Lemma 2.2, there exist @, ..., %y,
J=1 n ki3 o .
Y1y -y Yo € L such that |z| = (21 lmjlz)my ly] = ( |’!/j|2)1/' and (Joy® 4
i= =1
+ g PP = |, for 1 <j < n. Thus, if ¢ is p-convex, then

q(z) < (Ql(f”j)p + Ql(i’/j)“)llp-
The same estimate holds if #,y are disjoint and g is p-Hilbertian with
constant 1, because 0< |zl A |y;] < |#[A Jy] = 0 and |5] = |9+ |yl (in
fact 2 = @;--y,). Hence, by the convexity of F ('), we have
Plg(e) < P (@) +a(y,)7))
< B((1llo " (o) 2l 1P+ 11y 12 (g o) Mgl 1)7))
< el 1P (g (o) 1 11@111) + Iy 1P F (g () Nt 1) -
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Summing over j, we obtain the estimate

D Fg() < lllallPE QL) +yIIPF (L) =

which implies that |||2||] <1 and thus completes the proof.

Remark. It is easy to see that if ¢’ is another seminorm on I such
that Ag(x) < ¢ (#) < Bq(#) for & € L, then the corresponding norm |||-|||’
satisties A [||z]]] < |l|#]]|' < Bl||»||| for » L. Therefore, if ¢’ is p-Hil-
bertian with constant ¢’, then so is [[]-]]|".

(1),

4. Factorization and interpolation. Lt L be a Banach lattice and
let X be a Banach space. Let T': L—X be a linear operator. For # e L
let A(x) denote the set of all sequences (x;) of elements of I with finitely
many non-zero terms such that 2 ]w,t[ < |#| and the @3 are mutually

digjoint. We put for # e L and 1< 00
lellg = sup {I( uTwiu)n,q: (@) e U@},
Ly = {weL: lzlg < oo}.
Levma 4.1. -lg @8 @ lattice seminorm on L and, if ¢ < oo, then
iy + iy <

whenever @, y € Ly, are disjoint.

Proof. The only thing that needs checking is the triangle inequality
for [[*lly- Liet @, y € L, and let (2;) e A(w+y). It follows from. the decom-
position lemma for lattices (cf. [31], Proposition I1.1.6) that there exist
(w;) e W), (y;) € U(y) such that z;+y, = ¢, for each 4. Thus

(| T2l < [ (1Tl 1T,
< Il(HTm‘I:H)HZq + ”( "Ti'/i”)“lq < “‘UH(q) + "?/H(q) .

This shows that le+ylig < [[m[[(q)-}-llyl[(q) and completes the proof.

TeROREM 4.2. Let (L, |[-)) be @ Banach lattice, let (X, ||| x) be & Banach
space and let T: L—-X be an operator such that

(i< 5] Sal,
=1 qe=1

whenever ©,, ..., &, € L are disjoint.

Then L admv,ts am equivalent norm ||+ ||| such that, if either L < p < ¢ <
or p = q = 1, one has, for ,y e L,

IT2l% < C(g, 2 (11wl + ly (P22 — ~llylY,
T2 < C(g, 7Y (11I(el + 1y 1) I =111
the constants being those of Proposition 3.2.

m + yl[&),
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One cam take |[jo]|] = (le|?+ l[=i%)"¢ for © e L.

Proof. The assumptions imply that [z, << Blzl, for #e L, and
hence Ly = L. It follows from Lemma 4.1 that Proposition 3.2 may
be applied with |[|-]|| defined as above, |-|[ replaced by [-li, and p by ¢.
Since [[Tzlx < l2lly, the theorem follows immediately.

COROLLARY 4.3 [24]. Let T sotisfy the assumpitions of Theorem 4.2 and
let w,v satisfy either LK< u<v =g, or 4 =0>qor else u =v =q = 1.
Then

E,,(T)<2"20(q, w)B.
Proof. Assuine, without loss of generality, that B = 1. Then the
norm |}|-]|] defined in Theorem 4.2 satisfies |||»||| < 2Y4|lw|, for = e L.
I 2, ...,0, el and 1 << n, then

T < O(g, wr

5w

Adding up these estimates, we get

S < o (X 1) ™"
i=1 . J<n

which combined with. the pi"evious estimate for ||| -{||, proves the corollary.

COROLLARY 4.4 (cf. [9]). A g-Besselian Banach lattice L admits for
each r > ¢ an equivalent r-concave norm.

Proof. The required 7-concave morm ||[-||| can be defined by the

usual formula
lialll = swp {( X o }'s @2 T, lal = (3]}

Tt follows from Corollary 4.3 that |||z||] < 2Y20(q, )0l for = e L, if

~[I(3; ™

)

g, w)’

T is ¢-Besselian with constant . The proof that |||-]|| is 2 norm mimics
that of Lemma 3.5.
The norms |||+l We have defined above lead to some useful fac-

torizations of the operator I': L-»X, generalizing those in [10].

The subspace I = {& € L: ||, = 0} does not depend on ¢ and is
a lattice ideal of L. Fix 1< ¢< oo and let A, denote the completion
of the quotient lattice Ly, /I with respect to the norm induced by |- lig-
‘We make A, a Banach lattice by extending the lattice operations and
the norm from Iy,/I. The norm of Ay, will still be written as |-[i-
There is a natural lattice homomorphism A: Lg—Ay which is the
composition of the quotient map of Ly onto Ly /I and the embedding
into the completion. Since |4z, = [T#lx for = & Ly, there is a unique
continuous operator B: A,—X such that BAz = Twfor # € L,. Clearly,
IBII<1.
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I Ly = L, then the pair 4, B will be called the g-factorization
of T'. - L
The obvious estimate [0llicoy < ITMMNw|| for @el, implies that
Ly = L, i.e. the operator T admits co-factorization. If ¢ < co is the
(g, 1)-absolutely summing norm of the identity on Z, then Izllgy < Ollell,
hence Ly, = L and L is g-Besselian with constant (. More generally,
Ly = L it and only if T is of type < (1, ¢). In fact K, ,(T) is the least
congtant O such that [[z], < 0 lzll, for @ e L (cf. B. Maurey [24]).

Remark 4.5. The oco-factorization 4 : LAy, B: dpoy—>X of the
operator I': L-»X has the following interesting property.

If ¢, p are lattice seminorms on R" such that

ULzl ooy (1Tl < Nl (1 -y )
for all #,,...,®, €L, then one also hasg

p(ldw,ll, ..., 14zl < llp(@y, ..., @)

An analogous assertion holds if @, ..., s, are supposed to be disjoint.
This fact is an immediate consequence of the definitions, because
if ;6L and | < |oy| for 1< i< n, then

0oy .y 2) < @y, ...,m,).

In particular, letting y(iy,...,1,) = [|(ti)l!lz and @by, ..., 1,) =
Kp,q(T)][(ti)n,z, we. obtain that K, ,(4) = K, ,(T) (the estimate “>7 is
obvious). This shows that the study of operators of type < (p, @) can be
reduced to the case of lattice homomorphisms.

THEOREM 4.6. Let X, ¥ be Banach spaces such that X* and Y do not
contain 13s uwiformly. If a Unear operator T: XY factors through
a Banach lattice, then it factors through a superreflemive Banach lattice.

Proof. We shall first deduce the result (using the methods of [10) 1
from the following special case.

(4.6") If B: A4, is & homomorphism of Banach lattices, A is p-Hil-
bertian and Ay is g-Besselion, where 1 < p, q < oo , then R factors through
a superreflesive Banach lattice Z. ] ‘

© Our assumptions imply that there existy -q < oo §uch that each
operator mapping a Banach lattice into either-X* or ¥ admits g-factoriz-
ation. Therefore, since T'factors through a Banach lattice, it also factors
through a g-Besselian Banach lattice L, say T = Bo 4, where A: XTI,
B: L-»Y. By Lemma 2.3, there exists P: I**-»1 such that Pouz, is
the identity on L. ‘ ' . )

- Let C: L*-»Lé‘, and D: Ly->X* he the g-factorization of A*
By Corollary 4.3, L(g) is of type < (1, ¢), hence its dual A is p-Hilbertian
for p = ¢/(g —1). :
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Let B: A—d, and S: 4,~+Y be the g-factorization of the operator
BoPo(". It follows from (4.6) that B factors through a superreflexive
Banach lattice, hence so does So Ro D*oxy = T.

The proof of (4.6) requires more work and we postpone it till the
end of this section.

Theorem 4.6 yields, by letting T' be the identity on X, the following
result found. in [10] (it has been noticed in [16] that the proof in [10]
is wrong).

CoROLLARY 4.7. If X and X* do wot contain I%’s uniformly and X is
isomorplic o a complemented subspace of a Bamach lattice, then X is iso-
morphic to a complemented subspace of a superreflexive Bamach lattice.

Remark. The example of a non-reflexive Banach space X which
does not contain IP’s uniformly, due to R.C. James [14], shows that,
if T fails the factorization assumption, then it may even not be weakly
compact. : '

To prove (4.6") we reduce it first to a problem about interpolation
spaces.

Thus we are given Banach lattices (4, (-]) and (A, |['],) and
a homomorphism R: A->4;. We may and do assume that [R| = 1.
Moreover, 4 is p,-Hilbertian for some p, > 1 (with constant €) and A, is
g-Besselian for some g < oo (and hence, by Lemma 2.3, A, is complete).
Put . : )

Ao = {w e d;: |w] < Ry for some y e A},

lell = int {{iyll: y 4, |2/ < Ry},

for @ € 4,. It is easy to check that [ [[, is & lattice norm on Ag, ol < lzllo
for # €4, and [Ra|, < |lz|| for 2 e 4. In particular, R(4) = A,. Since
Ay is a lattice ideal in 4, we see that (4, [ 1lo) is a complete Banach
lattice. Let us check that 4, is also p,-Hilbertian with constant €. Indeed,
let ©y,..., 2, €4,. Fix b>1 and pick y,,...,y, €4 so that |z, < By,
and ;[ <Dl forl <i<n. Ko = [my]v...v Bl e dpand y = jyi]v ...
.oV |y, €4, then

Iy < € ( Slyalre)'™ < b ( 3 o .

Since |z| < Ry, the right-hand side gives an estimate for |z[,. Letting
b tend to 1, we get the desired estimate. o

Now let 9 €(0,1) and p >1 be fixed. Let us recall a definition of
the intermediate space Z = (4y, 4,),, of Lions and Peetre [22]. Fix
§>0andlet y =£—§/0. Set forzed; and n =0, +1, 42, ...

[, = int {max ("Bl " [wlle): @ = b+w, we Ay,

lalll = ( ik |,

Pye= - 00

Z = (Ag; Ay)o, = {w € Ay: |||@]]| < oo}.
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The set Z depends only on & and p. Smce A, is a lattice ideal in 4,, it
follows from the decomposition lemma for lattices that the I In’s are
lattice norms on A, equivalent to [[-|,, and hence Z is a lattice ideal in 4;.

Since (Z, ||| -]} is a Banach space, we infer that it is a complete Banach
lattice.
We ghould mention that |||-]|| i§ equivalent to (but differs slightly

from) the norms used by Lions and Peetre. The reader may consult
Beauzamy [1] where this subject iy diseussed in more detail.

Now we can formulate a technical lemma.

LemMA 4.8, Let Ay, Ay, Z be as above. Then

(i) the lattice Z is g'-Besselian for some ¢’ < oo,

(i) #f (A, || 1L) 48 py-Hilbertian for some p, = 1 and p~* =
997, then Z is p-Hilbertian.

Proof. (ii) B. Beauzamy has proved an analogous result ([l], Prop-
osition 4) that the space 4 = (4, 4,)s, interpolating between Banach
spaces Ay, 4, (4; being of (Rademacher) type p,, for ¢ =0, 1) is of type
p it p™t = (1—9)p; +9pTh In our case both the hypotheses and the
conclusion are weaker (4, may contain I2’s uniformly). However, Beau-
zamy’s proof can eagily be adapted to the present gituation. Changes
to be made consist in takmg a disjoint sequence Uyy ooy Uy i0 Z, choosing

the function w(f) so that f u(l) @t =u = 2 w, and letting u,(t) be the

=1
image of u(?) under the 1)1‘0]60’(‘:10]1 onto the support of u;.
jections map 4, into itself, because A, is an ideal.)

Some (mostly notational) simplifications are possible in our case,
but the use of the results of [22] and [27] cannot be avoided. (Beanzamy
usges another norm on Z whose equivalence with ||[-]]| is a result of [22].)

(i) It is enough to prove that there exist v (0, 1) and a positive
integer m such that, if Y, ..., 2" are disjoint vectors in Z, then

(L —9)p; -+

(Those pro-

<] S
for some j < m. A direct proof that this property implies that Z is ¢'-Besse-
lian for some ¢’ < oo can be found in [15] or [24].

Since /11 is g-Besselian, there exists a positive integer % such that,

it B0, ..., b™ are disjoint vectors in A, then
mlnl[bm| < o 5” Zb(a)H
Let 2™, ..., &% be disjoint vectors in Z and let

0 =1—}(1—egmhy,
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We shall prove that
> NP < 2ke| 3'e|[7.
i<k <3k

This will show that the numbers m = 2k and v = o' satisty the property
formulated above and thus it will complete the proof of the lemma. .

Fiz f>1 and write 2 = > 2%, For each integer n fix a decompo-
i<k
gition # = b, +w,, %0 that the numbers

a, = max(e™|b,ll;, e,

satisfy
D a < Bl
Put
={neZ: a,_,>e"a,}.
Let P;, 1< j< 2k, denote the projection (in 4,) onto the support of

2 (here we use the o-completeness of A,). Write
wd) = Pw,, b =Pb,.
Clearly, wY € 4, (because 4, is a lattice ideal) and
AN = Pz = Py(b,+w,) = b +wld.
Observe that, if
(%)

then one has

“bm h<e™ ;"bn—lnh
k9, < max (652411, €™ w2 4llo)
6”maX(6<""1)EIIbn—xlh, &7 [, Wy, —1lfo)

= ¢"aq,

'//\//\

n—1*

Since 3 b0, =b,, the definition of k yields that () is satistied for

i<tk
at leagt & values of j. Consequently, if n e Z\§, then
le(”‘ﬁ < km-}-k(e”an_l)p
j<2k

< kaB+T(e™a,)? = k(14 e™?)ad,

|z”’|1’ 2kaZ, hence writing

<2k
— D
B = E aoZ,

—_ vy
4 =D,
neS neZ\S

For n & 8§ we have
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we have

Zl”z(f)mp - Ele(a')iﬁ

<2k j<ok n
- 2 2 Iz(d)lg + Z Z Iz(j)lg
nel j<2k ngS F<2l
< 2kA+ (L e B

= 2% (4 +B)(1—-11;(1
If we know that
() B> (1—6™")(4+B),

then the right-hand side can be estimated by 2k8[|[2]]|? ¢ and () followé
by letting g tend to 1.
To prove (&) write for neZ

— ") B (A + B)).

p(n) = sup{m e Z\8: m < n}
(the latter set cannot be empty). Observe that, if ¢ = n—y(n), then
. a, < gz Oy - .

Using this estimate, we get. easily

445=Sa= 5 3 &
- neZ mey(S) uEw_l({m))
ap gmpli = B(1 6’”’/2) 1

which proves (&%) and completes the proof of the lemma.

Now we can complete the proof of Theorem 4.6 by establishing Prop-
osition (4.8'). In fact, we shall obtain a slightly stronger result.

COROLLARY 4.9. If 1 < p’ < p, then the latlice Z in (4.6") can be chosen
to be p'-Hilbertian.

Proof. The homomorphism R of (4.6) factors through the embedding
Aq—>4;, hence it factors through the interpolating space Z =(dy, 4;)s .,
where ¢ = (p—p')[p’'(p —1). Since the lattice 4 in (4.6’), and hence also
g is p-Hilbertian, and obviously, 4, is 1-Hilbertian, it follows from Lemma
4.8 (ii) that Z is p’-Hilbertian. By part (i) of that lemma, Z ig also ¢'-
Besselian for some g’ < co. Therefore Z is superreflexive (cf. [15], or

Proposition 24 and Corollary 28 in. [6]). (This follows also from CQorollaries
4.4 and 5.2 in the present paper,)

5. Some applications. There are many instances where the methods
developed in previous sections yield equivalent renorming of a Banach
lattice L, after which some geometric properties’ of I become obvious
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consequences of the corresponding special properties of the new norm.
In the casé of cotype this is done in the following result.

TuroreM 5.1. Let (L, |-|) be a Banach lattice. Assume that L s of
cotype f. Then there exists an equivalent lattice norm |[|}-1[| on L and a con-
stant O such that, if @,y e L satisfy [||(1»1*+ g2 < 1, then

Sy < 0@ — =l

Moreover, if L admits an equivalent p-conves norm, 1< p < 2; then |[|-||]
can be chosen to be p-convex.

Proof. We may assume that [|- | is p-convex, 1 < p < 2. By Theorem
1.8 we may also assume that f satisfies the conditions (ii), (i), (iv), (V)
of that theorem. Therefore the norm |||-||| can be defined by the formula
of Section 3, in which ¢ is to be replaced by |-l, (the existence of the
constant ¢, follows from Lemma 2.6). It follows from Lemmas 3.3, 3.4
and 3.5 that ||[-|]] satisties the required properties. '

CoROLLARY 5.2. Let X be o superreflexive Banach space with 1u.st.
Assume that X is of cotype f. Then X admits an equivalent morm |||- ||| such
that for some ¢ > 0 the modulus of convewity of (X, |||-|l|) satisfies the
estimate

3(e) = ¢'J(e),
for small s.

Proof. By Corollary 2.2 in [10] there exists a Banach lattice L and
a projection P onto & subspace Y such that I is finitely representable
in ¥ and Y is isomorphie to X. This implies that L is superreflexive and
of cotype f. Consequently, L admits an equivalent norm that is p-convex
for some p > 1 (cf. [9]). Indeed, L* is superreflexive too, hence it is
¢-Besselian for some g < oo. By Corollary 4.4, I* admits an equivalent
g-concave norm if 7> g¢. The dual norm on I is p’-convex, where
p' =r/(r—1). Let p = min(2, p’) and let |||-]|| be the p-convex norm on
L yielded by Theorem 5.1. It follows from Proposition 3.1 that the modu-
Ius of convexity of (L, |||-]|l) satisfies the required estimate. X being
isomorphic to a subspace of L, this completes the -proof.

COROLLARY 5.3. Let (X, |]) be a uniformly conves Bamach space
with Lu.st. Then there exist an equivalent norm on X, a supermultiplicative
Function B and positive constanis oy, ¢, such that the corresponding moduli

of convewmity. satisfy
01 8¢z, (8) < F (&) < 62 Oy ()5

for 0 e,
Pro of. By the result of [11], X is of cotype &x,p- Therefore the
corollary follows from Theorem 1.8 and Corollary 5.2.
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It is not known whether or not a (superreflexive) complemented
subspace of a Banach lattice must have Lu.st. We could not prove the
_exact analogue of Corollary 5.2 for those spaces. Still the following, slightly
weaker result holds.

ProrosITION 5.4. Let X be a superreflenive Banach space isomorphic
to-a complemented subspace of a Banach lattice. Put

¢ =inf{g < co: X is of cotype 1%},
Then X admits an eguivalent norm whose modulus of convewity satisfies

limé(e)/e* = o0,
z—>0+

Jor each ¢ > ¢~. . '

Proof. Fix numbers g > ¢' > ¢* and let p = g/(q—1),p’ = ¢’ /(¢’ —1).
By Corollary 4.7, there exist a superreflexive lattice I and operators
U: XL, V: L—X such that Vo U is the identity on X. Let A: LIy,
B: Ljy—X be the ¢'-factorization of V. It follows from Lemmsa 2.4 tlfat
the adjoint 4*: (L))" >L* of the homomorphism A is a homomorphism
with a trivial kernel. Since (L)* is p'-Hilbertian and 1 < p < p’, we

may apply Corollary 4.9 and obtain that 4* factors through a p-Hilbertian

superreflexive Banach lattice Z. Hence X* is isomorphie to a complemented
subspace of Z, whence X is isomorphic to a complemented subspace of
the g-Besselian superreflexive Banach lattice Z*. Since ¢ > ¢ > 2, it
follows from Proposition 3.1 that Z* is of type < (2, ¢), hence it is of
cotiype %, by Lemma 2.6. By Corollary 5.2, Z* (and hence also X ) admits
an equivalent norm whose modulus of convexity satisfies 0(&) > 0,¢%,
where ¢, > 0. Since ¢ may be an arbitrary number greater than g%, awe
can complete the proot by using Proposition 18 from [6].

Remark. Let X be a Banach space of cotype f such that X = P(L)
where L is a superreflexive Banach lattice and P: L—T is a projection.
A natural approach to prove for X an analogue of Corollary 5.2 would
be to use the norm constructed in Section 3 with q(») = |Px| for » e L.
This does yield a factorization of P through a lattice 4 of cotype f.

Indeed, if @, ..., ®, € L, then '

: 1
Of | gpxir,-(t)” @< [P of I Zmiri(t)‘Jdtg BIP(|( _TEIW)""”,

where B depen.ds only on L, by the result of Maurey used in Lemma 2.6.

Hence we are in a pogition to apply Lemmas 3.3 and 8.4. There is, how-

ever, no reason for the new norm on L to be p-Hilbertian for some p>1

- Let us describe an example. . '
Let p > 1 be fixed. Given a positive inte,

ger 7, let L, be the sub-

space of L,([0,1]) spanned by {&,..., ¢}, where %?) denotes the
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characteristic function of the interval [(k—1)27", %k2™") for 1<k < 2",
and let X, be the subspace of L,, spanned by the first » Rademacher
functions. Let P, denote the orthogonal projection of Iy, onto X,.
Consider the norm |[|]-||| = [{|*|llm) 0n L, defined by the formula of
Section 3 with ¢(#) = [Pyyall for @ € L, and F(t) = i It is easy to
check that

on on—1 2
I 40 =02 4= 3 o
F=1 j=1 j=of—lyy

A1 = 1Pyl = |27 3 £,
i=1

| = il = 1Pl =1,

< O nt2n,

Ly

for 1 <j<2" where 0, depends only on p.

Now let L (resp. X) denote the I,-sum of the sequence (L) (resp-
(X)) and let P((@,)) = (Puy(,) for (m,)eL. It follows from Khin-
tchine’s inequality that X is isomorphic to a Hilbert space, hence one
can take F(t) = #2 to define the norm |]|-||| on L and it follows from our
earlier estimates that the unconditional basis

{dm:1<j<2% n=1,2,..}

is not p’-Hilbertian with respect to the norm [f|-(|| for any p’ > 1.

Another application, mentioned already in [7] is concerned with
the properties of the spaces constructed in [2]. W. J. Davis has proved,
extending earlier results of J. Lindenstrauss [20] and A. Szankowski
[32], that a Banach space X with an unconditional basis is isomorphic
to a complemented subspace of a space ¥ which has a symmetric basis
and is uniformly convex if X is. We shall prove that his construction
Jeads to no loss of convexity properties (cf. [6], Remark on p. 148).

COROLLARY 5.5. The space X constructed in [2] has the same cotype
as X. If dx is the modulus of convewmity corresponding fo an equivalent norm
on X, then X cam be given an efuivalent norm such that

dx(e) > 00x(s),

for 0 < e<< 2 and some positive constant o.

Proof. The space Y is a sublattice of X (@), where @ is the l,-sum
of a sequence of spaces (W,,) which are isometric to quotients of the
space I, P Iy, and have monotonely unconditional bases. It follows (cf. e.g.
[4], Added in proof) that ¢ has modulus of convexity > ct? and hence,
by the result of [11] and Lemma 2.6, we haive @(l,) < 1,(G). Therefore
Temma 2.5 yields that X(l,) s B(X) implies (X (&) (%) g‘E(X(G)), ie.,
if X is of cotype B (in the sense defined in Section 2), then so is X(&).
Since Y is a subspace of X (@), this proves the first part of the eorollary.
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To prove the second parf we may assume that dx(e) > 0 for some

e € (0, 2). Since, by [11], X is of cotype dx, Theorem 1.8 yields an Orliez
function F such that F(e) > dx(c) for 0 <e< 2 and X is of cotype F.
By the first part of the proof, X (G) is also of cotype I

The assumption dx(e) > 0 implies that X is superrcilexive, and

hence it admits an equivalent p-convex norm for some p (1, 3/2). The
same being true about @, the space X (G) also admits a p-convex norm.
Therefore, by Proposition 3.1, the norm on X (G) construeted in. Theorem
5.1 has modulus of convexity > ¢F'(¢). This yields the required renorming
of the subspace Y. '
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